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Introduction

There are two types of pigments: natural and syn-
thetic. Synthetic pigments are mainly coal tar 
derivatives made from chemicals which are by 

products of coal distillation. Many synthetic dyes are 
controversial and banned in many countries for use in 
food products because of safety concerns. Use of these 
synthetic pigments in personal care products also adds 
health risks. Some of these dyes contain impurities like 
lead acetate which are toxic to nervous system. Some 
commonly used synthetic pigments are allergens, ir-
ritants and some others are known carcinogens. Thus, 
there is an increasing demand for natural pigments per-
cieved as less toxic for use in food products, pharma-
ceuticals and cosmetics. Many plants contain dyes and 
pigments (other than chlorophyll) which may serve as 
colorants and may have other roles e.g.; in photosynthe-
sis, insect attractants etc. Natural pigments represent an 
apparently more sustainable sources of colorants than 
synthetic counterparts. 

Other than higher plants (Angiosperm and gymno-

sperm), microalgae are good alternatives of carotenoids 
and phycobiliproteins for natural colors. Microalgae 
belong to an heterogenous group of microorganisms. 
Microalgae are small, unicellular monocellular or mul-
ticellular, autotrophic, colorful and grow generally in 
water and they may be either eukaryotic or prokaryotic. 
Production of pigments from microalgae has a num-
ber of advantages such as cheaper and easy production, 
easier extraction, higher yields, no lack of raw materi-
als and no seasonal variations. The status of microalgal 
applications in aquaculture, food, speciality chemicals 
and environmental applications has been reviewed (Apt 
and Behrens, 1991; Muller-Feuga, 2000; Pulz et al., 2001; 
Benemann et al., 2002). In this review our focus is on ex-
traction of microalgal pigments as natural colors, factors 
affecting their yield, extraction methods and their ap-
plications. Major pigments of the microalgae which are 
used as pigments are carotenoids and phycobiliproteins.

The pigments are characteristic of certain algal 
groups as indicated in Table 1 (Dring 1982). Chloro-
phylls and carotenes are generally fat soluble molecules 
that can be extracted from thylakoid membranes with 
organic solvents such as acetone, methanol or dimethyl 
sulfoxide The phycobilins and peridinin, in contrast, are 
water soluble and can be extracted from algal tissues af-
ter the organic solvent extraction of chlorophyll in those 
tissues.

استخلاص ملوّنات طبيعية من طحالب بحرية 
تنوير علام ولبنى نجم وأحمد الحراصي

Abstract. The pigment content in microalgae is a specific feature of each species. Pigments from natural sources 
are gaining more importance mainly due to health and environmental issues. Algae contain a wide range of pigments. 
Three major classes of pigments are chlorophylls, carotenoids (carotenes and xanthophylls) and phycobilins (Phyco-
cyanin and phycoerythrin). Phycocyanin and phycoerythrin belong to the major class of phycobilins photosynthetic 
pigment while fucoxanthin and peridinin belong to carotenoid group of photosynthetic pigment. Macro- and microal-
gae (including cyanobacteria) have been recognized to provide a wide diversity of metabolites including pigments for 
energy capture and photo-protection.

Keywords: Chlorophyll; phycobillins; microalgae; cyanobacteria; pigments

المســتخلص: للصبغيــات في الطحالــب المجهريــة ميــزة خاصّــة تميّــز كل نــوع منهــا. والملوّنــات الطبيعيــة تكتســب أهميّــة كبــرة بســبب آثارهــا الإيجابيــة علــى 
الصحّــة والبيئــة. تحتــوي الطحالــب علــى أنــواع  كثــرة مــن الصبغيــات. ثلاثــة أكــر أقســام الصبغيــات هــي: كلوروفيــلات )اليخضــور(، كاروتينويــدات 
)كاورتــين، زونتفيــل( وَ فيكوبيلينــات )فيكوســينين ، فيكوارتريــن(. فيكوســينين وَ فيكوارتريــن تنتميــان إلى القســم الأكــر مــن صبغيــات فيكوبيلينــات 
التمثيــل الضوئــي. كمــا أنّ فيكوزونتــين وَ بريدينــين تنتميــان إلى مجموعــة صبغــة كاروتينويــد التمثيــل الضوئــي. الطحالــب الكــرى والمجهريــة بمــا فيهــا البكتريــا 

الزرقــاء )ســيانوبكتريا( تعُــرف بقدرتهــا علــى توفــر كميّــة متنوّعــة مــن المســتقلبات بمــا فيهــا صبغيــات التقــاط الطاقــة و الحمايــة بفعــل الضــوء. 
الكلمات المفتاحية: كلوروفيلات )اليخضور(، فيكوبيلينات، الطحالب المجهرية، البكتريا الزرقاء )سيانوبكتريا(، الصبغيات.  
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Objectives

Main objective of this work is to summarize the Natural 
Pigments from Marine species of microalgae.

Common Algal Pigments
The following pigments are industrially important prod-
ucts.

Chlorophylls
This photosynthetic green pigment is mainly derived 
from Chlorella spp. Chlorophyll as a food colorant is 
found to exhibit anti-mutagenic property (Fig.1,2). This 
is accomplished by inducing production of Carcinogen 
Detoxifying Enzymes, and thereby reducing the risk of 
cancer.

β-Carotene
Dunaliella salina a halophilic green algae is used for β 
-carotene production. This pigment is used mainly as 
food colorant that imparts a Yellow-Orange color. Apart 
from its use as a colorant, D. Solina is used popularly as 
a nutraceutical additive because it is rich in Vitamin A.

Fucoxanthin
This pigment, derived from Phaeophytes, is used for col-
oring food products brown. This fat reducing properties 

are well documented. 

Peridinin

Peridinin is a light-harvesting Apocarotenoid, a pigment 
associated with chlorophyll. The most popular algal 
source of this pigment is the dinoflagellate, Amphidini-

Figure 1. Chemical structure of Chlorophyll a.

Figure 2. Chemical structure of Chlorophyll b.

Figure 3. Chemical structure of  β-Carotene.

Figure 4. Chemical structure of Antheraxanthin.

Figure 5. Chemical structure of Astaxanthin.

Figure 6. Chemical structure of Cantaxanthin.
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um carterae (Hofmann et.al, 1996) but is found in many 

other species.

Phycoerythrin

Red pigment, phycoerythrin is extracted from red algae 
(Rhodophyta). The species most commonly used for 
phycoerythrin production is Porphyridium cruentum. It 
is cultured in artificial seawater with added Potassium 
Nitrate and optimum temperature of growth for Por-

phyridium is 21°C. 

Phycocyanin
Blue pigment, Phycocyanins are derived from blue green 
algae (Cyanophyta). The most popular algal source of 
this pigment is Spirulina platensis. It requires an alkaline 
pH range of 7.2 to 9.0 and a salinity of 30 g/L. In the wild, 
Spirulina grows at 27°C.

Extraction of Algal Pigment

Chlorophylls and carotenoids are generally fat soluble 
molecules and can be extracted from thylakoid mem-
branes with organic solvents such as acetone, methanol 
or dimethyl sulfoxide.

The phycobilins (Phycoerythrin & Phycocyanin) and 
peridinin, in contrast, are water soluble and can be ex-
tracted from algal tissues after the organic solvent ex-
traction of chlorophyll in those tissues.

Chlorophylls
Industrial extraction of these pigments involves homog-
enization (disintegration) of algal biomass, followed 
by solvent treatment using an organic solvent mixture 
(Chloroform-Hexane-Ether-Methanol) (Jaffrey and 
Humphrey, 1975; Strickland and Parsons, 1968; UNES-
CO, 1966; Mackinney, 1941; Porra et. al. 1989;  Licht-
enthaler and Wellburn, 1983; Kaczmar, 2004). Pigments 
can be extracted from seaweeds by a variety of tech-
niques. It is important to note that light, heat, extremes 
of pH, and oxygen cause the destruction of pigment ex-
tracts. The extracts should be kept cold and worked with 
in the lowest light possible throughout the procedure. 
The rationale behind the extraction techniques is to dis-
rupt cell integrity as much as possible, thereby removing 

pigment molecules from intrinsic membrane proteins. 
Freezing the tissue with liquid nitrogen, and grinding the 
still frozen tissue in with a mortar and pestle or blender, 
overcomes some of the problems of working with mate-
rial that produces large amounts of viscous polysaccha-
rides. “Freeze-thawing” tissue also breaks down cellular 
membranes, but may liberate more polysaccharides. 
Finely ground tissue can be then homogenized in or-
ganic solvent to further disrupt cellular membranes, and 
to liberate pigment molecules from the light harvesting 
pigment protein complexes.

Once the pigments are extracted into appropriate 

Figure 7. Chemical structure of Fucoxanthinol. Figure 8. Chemical structure of Lutein.

Figure 9. Chemical structure of  Peridinin

Figure 10. Chemical structure of Phycoerythrin

Figure 11. Chemical structure of Chemical structure of 
Fucoxanthin.
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solvents they can be separated chromatographically by 
TLC or HPLC for spectral analysis and identification. 
Pigment concentrations in hydrocarbon solvents can 
be estimated with various emparical formulae linking 
absorbances at different wave lenghts to concentra-
tions. However, these formulas are predictive and may 
overestimate some pigment concentrations (Seely et al. 
1972). Uncoupling pigments from the pigment binding 
proteins can change the absorption patterns of the pig-
ments, resulting in shifts in maxima from 10 to 50 nm, 
when compared with spectra measured for intact tis-
sues.

Carotenoids
Carotenoids are lipophilic colored compounds that are 
found in higher plants (gymnosperms & angiosperms) 
and algae as well as in non-photosynthetic organ-
isms like fungi and bacteria. Carotenoids are found in 
the form of  isomers, viz. all trans, 9-cis, 13-cis, 5-cis 
forms (Wang et al., 1994) More than 600 carotenoids 
are known (some important ones are, β-carotene, as-
taxanthin, cantaxanthin, lutein etc.) and their chemical 
structure is based on a 40-carbon polyene which is the 
backbone of the molecule (Fig. 1). The polyene system 
imparts carotenoids their distinctive molecular struc-
ture, their chemical properties and their light absorbing 
characteristics. The hydrocarbon carotenoids are named 
carotenes, whereas oxygenated derivatives are known as 
xanthophylls. In xanthophylls, oxygen can be present as 
OH groups (as in canthaxanthin), or as combination of 
both as in astaxanthin (Huguera-Ciapara et al., 2006).

At present carotenoid production from microalgae 
refers only to astaxanthin and β-carotene from Hae-
matococcus pluvialis and Dunaliella salina, respec-
tively. In astaxanthin producing organisms like Phaffia 
rhodozyma (yeast) or H. pluvialis (algae), carotenoid 
are located in cytoplasmic lipid globules (Lang, 1968; 
Johnson and An, 1991). Such extra-plastidic carotenoids 
are also referred to as secondary carotenoids (Grung et 
al., 1992). H. pluvialis represents the richest biological 
source of this pigment and is being cultivated at large 
scale by several companies, using different approaches. 
Commercially grown H. pluvialis can accumulate > 30 g 
of astaxanthin kg-1 dry biomass (Olaizola and Huntley, 
2003). Another important source for the production of 
β-carotene is the green, unicellular alga Dunaliella sali-

na. β-carotene obtained from Dunaliella has many ad-
vantages like increased absorption by human body, high 
efficiency, isomeric composition and it can be produced 
up to 14% of dry wt. of the biomass in a very short time 
(Metting, 1996). 

The carotenoid pigment astaxanthin has important 
applications in the cosmetics, nutraceuticals, food and 
feed industries. Astaxanthin is a strong colouring agent 
and a potent antioxidant (Guireen et al., 2003). Contrary 
to advantages using microalgae as source of natural co-
lourants, some disadvantages have also been reported. 
Production of microalgae at large scale is associated 
with disadvantages like little process control (Borow-
itzka, 1992), high CO2 consumption with low efficiency 
(Chaumont, 1993), contamination problems and op-
timal requirements of high amounts of salt, water and 
solar radiation (Ogbonna and Tanaka, 2000). 

For these reasons, alternative strategies/improve-
ment of operating systems such as extensive open ponds 
(Pulz, 2001, Gomez and Gonzalez, 2004), natural ponds 
(Gomez and Gonzalez, 2004), paddle wheel driven 
raceway/ ponds (Pulz, 2001), tubular photo bioreactors 
(Garcia-Gonzalez et al., 2005), large bags (Pulz, 2001) 
were suggested and tried to increase the β-carotene pro-
duction. Extraction efficiency and productivity of β-car-
otene from Dunaliella can be enhanced many folds by 
using a biphasic bioreactor consisting of an aqueous and 
a biocompatible organic phase (Hejazi et al., 2002, 2003, 
2004). Nowadays industries use closed tubular biore-
actors for the production of carotenoids (Gonzalez et 
al., 2005). This bioreactor has been found preferable for 
biomass and astaxanthin production from H. pluvialis 
(Lopez et al., 2006). 

Extraction of Carotenoid Pigments

Extraction and purification are two steps in carot-
enoid production from microalgae (Lee et al., 1999).

Table 1. Pigment composition of several algal groups (During 
1982)

Division Common Name Botanical Name Major Pigment

Chlorophyta Green algae Chlorella sp. Chlorophyll b

Charophyta Charophytes Spirogyra Chlorophyll b

Euglenophyta Euglenoids Euglena gracilis Chlorophyll b

Phaeophyta Brown algae Fucus vesiculosus
Chlorophyll 

c1 + c2,
Fucoxanthin

Chrysophyta 
Yellow-brown 

or   
golden brown algae

Dunaliella salina
Chlorophyll 

c1 + c2,
Fucoxanthin

Pyrrhophyta Dinoflagellates Amphidinium 
carterae

Chlorophyll 
c2, Peridinin

Cryptophyta Cryptomonads Cryptomonas sp. Chlorophyll 
c2, Phycobilins

Rhodophyta Red algae Porphyridium 
cruentum

Phycoerythrin, 
Phycocyanin

Cyanophyta Blue-green algae Spirulina plat-
ensis

Phycoerythrin, 
Phycocyanin

Figure 12. Chemical structure of Phycocyanin.
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First Step
Biomass is separated from liquid media by centrifuga-
tion. Some alternative methods like flocculation, filtra-
tion etc. can also be used (Molina Grima et al., 2004). 

Second Step
Separated biomass needs to be quickly processed to avoid 
spoiling. The most acceptable methods are spray-drying, 
drum drying, freeze drying (lyophilization) and sun dry-
ing. β-carotene is extracted from wet Dunaliella paste 
by different processes, using vegetable oils with or with-
out chemicals, liquid or supercritical CO2 extraction, 
crystallization and others. The supercritical fluid ex-
traction of carotenoids from the microalgae D. salina, C. 
vulgaris, Spirulina pacifica, and Nannochloropsis gadi-
tana has been reported by many workers with promising 
results (Lorenzo et al., 1991; Mendes et al., 1995, 2003; 
Careri et al., 2001; Macias-Sanchez et al., 2005). Dynam-
ic extraction of carotenoids with supercritical CO2 from 
a marine strain of Synechococcus sp. was investigated 
with regard to operation pressure and temperature ef-
fects on extraction efficiency (Montero et al., 2005). A 
biphasic aqueous/organic system to force the extraction 
of β-carotene into the medium is applied to Dunaliella 
cultures. In this system, a biocompatible organic solvent 
is in contact with aqueous phase where the cells develop 
accumulation of pigments, β-carotene is continuously 
extracted into the organic phase overcoming low water 
solubility of the product and facilitating product recov-
ery and continuous operation (Salter and Kell, 1995; He-
jazi et al., 2002, 2003).

Extraction Methods
The extraction techniques of cell components usual-

ly make use of chemical, mechanical and/or enzymatic 
proceses. In this work only the chemical and mechanical 
procedures were used, alone or simultaneously, with the 
aim of maximizing the extraction process efficiency. Fig-
ure 13 shows a diagram where the different elementthat 
were used to extract then identify and quantify pigments 
in the microalgae, are presented under a structured se-
quence. The following methods were used to analyze the 
algal pigments in different extracts. (Table 2, 3 & 4)

Thin Layer Chromatography Concentration of 
Carotenoid
The carotenoid content of seaweeds was determined by 
the method of Kirk and Allen, 1965. The extract that was 
used for the chlorophyll estimation was used for carot-
enoid estimation also. The same chlorophyll extract was 
measured at 480nm in UV-spectrophotometer to esti-
mate the carotenoid containing the following formula 
(Eq. 1).

Carotenoid (µg/g)                                             Eq. (1)
= A480 + (0.114 × A663) – (0.638 × A645) 
   A = Absorbance at respective wavelengths (nm).

Applications of Carotenoids 

Nutritional Value: Most of the natural pigments have 
high nutritional value unlike their synthetic counter-
parts (Jin et al., 2003)  because synthetic pigments con-

Acetone
(A)

JH(1975) S(1968) UNESCO(1966) MK(1941) P(1989) LT(1983) K(1983)

Methanol
(M)

Ethanol
(E)

24 h 24 h 24 h 20 min 24 h 20 min 24 h (8ºC) 24 h (6ºC)

(Sdt) (Sdt) (Sdt) (Sdt) (Sdt)(Sdt)

(FZ) (FZ) (FZ) (FZ) (FZ)(FZ)

(U) (U) (U) (U) (U) (U)(U) (U)

Microalgae

(FN)

Reference Equation

Extraction time

Cell disruption

Figure 13. Items tested to compare different methods of pigments evaluation. Abbreviations: St : Standard, U: Ultrasound, 
F: Freezing/Unfreezing, FN: Freezing/Unfreezing with liquid N2
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tain mainly trans-forms and natural pigments cis-form 
(Von Laar et al., 1996).

 
Antioxidant and anticancer properties: β-carotene 
has been shown to have antioxidant and anticancer 
properties (Becker, 2004).

Pigmentation in fish: Major application of astaxanthin 
carotenoid is as pigmentation source in aquaculture, 
primary salmon trout and red sea bream (Guerin et al., 
2003; Cysewski and Lorenz, 2004).

Eco-friendliness: The process of manufacturing of nat-
ural pigments from algae does not involve the applica-
tion of hazardous chemicals. The majority of the bio-
mass are biodegradable and can also be reused as fodder, 
bio-fertilizers, etc.

Non-Toxicity and non-carcinogenicity: Natural pig-
ments derived from algae have been certified as safe for 
application as food colorants. 

Dyes: Chlorophyll Derivatives (Chlorophyllin) are used 
for dyeing of fabrics such as wool, acetate derivatives 
and cotton.

Pharmaceuticals: β-carotene has market applications 
like food coloring agent, as provitamin A (retinol) in 
food and animal feed, as an additive to cosmetics and 
multivitamin preparations and as a health food product 
under the antioxidant claim (Johnson and Schroeder, 
1996; Edge et al., 1997).

Cosmetics: Algal pigments are used for adding exotic 
pigments to soaps, shampoo, hand wash. Macroalgae 
are a source of good pigments for various hair coloring 

Table 2. Empirical equations used  to evaluate the concentration of pigments using methanol, acetone and ethanol as extraction 
solvent.

Acetone

Jeffrey and Humphrey (1975)
μg Chlorophyll/mL medium = (11.85 A664 – 1.54 A647 – 0.08 A630) υ/(lV)

Strickland and Parsons (1968) μg Chlorophyll/mL medium = (11.66 A665 – 1.31 A645 – 0.14 A630) υ/(lV)

UNESCO (1966) μg Chlorophyll/mL medium = (11.64 A663 – 2.16 A645 – 0.10 A630) υ/(lV)

Methanol

Mackinney (1941) μg Chlorophyll/mL medium = 13.43 A665 υ/(lV)

Porra et.al. (1989) μg Chlorophyll/ mLmedium = (16.29 A665 – 8.54 A652) υ/(lV)

Lichtenthaler (1983)
μg Chlorophyll/mL medium = 15.65 A666

                                                          
μg total carotenoids/mL medium = [ (1000 A470 – 44.76 A666)/221]                                                           

Ethanol

Kaczmar (2004) μg Chlorophyll/mL medium = (11.64 A663 – 2.16 A645 – 0.10 A630) υ/(lV)

A  is the absorbance at respective wave lengths (nm) , v means the volume of solvent used (mL), l is the spectrophotometric cell length 
(cm) and V is the sample volume (mL).

Table 3. Rf Values of different pigments

S. No. Pigment Rf Value Solvent System

1 Chlorophyll a 0.68 7:3
(Petroleum ether : Acetone)

2 Chlorophyll b 0.54 7:3
(Petroleum ether : Acetone)

3 Chlorophyll c 0.03 7:3
(Petroleum ether : Acetone)

4 β-carotene 0.94 7:3
(Petroleum ether : Acetone)

5 Fucoxanthin 0.51 7:3
(Petroleum ether : Acetone)

6 Lutein 0.43 7:3
(Petroleum ether : Acetone)

7 Violaxanthin 0.22 7:3
(Petroleum ether : Acetone)

8 Neoxanthin 0.08 7:3
(Petroleum ether : Acetone)

Table 4. Wavelength maxima for pigments in various solvents.

S. No. Pigment Wavelength maxima Solvent 

1 Chlorophyll a 428.5, 660.5 diethyl ether

2 Chlorophyll c1 629.1 100 % acetone

3 Chlorophyll b 452.5, 642 diethyl ether

4 Chlorophyll c2 630.6 90% acetone

5 Chlorophyll c2 629.6 100% acetone

6 Chlorophyll c2 630.9 90% acetone

7 Chlorophyll c 447, 533 or 449, 635 90% acetone

8 β carotene 452, 470 Ethanol

9 Lutein 446, 474 Ethanol

10 Violaxanthin 442, 470 Ethanol

11 Neoxanthin 437, 466 Ethanol

12 Myxoxanthophyll 445, 471, 503 Ethanol

13 Siphonoxanthin 455 Ethanol

14 Peridinin 455 Ethanol
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products due to their long lasting properties.Xantho-
phylls, astaxanthin has many applications in cosmetics 
products.

Paint Additives: Beer yeast diatoms are also used in 
paint additives, other than algal pigments, due to the ir-
idescent nature of their silica shells.

Feed industries: Xanthophylls, astaxanthin has many 
applications in feed industries like as poultry. Major ap-
plication of this carotenoid is the pigmentation in egg 
yolk. 

Phycobiliproteins

Structure of Phycobiliproteins
The phycobiliproteins are antennae protein pigments 
found in cyanobacteria, rhodophytes, cryptomonads 
and cyanelles (Glazer, 1994). The phycobiliproteins are 
present as phycobilisomes anchored on the thylakoid 
membranes and lie adjacent to the photosynthetic re-
action centre of the PS II in cyanobacteria and red al-
gae. These chromoproteins are classified into 3 groups 
based on the presence of different chromophores among 
them (Gantt, 1980, 1994; Glazer, 1985; Zilinskas, 1986; 
Rowan, 1989; Sidler 1994; Mac Coll, 1998; Ducret et al., 
1998). These groups are (1) Phycoerythrin (PE) λmax 
480 nm-570 nm; (2) Phycocyanin (PC) λmax 590-630 
nm and phycoerythrocyanin (PEC) λmax 630-665 nm 
(3) Allophycocyanin (APC) λmax 620-665 nm. Core of 
phycobiliproteins is composed of allophycocyanin from 
which arise six rods of varying length consisting of phy-
cocyanins to the proximal side of the core and phyco-
erythrins to the distal side of the core (Fig. 14).

Extraction and purification meth-
ods

Phycocyanin
Phycocyanin is water-soluble and can be easily extracted 
as a protein-pigment complex (Chaiklahan et al., 2012). 
Phycocyanin was extracted from the wet biomass of Spi-
rulina using the following methods: 

Extraction was done using 100mM phosphate buffer 
(pH 7.0) at a ratio of 1:100 (w/v) with continuous stirring 
at 300 rpm at room temperature for 4 hrs. the sample 
was centrifuges at 4800 × g for 15 minutes to remove 
cell debris. The crude extract was first filtered through a 
5 μm membrane at flow rate of 150 mL min-1.and then 
through 0.8/0.2 μm membrane at flow rate of 100 mL 
min-1. The phycocyanin was then filtered again through 
a membrane with a molecular cut-off of 50 kDa at 69 kPa 
and 75 mL min-1. Finally the filtrate was lyophilized to 
get the phycocyanin powder.

Mechanical cell disintegration methods are currently 

preferred for large-scale operations (Gacesa and Hubble, 
1990; Kula and Schutte, 1987) since a complete disinte-
gration of the biomass is desired, with high product and 
activity yields.

Allophycocyanin, a bluish green protein and CPC, 
a blue protein have the major absorption (λmax) in 
the visible region of 650-655 nm and 610-620 nm, re-
spectively, with emission light at 660 nm and 637 nm 
respectively (Bryant et al., 1979; Sekar and Chandramo-
han, 2007). Determinations of these phycobiliproteins 
by spectrophotometry have been assessed by different 
authors (Furuki et al., 2003; Chaiklahan et al., 2012). The 
purity ratio of the phycocyanin extract is determined by 
the A620/A280 ratio. High purity in the extract refers to 
high purity ratios (Chaiklahan et al., 2012). Absorbance 
ratio ≥ 0.7 refers to food grade pigment, while reagent 
and analytical grade correspond to 3.9 and ≥ 4.0 respec-
tively (Borowitzka, 2013).

C-phycocyanin concentration
The C-phycocyanin concentration (CPC) in mg.mL-1 

was calculated from the optical densities at 652 and 620 
nm, using Eq. 2 (Bennett and Bogorad, 1973): 

   CPC =(OD620 - 0.474OD652 ) /5.34                               Eq.(2)

Extraction yield: the extraction yield was calculated 
using Eq. 3 (Silveira et al., 2007). 

  Yield =(CPC)V/DB                                                 Eq.(3)
   
where Yield is the extraction yield of phycocyanin in 

mg of C-phycocyanin /dry biomass (g), V is the solvent 
volume (mL) and DB is the dry biomass (g).

Calculation of Phycocyanin content (C-PC): (Kursar 
and Alberte 1983)

The C-PC and APC concentration (μg/ml) were de-

Figure 14. Schematic structure of the pigments in a Phy-
cobilisome.
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termined spectrophotometrically from 
Equations 1 and 2.

C-PC = 166(A618 ) -108(A650)           Eq.(4)

A-PC = 200(A650 ) -52.3(A618)          Eq.(5)

Where A refers to absorption at the indicated wave 
lengths

Phycoerythrin 
Phycoerythrin is a red coloured phycobiliprotein with 
absorption maxima range at 565 nm. Purity is usual-
ly determined as the absorbance ratio of A565/A280 
which defines the relationship between the presence of 
phycoerythrin and other contaminating proteins. A pu-
rity ratio A565/A280 >4 corresponds to diagnostics and 
pharmaceutical grade phycoerythrin (Benavides and Ri-
to-Palomares, 2004).

Phycoerythrin is an intracellular protein, the gener-
al purification process relies in three stages: 1. protein 
extraction by cell disruption, 2.  primary recovery and 
3. purification. Disruption methods like sonication, me-
chanical maceration and lysozyme treatment have been 
successfully used to extract phycoerythrin from microal-
gae. Choosing the right cell disruption method has a sig-
nificant impact in the recovery of the overall process.

Benavides and Rito-Palomares (2006) used aqueous 
two-phase system (ATPS)  to concentrate and purify 
phycoerythrin. Aqueous two-phase system is an ad-
vantageous technique due to its biocompatibility and 
can easily be scaled. The authors found that it is pos-
sible to concentrate phycoerythrin in the PEG-rich top 
phase using a PEG 1450-phosphate system. The system 
constructed with a volume ratio (Vr) of 1, PEG 1450 of 
24.9% (w/w), phosphate concentration of 12.6% (w/w) 
and pH value of 8 allowed the recovery of phycoerythrin 
with a 2.9 purity ratio.

Purification is achieved by chromatographic methods 
like ion exchange chromatography, hydroxyapatite chro-
matography, gel filtration and expanded bed absorption 
chromatography.

Calculation of Phycoerythrin content (PE): (Beer 
and Eshel, 1985) 

The following equations are proposed for correct cal-
culations of pigment concentrations (E, phycoerythrin; 
C, phycocyanin, mg ml-1 in red algal crude extracts:

PE (mg/ml) 
= [(A564 - A592) - (A455 - A592) x 0.2] x 0.12
                                                                                   Eq.(6)
C (mg/ml) 
= [(A618 - A645) - (A592 - A645) x 0.15] x 0.15
                                                                                    Eq.(7)

Where A refers to absorption at the indicated wave 
lengths.

Applications 
In Food Coloring: One of the most important applica-
tion of phycocyanin is its use in food items. It is used as 
a colourant in chewing gums, popscicles, candies, soft 
drinks, dairy products and cosmetic also in the industry 
for lipsticks and eye liners. The major organisms exploit-
ed are Spirulina for phycocyanin and the red alga Por-
phyridium for phycoerythrin (Roman et al., 2002).

Dyes: Phycobiliproteins  are used for dyeing of fabrics 
such as wool and cotton in Japan, Thailand and China.
Phycocyanin derived from S. platensis is used as a natu-
ral pigment in food items such as chewing gums, dairy 
products and jellies (Santago-Santos et al., 2004), as a 
dye in pharmaceutical and cosmetic industry (Batista et 
al., 2006). Pure phycobiliproteins are also widely used as 
fluorescent labeling agents (Glazer, 1994; Telford et al., 
2001). Due to their antioxidant and anti-inflammatory 
properties, both C-PC and APC are also potential ther-
apeutic agents. (Zhang et al., 2000, Romay et al., 2003).

Phycocyanin colorants in general are non-toxic and 
non-carcinogenic. Uses of phycocyanin in foods include 
the coloring of fermented milk products, ice creams, 
chewing gum, soft drinks, alcoholic drinks, desserts, 
sweet cake decoration, and milk shakes.

Conclusion

Important pigments (chlorophyll a, b and c, β-caro-
tene, astaxanthin, xanthophylls, and phycobiliproteins) 
are produced by many microalgae. Synthetic pigments 
are used in food, cosmetics, beverages , nutraceutical 
and pharmaceutical industries. Synthetic pigments are 
having harmful effects, natural pigments become an 
attractive option from microalgal pigments. Though 
algal pigments have the drawback of unstable at high 
temperature, an effective solution involves using ther-
mophilic algal pigments. Due to increased interest in 
bio-fuels and food supplements of algal origin, in the re-
cent times, there is widening scope for industries to ex-
ploit the availability of other algal products, mainly dyes, 
fodder and bio-plastics. Investing in the fields of algal 
pigments production would both increase profitability 
and reduce wastage of resources (in the form of expelled 
biomass used as bio fertilizers).
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