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ABSTRACT: The ability of artificial neural networks (ANN) in predicting full factorial data from the fractional data
corresponding to some of the commonly used experimental designs is explored in this paper. Factorial and fractional factorial
designs such as Ly, L,, L, and Box and Behnken schemes were considered both in their original form and with some
variations (Ly,, L,s and Ls,,). Full factorial (3 factors x 5 levels) and fractional data were generated employing sixteen
different mathematical equations (four in each category: linear, with and without interactions, and non-linear, with and
without interactions). Different ANN models were trained and the best model was chosen for each equation based on their
ability to predict the fractional data. The best experimental design was then chosen based on their ability to simulate the full-
factorial data for each equation. In several cases, the mean relative errors with the L,g design (which had more input data
than other models) were even higher than with other smaller fractional design. In general, the ANN assisted Ly, ¢, Box and
Behnken, L, and L,; designs were found to predict the full factorial data reasonably well with errors less than 5 %. The Ly,
model performed well with several experimental datasets reported in the literature.

Keywords: neural network, factorial data, fractional data, food, prediction.

ost experimental approaches in food research involve a full or fractional factorial design.

involve evaluating how an output parameter
(dependent variable) is influenced by several other
factors (independent variables). Whether it is intended
for the purpose of understanding the influence of test
factors, for selecting test conditions for an optimized
output or for developing predictive models,
experimental approaches in data gathering generally
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possible situations (Taguchi, 1987a,b) can arise in this
exercise: (a) the functional relationship between the
independent factors and the dependent factors are
unknown, (b) the functional relationship is known in an
approximate way, but some of the parameters need to be
determined, such as in dimensional analysis and (c) the
relationship is known completely. In cases (a) and (b),
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Figure 1. A multi-layered artificial neural network showing
a typical configuration.

experiments have to be performed either in order to
identify the form of the dependence function or to
estimate the parameters.

Food and pharmaceutical research experiments can
be expensive and time consuming. It is not always
economical or practical to conduct test runs with a full
factorial design and therefore, it is desirable to minimize
the number of experiments while limiting loss in
information. Several researchers have tried to construct
fractional factorial experimental designs which provide
a reasonably accurate picture of systems. A review of
the various experimental designs was provided recently
by Kim and Kalb (1986). A comprehensive treatment of
various aspects of experimental design is also given by
Taguchi (1997a,b). These experimental designs have
been successfully applied in various fields (Ramaswamy
er al., 1988; Hachigan, 1989; Matulis er al., 1995;
Ashie er al., 1996; Cano et al., 1997) and in general,
they are based on a limited number of carefully chosen
combinations from a full factorial design, such that the
statistical significance of the influence of independent
variables on the output could be evaluated. Simplicity
is often achieved in these designs, if it is known that
there are no interactions between test variables.

In recent years, the concept of artificial neural
networks (ANN) has gained popularity in many fields of
engineering and science. ANN concepts have been used
in applications such as pattern recognition (Ding and
Evans, 1994) and for a variety of prediction problems
(Sablani er al., 1995, 1997; Balasubramanian er al.,
1996). In these problems, one or more dependent
variables are predicted for a given set of independent
factors. It has been reported that ANNs perform better
than conventional regression analysis (Maureen and
Charles, 1992; Bharath and Drosen, 1994). The feature
of the ANN that makes it attractive for many of the
above applications is its ability to learn the relationship
between input and output variables.
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The overall purpose of the present work was to
explore the potential of ANN to generalize the
input/output relationship in the design of experiments.
The specific objective was to explore the ability of
ANN models developed from various fractional designs
in predicting the 3-factor x 5-level full factorial data to
see if any particular fractional design provided better
performance with several test cases. Since five level
full-factorial experimental data were hard to find in the
literature, these data were generated from several
representative mathematical equations to provide
broader testing conditions for the ANN models. The
study involved a systematic evaluation of the
performance of ANN with different fractional designs
using simulated data which were later verified using
some experimental datasets.

Methodology

ANN MODEL. Only a brief description of the ANN
structure is presented here, but additional details can be
obtained in the literature (Maureen and Charles, 1992;
Bharath and Drosen, 1994; Sablani er al., 1995, 1997).
Figure 1 shows a schematic of an ANN model. It
consists of the processing elements (neurons) arranged
in layers (input, hidden and output layers). The transfer
of signals from one element to other elements is scaled
by the connection weight. Mathematically, the function
of a processing element can be represented as:

Xl :O(ZXlej+b|) (])

J

where X is the output from a processing element, W the
weight factor, i the processing element from the current
layer, j the processing element from the preceding layer,
and s is any non-linear function which has a continuous
first derivative.

Network training (learning) is an important phase
in the development of an ANN model during which the
network weights are adjusted to map the input dataset to
the output dataset. Error signals associated with the
output elements are transmitted using a back-propagation
algorithm. The weights are adjusted in each
interconnection so as to minimize the error in the
network response. This procedure is repeated over the
entire learning dataset for a specified number of times
(learning runs), chosen by trial and error. In principle,
if sufficient number of these input/output combinations
are used for learning/training, such a trained ANN
should be able to predict the output for new inputs.
These learning sets can be compiled from experimental
data or obtained from computer simulation.

The following steps describe the general procedure
employed in this study to obtain an optimized ANN-
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assisted experimental design (Figure 2): (1) Data
required for the different fractional designs (as well as
for the full-factorial design for the purpose of
verification) involving 3 factors at 5 levels were first
generated using selected mathematical equations; (2)
Only three-layer ANN models were considered with one
input layer, one hidden layer and one output layer. The
number of processing elements in the hidden layer was
varied from 2 to 6 and ANN models were trained with
the fractional datasets for each mathematical equation;
(3) The optimal ANN model (for a given design and
mathematical equation) was selected based on the
performance of the ANN models to accurately predict
the desired output of the fractional model; (4) The
optimized ANN models (with number of elements in the
hidden layer set at 2, 4 or 6) were then used to predict
the full-factorial data for each design. These were then
compared with their corresponding data from the full-
factorial design previously computed using the
mathematical equations (see step 1). The best design
was selected as the one yielding the lowest prediction
error; (5) The whole process was repeated for different
mathematical equations. The best design for a
mathematical equation was identified based on consistent
performance with all these equations; and (6) Finally,
the developed model was tested by applying
experimental data.

Factorial ‘/.u
design
CON
Mathematical Training
@ function data
Test data ANN models
(125) 2,4,6 ncurons
Testing ¢ Optimal ANN
model
Eiwar —> Optimal
estimation .
design
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FRACTIONAL DESIGNS. In the employed fractional
designs, the levels were represented by numbers 1 to 5,
with level 1 corresponding to the minimum value of the
factor and level 5 for the maximum. The three
independent variables were denoted x, y and z. The
simplest fractional design with 3 factors is Ly, which
corresponds to a full factorial design with 2 levels. The
L design is shown in the form of an orthogonal array in
Table 1. The L can be expected to perform poorly well
with non-linear data. For the L, design only extreme
values of the factors were used while for the L, design
different combinations of the 3 level design were
employed (Table 1). The L, is a more rigorous design
allowing various interactions. This consists of 18
experimental test runs. The Box and Behnken (1960)
design consists of 13 experimental test runs (12
corresponding to the center of each edge of a cube and
one corresponding to the center of the cube itself which
is actually repeated 3 times for a 3-level scheme and
seven times for a 5-level scheme to obtain an estimate of
the experimental error). The other three designs used in
the present work were L, ,, L4, and L,;. These three
designs were variants of the L, and L designs. In L,,,,
an additional combination (5,5,5) was added to
accommodate the extreme condition (Table 1). The
design of Lg,, (14 experimental data sets) was an
extension of the L; design in which six experiments were
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TABLE 1

Orthogal arrays of levels in different designs employed in the
study.

Box &

LB L‘) L‘)H Ls+s Behnken L18
111111111141 1 113 111
11 & 133 1.3:3 141 &§ 15 3 115
I 3 1 XI55 15§59 111 1 13 & 13 1
I 5 83138 315 11 S5 13 5 13 3
1T 1 331 331 551 311 1853
5 ' 5§ 353 353 555 315 1455
551 513 513 55 1 351 313
S5 S5 535 535 555 355 315

55 1T 5551 113 513 331
55 %5 33 3 53 3 335

33 1L 53 1 33§ 1

55 3 53 5 38§ 3

333 333 511
335 33 3 51 3
33 3 53 3

33 5

5335 1

55 5

added at mid levels of the factors (incidentally, these
points represent the 8 vertices and 6 face centers of a
cube). The L,; design was an extension of Lg,, with
the center of the cube (3,3,3) included. These three
designs do not have any mathematical basis. Although
each appear to be similar to several of the fractional
factorial models, the Ly, ,, L5, and L, , were selected
more on an intuitive basis.

MATHEMATICAL EQUATIONS. In order to identify a
robust fractional design, several (16 in total) linear and
nonlinear mathematical functions were considered. Some
of these equations accounted for two-way interaction
effects between the variables. In the following
equations, P is the dependent variable and X, y, and z
are the independent variables with numerical values
ranging from O to 1.

Linear without interaction (L):

P=x+y+z 2)
P=100x + 75y + z 3)
P=100x + 5y + 3z 4)
P=100x -75y +z 5)
Linear with interaction (LI):
P=x+y+z+xy+xz+yz (6)
P=100x + 75y +z +175xy + 100xz + yz 7)
P=100x + 5y + 3z +105xy +103xz + yz (8)
P=100x - 75y +z + 100xy + xz + yz 9)
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Nonlinear without interaction (NL):

(10)
(11

P=x!5 4+ y05 t e
P=15x3 +10y9%! +¢3z

P=15x3 + L +20/m(z+1) (12)
4y2 +1
1
P=15x3+ 19 2 (13)

—+
4y2 +1 1+4e-#

Nonlinear with interaction (NLI):

P = XI,S R y045 +ez+ x|.5y0A5 + yO.SCZ
+ X132 (14)

P =15x3 +10y%! + €3z +15x3y0! + x3e32

+y0le3z (15)
3
=St —il_to0kitz )bk
4y2 +1 4y2 +1
$ RE+D) oot 41 (16)
4y? +1
P=15x3+ L + L Ll
4y2+1 l1+4de % 1+4e*
3 3
1 15x 15x _—
4y2+1 4x2+1 1+4e#

In linear equations (without interactions), the
number of prominent variables were varied from 1 to 3
in different equations by employing some multiplication
factors. In the fourth equation, which apparently
indicates two variables to be prominent, the effect of one
reduces the effect of the other variable to a certain
extent. In the case of linear equations with interactions,
the number of significant interactions and the main
variables were different in each equation. Various non-
linear terms, such as logarithmic and exponential, were
incorporated with varying degrees of exponents into the
non-linear equations. The coefficients for the different
variables were selected such that the magnitude of each
term relative to other terms was in the desired range.
While formulating these equations, an attempt was made
to incorporate functions that are typically encountered in
food processing situations (exponential, quadratic,
reciprocal, logarithmic etc).

ANN PROGRAM. NeuralWorks Professional II/Plus,
version 5.23 (NeuralWare Inc., Pittsburgh, PA) was
employed for ANN modeling. A standard back-
propagation algorithm with tangent hyperbolic transfer
function and normalized cumulative delta learning rule
was applied as the basic architecture of network.
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Figure 3. Performance of the ANN model with the L,,, design for linear equations without interactions: A, equation ; B,
equation 3; C, equation 4; and D, equation 5.
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Figure 4. Performance of the ANN model with the L,,, design for linear equations with interactions: A, equation 6; B,
equation 7; C, equation 8; and D, equation 9.
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Figure 5. Performance of the ANN model with the L, design for linear equations without interactions: A, equation 10;
B, equation 11; C, equation 12; and D, equation 13.
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Figure 6. Performance of the ANN model with the L,,, design for linear equations with interactions: A, equation 14; B,
equation 15; and C, equation 16; and D, equation 17.
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Figure 7. Prediction of the overall heat transfer coefficient (U; test dataset 1) using the ANN model with L, design: A,
desired vs predicted; B, mean effect of retort temperature on U; C, mean effect of RMP on U; and D, mean effect of radius
of rotation on U, + symbols correspond to experimental values and closed circles predict values.

Ascorbic Acid Level

50 4 A
40 4
b5 ®
%30— °
= [
@ 20+
o
10 5
0 I 1 T I 1
0 10 20 30 40 50
Desired
ke,
‘0 30+ 25 - 25~
< |B o oC D +
(&) 25 ®
1]
< 20 20 - 20 °
3 D i
2 154
g . * s
2 10 i S | 15 1 I b 135 B2 1 T 1
0 100020003000 45 55 65 75 5 10 15 20 25
Ascorbate pH Duration of Exposure

Figure 8. Prediction of muscle ascorbic acid pick-up (test data set 4) using the ANN model with L, design: A, desired vs
predicted ascorbic acid levels; B, mean effect of ascorbic acid concentration on ascorbic acid concentration; C, mean effect
of pH on ascorbic level; and D, mean effect of duration of exposure on ascorbic acid levels, + symbols correspond to
experimental values and closed circles predict values.
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ERROR PARAMETERS. The prediction performances of
different ANN models were evaluated using the mean
relative error (E) which is defined as,

N [P-P,
> X100

1
Ep =— -
N p=1 (P4 )max — (P4 )min

(18)

where P, and P, represented the desired and predicted
values of the dependent variable. The standard deviation
of the relative errors is denoted by S;.

Results and Discussion

DEVELOPMENT OF THE MODEL. Independent variables
X, y and z were selected at five levels (0, 0.3, 0.5, 0.7
and 1.0) in the range of 0 to 1. Several ANN models
were trained using datasets consisting of three input
columns (x, y, z) and an output column (P,) for different
fractional designs and mathematical functions. Three
layer ANNSs (1 input, 1 hidden and 1 output layer) with
hyperbolic tangent functions were used in all the cases.
ANN models were trained until performance reached its
optimal level. Three different ANN configurations were
considered for optimization by varying the number of
processing elements (2, 4, and 6) in the hidden layer.
ANNs with more than six neurons were not considered
because, for all mathematical equations tested, the
model performances were fairly good with 6 or lesser
number of neurons. This was true for the number of
hidden layers also (1 layer was adequate). It should,
however, be noted that the ANN specifications are
problem dependent and a 6-neuron single hidden layer
network model is not necessarily the best configuration
for all problems.

Although the single hidden-layer ANN
configuration was optimal for all designs studied, the
number of neurons in the hidden layer depended on the
type of mathematical function and the design used.
Once the optimal ANN configuration was identified for
each of the fractional designs, full-factorial data were
generated for each of the equations, using this optimal
ANN model. The full-factorial data consisted of 125
data points. These ANN-predicted values were
compared with corresponding exact values of P
generated from the mathematical functions. Table 2
shows the error parameters calculated for each design
and equation. For Lg, Ly, and L,,,, the error levels
were higher for non-linear equations compared to linear
equations. However, the other four designs maintained
the errors below a 5% level for most of the linear and
non-linear equations. Because L, is a subset of L, ,, it
is reasonable to expect that errors with L, will be less
than or equal to that of L,. The results also indicate that
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adding an extra data point as input for the model need
not always be beneficial. Contrary to expectations, the
L ¢ design did not perform better than Box and Behnken,
Lg.s or L;s designs with more than 50% of the
equations. Thus, it is clear that the performance of the
four fractional designs are generally comparable and that
it is not always necessary to use an L, design to
optimize performance. The Lg., while being
comparable to other models, has the additional
advantage of a lower number of experiments. Only this
design was evaluated further for performance testing.
Figures 3-6 show the combined plots of predicted
values P, using the ANN-assisted L., design, plotted
against the desired value of P, for all the equations. The
error parameters in Table 2 are good indicators of the
performance of an ANN model. Nevertheless, they are
average values and reflect only the overall performance.
Figures 3-6 provide a graphic representation of the
performance of the model at all different levels. These
figures are plotted for L,,, design. With few
exceptions, the performance of the ANN model was
good with both linear and non-linear equations. At
present, the reason for the inconsistency with some
mathematical relationships is mnot very clear.
For linear equations, the model does not really
require the 14 data pairs to estimate the coefficients
algebraically (without ANN) and once these coefficients
are estimated, the resulting equations could compute the
full factorial data with 100% accuracy. In this sense,
ANN models for the linear equations may seem

TABLE 2

Error values for ANN models from different designs.

T By By My Ly, Iy DX

2 2.4*/1.7** 2.2/1.8 2.9/2.5 1.8/1.3 2.0/1.6 4.6/2.6 1.0/0.8
3 4.8/3.1 3.4/27 2.4/2.1 1.6/1.4 1.6/1.4 1.7/1.3 1.2/1.1
4 2.6/1.9 2.3/1.9 2.2/1.9 2.52.9 2.529 2312.5 2.5/3.0
5 4.0/2.5 2.8/3.4 2.6/3.1 1.5/1.4 1.5/14 14/14 1.6/1.4
6 4.9/3.0 2.3/2.3 2.28/2.0 0.9/0.9 1.0/1.0 2.0/1.8 0.6/0.6
7 6.7/4.6 3.2/2.8 4.6/3.3 0.8/0.8 0.9/0.9 1.5/1.3 0.9/1.3
8 7.9/6.0 3.9/3.1 3.4/29 1.0/1.0 0.7/0.8 1.9/1.6 1.0/1.0
9 3.0/3.4 6.7/57 2.9/2.1 0.8/1.0 0.8/1.0 1.2/1.1 0.7/1.0
10 50/3.6 44/3.9 3.83.5 14/1.1 1.6/1.3 1.7/1.4 1.5/1.25
11 11.2/7.9 7.3/5.9 6.3/5.5 5.3/4.0 3.3/3.1 2.4/22 2.4122
12 11.4/9.3 4.7/4.1 6.7/5.6 2.1/2.2 09/1.2 1.2/1.4 1.5/1.6
13 9.6/7.6 7.0/5.6 7.7/77.3 1.7/2.0 2.0/22 14/14 1.8/1.7
14 6.0/3.8 3.4/33 6.1/5.7 2.4/2.4 1.8/1.8 1.5/1.4 1.3/1.2
15 9.0/7.3 5.5/5.5 4.9/5.2 4.6/4.5 4.1/4.1 4.1/4.1 5.7/6.3
16 8.9/7.6 6.9/5.9 6.0/54 1.7/1.7 1.2/1.1 1.7/71.9 1.1/1.0
17 7.9/6.6 8.0/7.6 7.1/6.1 14/1.4 1.1/1.1 1.7/1.8 1.7/1.6

*Mean relative error (Ey).
**Standard deviation of errors (Sy).
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unnecessary and may add a certain level of inaccuracy
compared to algebraic computations. However, if one
looks at it from the experimental design point of view,
where the equation to be fit is not known a priori, the
ANN approach is deserved of merit. The fact that the
ANN-assisted models would perform equally well with
non-linear equations, makes them more useful from the
experimental design point of view.

It should be noted that conventional analyses such
as ANOVA, with fractional designs permit analysis of
main and interaction effects. Although the ANN-
assisted design does not directly permit such an analysis,
the generated data could be subjected to statistical
analyses. Since the emphasis of the ANN-assisted
design is to accurately predict the full factorial data, the
model provides a better relationship between the
independent and dependent variable. Furthermore, in the
present analysis, some mathematical equations have
been used which are encountered in food processing
applications such as reaction Kkinetics, thermal
processing, drying, freezing etc. However, they are by
no means exhaustive. If for a given situation, other
mathematical equations, more representative of the
physical problem, could be constructed, they should be
used instead for developing the ANN model to develop
a better design. Experiments could then be performed
according to this optimal design.

TESTING OF THE MODEL. Having identified the Lg, 4
design as the optimal one for the different equations
considered, an attempt was made to test the performance
of the design with published experimental data. Unlike
mathematical data, experimental data will have errors
associated with measurements. By using the individual
values of several replicates, an estimate of experimental
variations could be found. In the present study, only the
mean values of the test data for each conditions were
used as inputs for the purpose of training. This means
that the neural network model will only predict the mean
values associated with the different testing conditions.
It should however, be noted that it is possible to include
the experimental scatter while training the ANN model.
Four different sets of experimental data were taken from
the literature. All sets consisted of 3-factor 3-level data
corresponding to 27 different experimental conditions.
L., design data were extracted from these data, for
each set, and the optimal neural network model was
developed based on the method described earlier.

TEST DATASETS 1 AND 2. First and second datasets
correspond to experimental analysis of heat transfer to
liquid particle mixtures in cans during end-over-end
thermal processing (Sablani and Ramaswamy, 1996).
End-over-end thermal processing refers to commercial
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sterilization of canned products in a rotary retort. Cans,
stacked vertically in a cage, will undergo end-over-end
agitation as the cage is rotated during the heat treatment.
This induces forced convection in the cans resulting in
product mixing which also improves the rate of heat
transfer and hence product quality. When dealing with
particulate foods in cans undergoing agitation, there are
two levels of heat transfer. The first one is the transfer
of heat from the heating medium in the retort (water or
steam) to the liquid inside the can (governed by the
overall heat transfer coefficient, U) and the second one
is the transfer of heat from the liquid inside the can to
the particles (governed by the fluid-to-particle heat
transfer coefficient, h). In the experimental set-up, the
overall and fluid-to-particle heat transfer coefficients
were measured as a function of process temperature
(110 to 130°C), rotational speed (10 to 20 rpm) and
radius of rotation (9 to 27 cm). Two separate neural
network models were developed, one for the overall
heat transfer coefficient and the second one for the fluid-
to-particle heat transfer coefficients. The optimal neural
network model for both models consisted of 6 neurons
and one hidden layer. The full factorial data were
predicted from the neural network model and compared
with measured data. Figure 7a shows the predicted heat
transfer coefficient plotted against measured, indicating
that the prediction was good with an R* value of 0.967
and a mean relative error of 3.4% with 4.4% standard
deviation. In Figures 7b-d, the mean effect plots of
each input on the overall heat transfer coefficient are
shown. In these figures, the effect curves were derived
from both predicted and measured data, and again
demonstrate a good fit.

TEST DATASET 3. The third dataset (Ramaswamy and
Tung, 1990) corresponds to the measurement of surface
heat transfer coefficient (h) associated with water
immersion heating media as influenced by the
temperature (105 to 115°C), overpressure (70 to 140
kPa) and flow rate (10 to 20 standard cubic feet per
minute). Overpressure thermal processing is used for
processing of foods in flexible and semi-rigid containers
to protect the integrity of packages during heating and
cooling by reducing the tendency of occluded gasses
inside the package to expand due to heat. Because of
the thin profile nature of these containers, heat transfer
will be rapid, process time will be short and hence
product quality will be generally superior. In this study,
the heat transfer ability of the heating medium in the
retort was evaluated as a function of temperature,
overpressure and flow rate. The optimal neural network
model consisted of 10 neurons and 1 hidden layer. The
results for this case provided an R? value of 0.83 and the
mean relative error of the prediction was 6.24% with
the standard deviation of 9.63% .
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TEST DATASET 4. As a fourth set of data (Thed ez al.,
1993), the measurement of ascorbate absorption by live
channel catfish was used as influenced by ascorbate
concentration (1000 to 3000 ppm), pH (5 to 7) and
duration of exposure (8 to 24 hr). The optimal neural
network model in this case consisted of 6 neurons and 1
hidden layer. The results shown in Figures 8a-8d,
provide good comparison with the measured data with
an R of 0.89 and a mean relative error of 4.3% with a
6.75% standard deviation. Almost a perfect fit was
observed between experimental and predicted values for
ascorbate concentration and pH, while the values of
exposure time were reasonably well predicted.
However, it should be noted that the trend of expected
and predicted values with respect to exposure time was
quite different indicating occasional deviations in the
predictive behavior of ANN-based experimental designs.

TEST DATASET 5. In the above experimental datasets,
the models involved only three factors and three levels.
Hence, it may be argued that there is no assurance that
the developed approach would accurately predict
multivariate functions with more than three factors and
more than three levels with combinations of linear and
non-linear interactions. In order to accommodate these,
a new set of data from a recent publication (Chen and
Ramaswamy, 1999) was used. In this study, the
rheological properties of tapioca starch were evaluated
as a function of concentration, pH, temperature and
cooking time, each with five levels. Using a central
composite design, experiments were carried out to
compute the consistency coefficient (m) and flow
behavior index (n) of the power law model:

c=my?" (19)

where s is the shear stress and g is shear rate.

The following predictive equations involving
temperature (T), concentration (C), pH and cook time
(t) were developed using a second order response
methodology:

m=-0.183 +0.195C - 0.0079T + 0.051 pH
-0.0028t 0.047 (C-4)2 +1.2*10-4(T - 50)2
-8.4*10-4 (t-20)2 - 0.0037(C - 4)(T - 50)

(R2 = 0.94,Sy x = 0.0664) (20)
n=1.057-0.114C + 0.055T - 0.05pH
-0.023(C -4)2 - 0.017(pH - 6)2
+0.035(t - 20)2 - 0.002(T — 50)(C — 4)
(R2 = 091,58, =0.0532) (1)
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These equations involved four factors at five levels
with second order interactions and were considered
more complex. ANN models were trained taking three
factors at a time using L . data subsets and full factorial
data were predicted from the trained model. These are
compared with individual values from the experimental
study (using the statistical model Equations 20 and 21)
and demonstrated excellent prediction for each factor at
the four levels as a function of the other three variables.
All these models had 1 hidden layer and 10 neurons and
the predicted mean relative errors ranged from 2-3% at
different pHs, 3-5% at different concentrations, 3-5% at
different temperatures and 2-4% at different cook
times. The R? values ranged from 0.92 - 0.98.

Conclusion

A neural network approach was evaluated for the
design of experiments. Various 3-factor experimental
designs and several linear and non-linear mathematical
functions were used in the development of the method.
Three different ANN configurations were considered.
Results indicated that the Ly, L, and L, , designs failed
to provide results of reasonable accuracy. The
remaining four designs showed consistently better
performance for all equations. The errors associated
with these four designs were less than 5% for most of
the equations. The L, design, although predicting the
full factorial data with reasonable accuracy, did not
perform better than L;,,, L,; and Box and Behnken
designs in several equations. The Lg,, design was
verified with experimental data related to food research
and it performed fairly well in most of the cases.
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