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ABSTRACT: Seepage analysis is used to investigate the location dependence of fresh-water inputs and outputs in 
maintaining the depth of the fresh water over the saline water intruding from the sea in coastal aquifers in steady 
state conditions.  Examples are given that show that maximum depths occur when the inputs are in the vicinity of 
the watershed and the outputs are near the coast. 
 
Keywords:  Saline water intrusion, coastal aquifers, steady state, Ghyben-Herzberg lens, groundwater abstraction, 
seepage. 

  
 

resh-water aquifers overlying saline water near 
coasts are maintained by water supplied by surface 

infiltration or by injection into wells.  Relatively small 
rates of fresh water can maintain large bodies of fresh-
water and limit the amount of sea-water intrusion.   
However, exploitation of the freshwater aquifer 
reduces the depth of freshwater and can result in 
brackish water supplies from pumped wells.   Analyses 
of the movement of the fresh water under given 
conditions give the depth of the fresh-water lens at a 
given position.  A complete analysis must consider the 
non-steady-state situation of the changing position of 
the interface between fresh-water and saline water 
regions considering also the movement of the saline 
water to and from the sea.  Here we consider the 
simpler steady-state situation when the interface 
remains stationary with no movement of saline water, 
to give an insight into the extent of the fresh-water 
region.   Examples using steady-state theory show the 
dependence of the depth of the fresh-water lens above 
the saline water on the location of inputs and outputs. 

Steady–State Analysis of  
Fresh-Water Aquifer 

 
In the analysis of the so-called Ghyben-Herzberg 

lens of fresh water overlying saline water intruding 
from the sea in coastal aquifers (Childs, 1969; Bear, 
1972), the assumption is made that no mixing takes 
place between the saline water and fresh water so that 
a sharp interface exists between the fresh-water 
region above and the saline water below in 
communication with the sea (Fig.1).  The upper 
boundary of the fresh-water aquifer is a water table 
where the soil-water pressure is atmospheric and the 
lower is the boundary between fresh and saline water 
where the pressure in the fresh water is the same as 
the pressure in the saline water.  If Z is the vertical 
coordinate of the interface measured from sea level, 

sρ  the density of the saline water, and g the 
acceleration due to gravity, the soil-water pressure at 
the interface is gZp sZ ρ−= . 
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Figure 1.  Fresh water overlying saline water in coastal 
regions (not to scale). 
  

Seepage analysis (Youngs, 1965, 1966, 1986) 
gives the component of horizontal seepage of fresh 
water, Qx, at position (x,y) in the x-direction as 
(Youngs,1971a): 
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where K is the hydraulic conductivity of the soil 
(assumed uniform here although the seepage analysis 
allows K to vary with depth), h = p/!fg +z the hydraulic 
head at a height z where the soil-water pressure is p, !f  
the density of freshwater, and H and Z the water-table 
height and the level of the interface between fresh and 
heavier saline water at position (x.y), both measured 
from sea level.  Thus: 
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since p = 0 at z = H at the watertable and  p = pz at z = 
Z at the interface,  pz = Z!sg, so that: 
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where G is the seepage potential defined by: 
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Similarly, the horizontal seepage Qy in the y-direction is: 
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In steady-state conditions, if the vertical downward 
flux of fresh water through the watertable at (x,y) is 
q(x,y): 
 
 

)y,x(q
y

Q
x

Q yx =
∂

∂
+

∂
∂

    (6) 

 
so that G is described by Poisson’s equation: 
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At the coast where fresh water seeps into the sea, G = 0 
and at a watershed where there is no horizontal 
seepage, .0G =∇   

From Equation 4, the value of G is an indication 
of the thickness of the fresh-water lens.  If we assume 
the Dupuit-Forchheimer approximation of horizontal 
flow with head constant with depth, we have: 
 

2
KZ

)1()(
2

KH
)1(

)(
G

2

fsfs

2

fs

fs −ρρρρ=
−ρρ

ρρ≈        (8) 

 
 
so that the thickness T of the fresh-water lens is: 
 

K
G2

)1(
)(

ZHT
fs

fs

−ρρ
ρρ=−=    (9) 

 
 

Fresh-Water Lens Maintained  
by Uniform Infiltration 

 
With uniform steady infiltration q over a coastal 

strip of width L and with no water abstraction, all the 
water supplied over the area by infiltration drains to the 
sea. G at any distance x from the watershed is then 
obtained by solving the one-dimensional form of 
Equation 7 with dG/dx = 0 at x =0 and G = 0 at x = L, 
giving: 
 

2)xL(qG 22 −=    (10) 
 
so that G0, the value of G at the watershed at x  = 0, is 
qL2/2. The seepage analysis (Youngs, 1965, 1966) 
allows estimates of water-table heights to be made 
within calculated limits. For this situation of uniform 
steady infiltration over a coastal strip, Youngs (1971a)  
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Figure 2.  The variation of LH 0  and LZ0−  with q/K as 
given by Equations 11 and 12. 
 
 
argued that streamlines at the watershed diverged so 
that the hydraulic head gradient decreased with depth, 
leading to: 
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and 
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where 0H and 0Z are the values of H and Z at x = 0.   

As shown in Figure 2, the upper values of H0 and 
–Z0 given by Equations 11 and 12 are about 10% above 
the lower values at q/K = 0.005 and less for smaller 
values of q/K.  The first terms in Equations 11 and 12 
are the expressions given by applying the approximate 
Dupuit-Forchheimer analysis to the problem (Equation 
8).  Thus, this approximate analysis provides a good 
estimate of the thickness T of freshwater at the 
watershed for small steady infiltration rates, as given 
by Equation 9.  Due to the relatively small difference in 
density between fresh and saline water, a large 
thickness of fresh water, most of which is below sea 
level, can be obtained with only a small continuous 
supply from above.  The shape of the fresh-water lens 
calculated from Equation 10 assuming Dupuit-
Forchheimer approximations is shown in Figure 3 in 
dimensionless variables. 
 

Distributed Input of Fresh Water 
 

The fresh-water aquifer in coastal regions is 
usually supplied by water non-uniformly over the area, 
not by uniform infiltration as considered above.  The 
seepage analysis allows a consideration of the effect of 

location of the freshwater supply on the fresh-water 
region.   

We consider infiltration supplied at a rate q 
through a surface strip parallel to the coast between L’ 
and L” measured from the watershed with no 
abstraction of fresh water from the fresh-water aquifer. 
Solving Equation 7, we obtain the value of G, 0G , at 
the watershed at x = 0, as: 
 

]2)LL(L[Q]2)LL(L)[LL(qG s0 ′′+′−=′′+′−′−′′=     (13) 
 
where Qs is the seepage of fresh water per unit width 
draining to the sea, which is equal to the total amount 
of water being supplied per unit width over the strip.  
Equation 13 shows that G0 is greatest when the 
infiltration is concentrated in the vicinity of the 
watershed and is least when concentrated near the sea.  
Thus, from Equation 9, it follows that the thickness of 
the fresh-water lens is also greatest when the 
infiltration is supplied in the vicinity of the watershed. 

The fresh-water aquifer can also be maintained by 
water supplied by injection into wells.  For a series of 
m wells in a coastal aquifer with the nth well located at 
a distance Ln from the watershed being injected at a 
rate Qn, from seepage analysis and the mean value 
theorem of potential theory (Youngs, 1970) (Gav)0, the 
mean value of G along the watershed, is given by: 
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where B  is the length of the coastal strip.  As with the 
case of infiltration through the soil surface, Equation 
14 indicates that  maximum thickness of the fresh- 
water lens is obtained when the injection wells are 
located near to the watershed.  Youngs (1971b) applied 
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Figure 3.  The Dupuit-Forchheimer estimate of the fresh-
water lens with uniform steady infiltration, shown as 

)qK()LH(*H = and )qK()LZ(*Z = as functions of Lx . 
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methods used in potential theory to investigate 
optimum pumping conditions to avoid the upconing of 
saline water below the well providing an output of 
brackish water.  The analysis allows values of Gat any 
position (x,y) to be obtained and shows that for 
maximum supply of fresh water wells should be sunk 
to sea level and pumped with the level of water in them 
negligibly small. 
 

Abstraction of Fresh Water 
 

Water abstraction from the fresh-water lens can 
occur either from pumped wells or by capillary rise to 
supply surface evaporation. A fresh-water lens can be 
maintained with given fresh-water inputs and 
abstractions so long as dG/dx < 0 at x = L.  If the loss 
is sufficiently large, then dG/dx > 0 at x  = L and sea-
water intrusion will result.   

The rate of fresh-water seepage towards the sea 
between wells at distances Lp and Lp+1 from the 
watershed in a coastal strip is described generally by: 
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where Gav is the mean value of G at distance x from the 
watershed.  The surface flux distribution, q(x), is 
negative when there is capillary rise and Qn is positive 
for injection and negative for abstraction.  Since G = 0 
along x = L, integration of Equation 15 yields: 
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which reduces: 
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Equation 16 gives the mean value of G at a 
distance x from the watershed for a surface infiltration 
distribution q(x) and for injection and abstraction from 
a system of wells.  It is seen that the result is dependent 
on the distribution of the sources and sinks.  In the 
following examples we employ the analysis given here 
to a variety of situations where water is supplied by 
infiltration and injection wells and abstracted by 
capillary rise with loss of water through evaporation 
and pumped wells. 
 
EXAMPLE 1:  Q (X) = Q, 0 < X L!; Q (X) = -E, L!"< X < L. 
 
This is the situation where there is uniform infiltration 
over a strip adjacent to the watershed and capillary rise 
with loss of water through evaporation over the 
remaining area.  Equation 16 gives the uniform value 
of G along x = 0 as: 
 

2/e)LL(q)2/LL(LG 2
0 ′−−′−′=   (17) 

 
 
Since it can be argued that the streamlines near x  = 0 
diverge with depth, Equations 11 and 12 apply and the 
thickness of the fresh-water aquifer here is known 
within limits.  For small values of q/K it is given to a 
good approximation by Equation 9.  If all the water 
supplied by infiltration is equal to that abstracted by 
the evaporation so that qL! = e (L-L!), , no water seeps 
into the sea and dG/dx = 0 along x = 0; then: 
 

2/e)LL(L2/qLLG0 ′−=′=    (18) 
 
 
The variation of G with the distance x from the 

watershed, both shown in dimensionless units, for 
various values of e/q when L! = 0.5, is shown in 
Figure 4. 
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Figure 4.  The variation of G/qL2 with x/L or L’ =0.5 for 
three values of e/q shown by the curves. 
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EXAMPLE 2: Line of injection wells at x = Li, total 
supply rate Qi over length B of coastal strip, and a line 
of abstraction wells at x = La, total abstraction rate Qa. 

For a line of wells at distance Li from the 
watershed injecting water at a rate Qi into the 
freshwater aquifer and another line of wells at distance 
La abstracting water at a rate Qa, Figure 5 illustrates the 
variation of Gav with distance x given by Equation 16. 

The value of Gav at the watershed, (Gav)0, is: 
 

B/]Q)LL(Q)LL[()G( aaii0av −−−=   (19) 
 
Equation 19 shows the advantage of supplying water 
near the watershed and abstracting water from the 
fresh-water region as near the coast as possible to 
obtain maximum depth of fresh water. 
 
EXAMPLE 3:  Infiltration at a rate q, L! < x < L!!, line of 
abstraction wells at x = La, total abstraction rate Qa 
over length B of coastal strip. 

Figure 6 illustrates the maintenance of the fresh-
water lens by infiltration over a region when water is 
abstracted by wells, as obtained from Equation 16.  
Again calculations of Equation 16 show the importance 
of the location of the sources and sinks with maximum 
depth of fresh water occurring when the water is 
supplied in the vicinity of the watershed and abstracted 
near the sea, with values of (Gav)0 given by: 
 

BQ)LL(q]2/)LL(L)[LL()G( aa0av −−′+′′−′−′′=      (20) 

 
EXAMPLE 4: Line of injection wells at x = Li, total 
supply rate Qi over length B of coastal strip, 
evaporation from capillary rise at rate q = e, L! < x L!!. 

Results calculated from Equation 16 for this 
situation are illustrated in Figure 7.  Maximum depth of 
fresh water results when water supply is in the vicinity 
of the watershed and abstraction is near the sea, as in 
previous examples.  In this case (Gav)0 is given by:   
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Discussion 

 
Theoretical analyses show that the Ghyben-

Herzberg lens of fresh water in coastal aquifers can 
extend to great depths when maintained by a relatively 
small input of fresh water. However, exploitation of the 
fresh water aquifer for domestic, agricultural and 
industrial uses causes the saline water below to cone 
upwards into the fresh-water region at the positions 
of abstraction, and capillary rise with loss of water 
by evaporation considerably reduces the depth of fresh 
water.   Fresh-water inputs and abstractions are generally 
intermittent and hence non-steady state theory needs to 
be used to obtain an accurate estimate of the changing 

Figure 5.  The variation of G* = GavB/QiL with x/L when 
there are injection wells at x = Li and abstraction wells at x = 
La for Qa/Qi = 0.5.  Curves 1, 2, 3 and 4, Li/L = 0; curves 5, 
6, 7 and 8, Li/L = 0.5; curves 1 and 5, La/L = 0; curves 2 and 
6, La/L = 0.25; curves 3 and 7, La/L =0.5; and curves 4 and 8, 
La/L = 0.75. 
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Figure 6.  The variation of G* = Gav/qL2 with x/L when there 
is infiltration at a rate q on to a surface strip L! < x L# and 
abstraction from wells at x = La at a rate Qa.  Curves 1, 2 and 
3, L!/L = 0, L#/L = 0.5; curves 4, 5 and 6, L!/L = 0.5, L#/L = 
1.0; curves 1 and 4, La = 0.25; curves 2 and 5, La = 0.5; and 
curves 3 and 6, La = 0.75:Qa/BLq = 0.1. 

 
Figure 7. The variation of G* = Gav/eL2 with x/L when water is 
injected into wells at x = L at  a rate Qi and there is capillary rise 
with loss of water due to evaporation at a rate e between L’ < x 
< L”.  Curves 1, 2 and 3, L’/L = 0, L”/L = 0.5; curves 4, 5 and 
6, L’/L = 0.5, L”/L = 1.0; curves 1 and 4, Li = 0.25; curves 2 
and 5, Li = 0.5; and curves 3 and 6, Li = 0.75:Qi/BLe= 1.0. 
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depth of the fresh-water region, taking into account the 
movement of saline water to and from the sea as well 
as the movement of fresh water.  However, if the 
intermittent pattern of water input and abstraction is 
regular with time, average rates used in simpler steady-
state analyses should give an estimate of the average 
extent of the fresh-water region. 

Seepage analysis (Youngs, 1965, 1966) has been 
used to investigate the steady horizontal seepage of 
fresh water in the Ghyben-Herzberg lens (Youngs, 
1971a; 1971b). This shows that the Dupuit-
Forchheimer analysis provides a good estimate of the 
depth of fresh water overlying saline water intruding 
from the sea in coastal regions for small steady-state 
uniform infiltration rates over the surface area.  In 
situations where the surface input is not uniform over 
the whole coastal area, the distribution of the seepage 
potential defined by Equation 4 can be calculated over 
the coastal area for the given distribution of inputs and 
outputs.  If this is assumed to relate to the Dupuit-
Forchheimer estimate of the depth of fresh water 
through Equation 9, it provides a means of comparing 
different distribution patterns of inputs and outputs for 
maintaining fresh-water coastal aquifers. The various 
examples given in this paper show how the seepage 
potential varies in a coastal strip with different 
distributions of infiltration and capillary rise as well as 
for different distributions of input and abstraction 

wells.  Maximum values of the seepage potential occur 
when water input is in the vicinity of the watershed and 
abstraction takes place near the coast   Thus it can be 
inferred that this pattern of input and abstraction would 
maximise the depth of the fresh-water lens for given 
input and abstraction rates.  
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