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Paess o (b actusl soligiog
that af the Newton-Raphson methed

e history of channels is as old as human
b ivilization.  Their proper design is of utmost
oetance due to their widespread use, This includes
iige ditches, through spillways, Mood ways, log
188, roadside gutters, culverts, siphons, flumes, and
galion canals,. Channel sections involve a wide
2y of geometric shapes depending on the type and

pecilic application of the channel, as well as field

MRy procedures have been developed over the
B for the hydraulic design of open channel

. The complexity of these procedures vary
g o flow conditions as well as the level of
implied while developing the given
The Chezy equation is one of the procedures
developed by u French engineer in 1768
. 1966). The development of this equation
ed on the dimensional analysis of the friction
| under the assumption that the condition of
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ABSTRACT: Irrigation and hyvdraulic engineers an: oflen foed with the difficulty of tedious frial solutions of the Mannang
equatlon o deleoming the varjows gecsetroe clements of open channels,
compuier moded for the design of the most commonly used channel-sections.
Tt may b applied 6 the hydraulic de

This paper addresses the development of a
The developed model is mtended a8 an

sign of trapesoiclal, receangular, triangular, parabislic, reumd-
Twn procedures were wilized For the solution of the encountered implicit
Bquations: the Newton-Raphson and the Regula-Falsi methods, Tn order 1 indtiate the wlution process, hese meihmds

The resubts revealed that the Repula-Falsi mseihod required more
Ieralioes: o converge 1o the sobution compared o the Newson-R

aphson methid, irespeciive of (he fearness of he initial

Ihe averape number of iwerations for he B pguls-Falss method was approximately ihres imes

flow is uniform. A more practical procedure was
presented in 1B89 by the Irish engineer Robert
Manning (Chow, 1959). The Manning equation has
proved to be very reliable in practice. In pddition, i
has well documented friction factors that were
developed over the vears. This makes the Manning
equation more desirable for the design of open
channels,  Both the Chezy and Manning equations
have been discussed in detail in many references. For
more information, the reader is referred to the U.S.
Soil Conservation Service {1954), Chow (1959}, and
Henderson { 1966).

Other design procedures for open-channel flow
have been developed in recemt vyears.  These
procedures were aimed at the solution of both non-
uniform and unsteady flow conditions in open channels
that are complex in nature. Hager (1955) used the
Bernulli (energy) equation to derive a formulation for
estimating the discharge rate from open channels.
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Hager and Volkart (1986) and Delong (1989) utilized
the mass and momentum equations to solve for flow in
channels. Such approaches have the potential to
become widely used in the future design of open
channels. However, the development of computer
medels based on these technigues is very cumbersome.
It requires the determination of a number of
parameters which are variable and difficult to assess.
For this reason. users of such rechnigues would have
to rely on approximations for these paramelers. This
undermines the higher accuracy normally associated
with these solution procedures and limits their practical
use. In comparison, simplified procedures such as the
Manning equation require fewer parameters which can
be readily determined. Henderson {1966) stated that
the Manning formula has proven o be practically
reliable and extremely popular for designing open
channels in most Western countries.

The Manning equation invokes the determination
of flow velocity based on the slope of channel bed,
surface roughness of the channel, cross-sectional area
of flow, and wetied perimeter of flow. Using this
equation, the solution procedures are direct for flow
velocity, slope of channel bed. and surface roughness.
However, the solution for any unknown related 10 the
cross-sectional area of flow and wetted perimeter
involves the implemenation of an implicit recursive
solution procedure which can not be achieved
analytically. Many implicit solution procedures have
been developed in the litcrature.  AmONE these
techniques are the Newton-Raphson, Regula-Falsi
(false position), secant, and the Van Wijngaarden-
Dekker-Brent methods (Press et al., 1986).

This paper addresses the development of 4
computer model for the hydraulic design of the most
commonly used channel sections using the Manning
equation.  The specific objectives  include the
development of a general educational ool for the
analysis of various geometric  sections of open
channels; the application of existing mumerical
procedures to the solution of the resultant implicit
equations; and a comparison hetween the utilized
implicit solution procedures in terms of speed of
COMVETEENCE, ACCUracy. and the effect of initial guess
on convergence,

Theoretical Development

The Manning equation, which can be used 1o
describe  both  uniform  and non-uniform  flow
conditions in open channels, takes the form
(Henderson, 1966)

- |

b |-

where n is the coefficient of surface roughness of the
channel. R s the mean hydraulic radius in meters, Sis
the slope of the energy gradient which is equivalent 1o
the slope of channel bed under uniform  flow
conditions. and V is the mean velocity in mdsec. The
hydraulic radius represents the ratio of cross-sectional
area of flow 1o the wetted perimeter. Equation (1) can
be converied to feet-second units by inserting the
factor (3,281 f'm)"” or J.486 10 become (Henderson,
14

2 1
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Eqquations ( 1) and (2) can be written in the general
form

(3)

where ¢ is a constant dependent on the system of unis
which takes a value of ! for the m'isec units and a
value of 1.486 for the ft'/sec units, @ is the flow raie
in m'see or fi fsec, A is the cross-sectional ared
normal to the direction of flow in m or £, and P 1
the wetted parameter in m or ff.

The solution for the parameter 5, @, and a in
Equation (3) is explicit for any channel section.
However, the parameters which relate to 4 and P
require an implicit solution procedure when such
parameters are unknown.  Among the primary
parameters that are related (o 4 and F are the depih of
flow, v, and the top widih of the channel section at the
free water surface, 7. These unknowns would be
handled either by trial and error or by implementing an
implicit solution procedure such as the Newion
Raphson method (NRM) or Regula-Falsi prietliod
(RFM).  To implement these implicit solution
procedures, Equation (3) Is written as
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. £ is the unknown and FIE) is the function o be
peed o zero once the implicit solution procedure
werges 1o the solution,

' pil Solution Procedures

- There are several procedures that can be wilized
olving implicit gquations, The two procedures
im this paper include the NRM and RFM.

lon-Raphson Method: This method (NREM)
ar sticcessive gvaluation of both e function and

mvafive to achieve the solution, Successive
are expressed as (Chapra and Canale, 1988)

£
F {"u:-}

ug[ ]

o & )

Jf

8 £ i& the unknown, F (E) is the evaluared
im, and § is the weration counter. The NRM
one initial estimate to commence the solution

prder 1o implement Equation (5), the derivative
pation (4) must be established. This derivative is

=  RRE s
L3 21 A4

e 2pop * 2F ed 57 E£ (@)
=F "
€ gk

B OPIOE and dA/0E are the partial derivatives of
i A, respectively, with respect to the unknown £.
3 derivatives should be evaluated for the
ed channel section before Equation (6) is utilized,

legula-Falsi Method: This method (EFM)
ies two initial estimates o commence the solution
g8 while the derivative of the evaluated function
1 needed. One of these estimates is held constant
t ihe other is updated on succeeding iterations.

FM is very useful in instances when the

5Q
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derivative of the evaluated function may not be
determined. The consecutive iterations of the Regula-
Falsi procedure can be expressed by (Chapra and
Canale, 1988)

§FI(E,)
F(Sy)

Q6
Fg,)

4 (7

[EERE]

where £ is the initial constant estimate. The number of
iterations is dependent on the speed of convergence 1o
the solution,

Modeled Cross Sections

The Manning equatich was applied in the
developed computer model for the design of four
general cross sections of open channels, These include
trapezoidal, parabolic, round-cornered rectangular,
and circular sections (refer to Figure 1), The modeled
general cross-sections represent the most commonly
used geometric sections of open channels, Each of
these sections is commonly used under slightly
differemt field conditions or is the resuliant of nutural
conditions. For instance, the irapezoidal cross section
is most widely used with unlined earth canals simce it
provides side slopes for stability.

Trapezoidal Section: The trapescidal section is
one of the geometric seciions that could be handled by
the developed model, Rectangular and triangular
channe] sections can also be handled by the developed
model since each represents a special case of the
trapezoidal section, The rectangular or trangular
cross sections result from setting the inverse of side
slope, . or the bottom width, b, of the trapezoidal
channel section w zero, respectively For the
trapezoidal  channel cross  section, the wetted
perimeter, P, and the cross-sectional area of flow, A,
arc expressed as

P=h+2yym? +1 (8)

A= By + myt (g

where & is the botom width of the channel, y 15 the
depth of flow, and m is the inverse of side slope (refer
to Figure la). For the three implicit cases where
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gither y, b, or m is unknown, the partial derivatives of
P and A in Equation (4) become

a. ¥ is the unknown:

(10)

(1)

— ] S—
P |

\_/ \J

—-

(a) (b)

b, b is the unkown:

(12)

(13)

M is the unknow:

E.

p— —— —p —
() (d)
Figure 1. General channel sections (a) truperoadal, (b} parmbalic,

(¢} raund-comered reclungubar, and (d) circular

3
pey s+ B (16)
T
P % Ty A7)

where T is the top width of the channel section at the
For the two

& _dr __2my
ak dm l.rr“z': T (14) free water surface (refer o Figure 1b)
" implicit cases where either ¥ or T is unknown, the
partial derivatives of P and A in Equation {4) become
a. v is the unknown:
I:|
o 4L (15)
o dy iT
| dA 2T
— === (19)
aE dy 3

Parabolic Section: [For the parabalic section

parameters P and A are expressed as

()



&Ph-:ﬂ‘__ _By?

% a7 1 370 (20)
dd  dd 2

® ar 3 @1

nd-cornered rectangular section (refer 1o Figure
‘g rameters P and A are Emm as

R - 2)r + b+ 2y

{5

¥ > r) is the radius of the corner. For
8 implicit cases where either v, b, or r is

Wn. the partial derivatives of P and A4 in
o (4] become

(22)

- z] r s by v 2ey (23)

¥ is the unknown:

g — = J 4
o - (24)
A
—_— = h 4+ 2F 5
v (25)
is the unknown
dar
E I (26)
dd
m ¥ (27)

61

SHAYYA, MOHTAR AND BAASIRI

€, Fis the unknown:

-

ﬁ:ﬂ:(m-:} [ia:l
ot dr

{29)

Clrcular Section: For the circular section (refer
to Figure 1d), parameters P and A are expressed as

P".:E (30)

_ a
s (8 - sinfhy p

- (31)

where 2 is the internal diameter of the circular cross
section and 8 is the angle. The depth of flow, ¥, and

top width, T, can be expressed as a function of © and
D as follows:

P [B_‘_*-';l‘-'i] D (32)
Sin— 8
F
T =D :ing (33)

For the implicit case when 8 is unknown. the partial
derivatives of P and A in Equation (4) become

-
2

=SS

3
% (34)
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Moslel Descriptiomn

[he devel ped  compuler mosde]l 1 called
STYLINT, STYLIST has five major options that are
accessibie 1roam e M&in meenie Ihe [irst 'F"l:"::
ilows the user to select the menu of the circular

channel sections (refer o Figure 2). This menu has 4
TRl that will endble the user to determne ), 7, 5
or [he first three
explicitly  while the
implicitly using either the NRM or the RFM

- ; - "

LITIETHW TS arc l..l.-\.l.ll-\.l.i.".!
determined
[he
the main menu divers the Mg e W

[TRAPETOEL,

lust unknown is
secoaud --|'.|-.II|I-Z

he menu of the reclangular, and
irlangular ¢ross sections
which melude {2, ®, 5, am fl
mpelicitly

the main menu displays the

sections which has similar options o the menu tor

Fhis menu has 1 opHons
iddition to mr and i
[he third option of

"
prariaboli

wihich are determined |

inenu ol

circula Ao, this menu has o
The fouwrth
miEnu Lol

¢ options of this

channel sections

opticn for determining 7 impheitly LT

of the main menu displays the roaangl

cornered rectangular sectioms,  Th
Jeudyil] sumilar the menu

are 0 e Oplons ok

rapezoidal sections except for m which is replaced by
! Fina Y. the fitth W ol the maln menu diveris
the program (o the sel-up menu, The sel-up menu s
several options which are fundamental for
STYLIST

selecting the system of units {English or 81 umts), (b

TLIENLTIE
These options include the following: (a
selecting the implicit solution procedure (Newton
Raphson or Repula-Falsi), (¢) selecting the maximum
pumber of Herattons, (d)

selecting the initialization mode for

allowable setnng  the
;|E: 15k .||'|'._- 2I'ror, (e}
the implicit solution procedure (manual or aulomane),
(f} selecting the graphics mode for running STY LIST
(text mode or high resolution graphics), and (g) saving
the setup apiions

[he developed computer model requires an [BM
L] ;'--!1|I|l.' Mmicrocodmputer with M S-S version 3,00
or higher, The program requires a maching with a
1.5" or 5,25" disk drive and at least 256 Khytes of
random access memory {(RAM), The model has
several graphical displays which are unavailable
willoar a |_“...;'-||iqx ;-.|_|:||"-_'|

I'he developed misdel was verifved and vahdated
The STYLIST was carried

checking the values of the compuied variables agamst

verification of out by

hamd calculnted wvalues This process was repeated

until all the various options of the mode] were tested.

Mext
the model was producing consistent resulls.
e and the

was  delermuned. A

io see whether
Aosel ol
resultant solution of e

numerous mins were conducted
virubies were I\.II L}
unknown ditferen

model was

selected
I|:F||l'\l'-|." Wl ||:'.'I| 'I'Ii'.||.l\.| |I|:l\.: :ill\.'
executed wsing the results of the previous mun together
with the inithal set ahles. The
run must be consistent with the previous run for the
il

This process was repeated

resulis fromm this

selected channel cross sechion the mocel o e

performing satisfactorily
the developed model were

umdld all the compisnels ol

Was TUNC T Ca I-_'n_'.|:.

covered impleting this step, it was clear

1he muode

Highl ight pour selection uring curser bigs or by pediim e esier

that sarrecpands b0 i idred snive ol Bil Dnier i o per oe bk
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Results amd Discussion

d to study the rate of
and the effect of

The STYLIST mode] was s
CONVETEENCE error

CONVErgence, e

inikial Y ErEEnce  [o Wit

SOUUTHON ProsCCalUrss

¥
r'.'_,|||:-. COMPARISON TUNs Were
conducted o assi rable
These comparisons were reilerated for the

ipen Chamnels which

g% the more des wixul

procedure
dilferenl feomelric sectons ol
could be handled by the model

In order o i mpare the iwo |I||_'_:... i scelulien

nrocedures, the results Trom if the analvses that

HH
were conducted

consisient

il
will e reponied. Since these resuli

Weri for oher sections as  well, the

T

QISCUSSICN MEnE Wl

ited 1o a trapezoidal section

{low .|l.'|"||l ol 1,29 i,

a
Wikl g how rate ol IR

channel bed slope of 1.00X107, side slope of 1,60, and
Manning s rough

width  of

exs coelhicien of t ] 50

the

wis selecied as the

[he hase trapezoidal  chanmel

described al unknown in ihis
cxample
nurhe
the two implicit solution procedures A

maximum allowable number

LN

Figure 3 illustrates the effect of fixing the
ol erptions on the convergence process (o
fixed

OF Herations was used for



¢ muns of the model which produced the data in
gure 3. The graphs in this figure show that when the
ke number of iterations was increased, the
uliant value of the unknown moved closer o the
solution (& m).  The NRM showed no
cillations  and  the  convergence  occurred
pnendially o the actual solution, On the other
ind, the RFM showed damped sinusoidal oscillation
the maximum allowable number of iterations was
creased from o 20. The NRM converged to the
il solution after 6 iterations within an allowable
yor of 1X10" m while the RFM needed more than 20
ms 0 reach the solution within the same
pie error,  These resulis may vary based on the
: ﬂﬁ
Figure 4 depices a plot of the required number of
ations versus the desirable level of accuracy, This
ure shows that the RFM needed more iterations to
verge o the desired level of accuracy compared o
i NRM.  In general, the average number of
ions for the RFM was two to four times that of
- The graph in Figure 4 also suggests that the
ﬂmrgm_: of the RFM is slower than that of
e NRM.
The speed of convergence is affected by the value
he initial guess. Figure 5 shows a plot of initial
85 versus the required number of iterations (o
Iverge o the actual soluticn within the preselected
pwable error, This figure shows that the NRM
®ded fewer iterations 1o converge to the actual
il cumpucn.l to the RFM. The average number
_ 8 for the RFM was 1.5 1o 5 times that of the
RM. Fkgurr 5 also shows that the RFM 15 more
fsgive to the initial estimate compared to the NRM,
~ The results of the two implicit solution procedures
Bre consistent regardless of the geometric shape of
e channel section. It was observed that both methods
away from the actual solution under some
mumstances. The NRM would diverge from
iltion whenever the initial guess was very close or
al 10 2era. On the other hand, the RFM appeared
e difliculties when the initial guess was equal to

1R
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56 Pim oy i Do -Rageacn
-
m Aggpida Fala
h L 1]
E -
-E L]
.

"- w r
3 1L

il

A Ll B Tl O L S b GE G LE 5 Tl

Convergence Error

Figure 4. Effect of convergence error on the number of
iECTlions
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Number of [terations

g 40 acl Lije] B 100

Initial Guess of b (m)

Figure 5, Effect of inttinl estimale on speed of convergence

the constant guess, The outcome diverged away from
the actual solution when this siluation occurred, Both
methods appeared to have no convergence problems
when other conditions prevailed. In general, the RFM
needed more iterations to CONVeTEe 1o the solution
compared 1o the NEM

Conclusions

The developed computer model may be used as an
elfective educational tool for the hydraulic analysis of
open channel flow. [t allows for demonstrating the
effect of varying the geometric parameters of an open
channel on the hydraulics of flow. The model can be
applied to the design of trapezoidal, rectangular,
triangular, round-cornered rectangular, parabolic and
circular cross sections,  Also, it is also useful when
designing or analyzing open channel distribution
SYSlems.

The considered two implicit solution procedures
converged to the actual solution in almost all cases
The results revealed that the Regula-Falsi method
demanded more iterations to converge to the final
solution compared 10 the Newton-Raphson method,
irrespective of the closeness of the initial guess o the
actual solution. The Newton-Raphson method was less
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sensitive 1o the initial guess; therefore, it would be
more applicable to the solution of implicit equations
that result from the Manning equation.  One
disadvantage of the Newton-Raphson method would be
its requirement of the derivative of the evaluated
function before developing the solution. This pre-
condition might not be possible for some odd channel
cross sections. Under these circumstances, the
Regula-Falsi method would be more desirahle.

References

|98R. Numerical Methods for
MeGraa-Hill, Mew York,
scGraw Hil,

Chapra, 5.C. and R.P, Canale
Engineers (Ind Edition),

Chow, V. T. 1959, Oypen-Chaane! Hydraaiics.
Mow York

DeLong, L. L. 1989, Mass conservation: 1-D open channeld Now
equations.  Jowrnal for Hydradie Engimeering, ASCE,

1151):263-269.

Hager, W. H. 1585, Modified venlun channel, Jourmid of the
Irrigation and Drainage Engineering, ASCE, M1):19-33

Hager, W. H. and P U, Volkart, 1986, Disribation charmels,
Jownal of Hydrawlic Engineering, ASCE, 112(10):935-951.

Hendersom, F, M, 1966, Open Charael Flow sl scmillan
Pabishing Company, New York

Press. W, W., B. P. Flanmery, 5. A. Tuckolsky, and W. T
Veuerling. 1988, Numerizal Recipes: The Art of Selgnniy
Compuring, Cambridge University Press, Cambridge, Mew
ok,

. %. Soil Conservation Service. 1954, Handbvook o Channel
Design fiw Solf ol Warer Conservanog Uit Siales

Diepartment of Agriculre, Washingron, 1.C.

Published with the approval of the College of Agriculire, LR
s paper number | K,

64



	img091
	img092
	img093
	img094
	img095
	img096
	img097
	img098

