Overview of Decadal Ecosystem Changes in the Western Arabian Sea and the Occurrence of Algal Blooms

Paul Harrison, Sergey Piontkovski, Khalid Al-Hashmi


Gradual decadal changes have taken place in the Western Arabian Sea over the last 50 years. These changes have affected wind speeds, atmospheric and sea surface temperature, thermohaline stratification, shoaling of the oxycline, and dust/iron inputs.  A decrease in nitrate supply of the photic layer have caused an increase in annual frequency of harmful algal blooms and fish kills. Along with that, a decrease in diatom biomass and a shift from red Noctiluca to green Noctiluca during the northeast monsoon was observed during the last two decades, Even though these are the same species they have very different nutritional modes. The red one is a heterotroph with a preference for grazing diatoms, while the green one has a symbiont and thus it is a mixotroph. Recent results suggest that this shift may be caused by the shoaling oxycline since the green one grows better under low oxygen because the symbiont produces oxygen for its host. The western Arabian Sea is temporally and spatially complex. With the recent advances in remote sensing of the ocean, a further understanding of these temporal and spatial changes can be gained through analyzing frequent images with opportunistic ground-truthing.


Sea of Oman, western Arabian Sea; monsoons; upwelling; nutrients; HABs; Noctiluca

Full Text:



Al-Azri A, Al-Hashmi K, Goes J, Gomes H, Ahmed I, Al-Habsi H, Al-Khusaibi S, Al-Kindi R, Al-Azri N. 2007. Seasonality of the bloom-forming heterotrophic dinoflagellate Noctiluca scintillans in the Gulf of Oman in relation to environmental conditions. International Journal Oceans Oceanography 2: 51-60.

Al-Azri AR, Piontkovski SA, Al-Hashmi KA, Goes JI, Gomes HR, Glibert PM. 2014. Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuaries Coasts 37: 325-338.

Al-Azri AR, Piontkovski SA, Al-Hashmi KA, Al-Gheilani H, Al-Habsi H, Al-Khusaibi S, Al- Azri N. 2012. The occurrence of harmful algal blooms (HABs) in Omani coastal water. Aquatic Ecosystem Health Management Society 15: 56-63.

Al-Azri AR, Piontkovski SA, Al-Hashmi K, Goes JG, Gomes HDR. 2010. Chlorophyll a as a measure of seasonal coupling between phytoplankton and the monsoon periods in the Gulf of Oman. Aquatic Ecology 44: 449-461.

Al-Gheilani HM, Matuoka K, Al-Kindi AY, Amer S, Waring C. 2012. Fish kill incidents and harmful algal blooms in Omani waters. Agriculture and Marine Science 16: 23-31.

Al-Hashmi K, Smith, SL, Claereboudt M, Piontkovski SA, Al-Azri AR. 2015. Dynamics of potentially harmful phytoplankton in a semi-enclosed bay in the Sea of Oman. Bulletin of Marine Science 91: 141-166.

Azanza R V, Miranda, L N. 2001. Phytoplankton composition and Pyrodinium bahamense toxic blooms in Manila Bay, Philippines. Journal of Shellfish Research 20: 1251-1255.

Banerjee, P, Kumar SP. (2014). Dust-induced episodic phytoplankton blooms in the Arabian Sea during winter monsoon. Journal of Geophysical Research Oceans 119: 7123-7128.

Banse K. English DC. 2000. Geographical differences in seasonality of CZCS-derived phytoplankton pigment in the Arabian Sea for 1978-86. Deep-Sea Research II 47: 1623-1677.

Banse K, Naqvi SWA, Narvekar PV, Postel, JR, Jayakumar, DA. (2014). Oxygen minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to decadal timescales. Biogeosciences 11: 2237-2261.

Banzon VF, Evans RE, Gordon HR, Chomko RM. 2004. SeaWifs observations of the Arabian Sea southwest monsoon bloom for the year 2000. Deep-Sea Research II 51: 189-208.

Barber RT, Marra J, Bidigare RC, Codispoti LA, Halpern D, Johnson Z, Latasa M, Goericke R, Smith SL. 2001. Primary productivity and its regulation in the Arabian Sea during 1995. Deep-Sea Research Ii 48: 1127-1172.

Barnali, D, Mishra AL. (2013). Effect of dust storm on phytoplankton productivity in Arabian Sea. Journal of Remote Sensing and GIS 4: xxx-xxx.

Chaghtai F, Saifullah SM. 2006. On the occurrence of green Noctiluca scintillans blooms in coastal waters of Pakistan, North Arabian Sea. Pakistan Journal of Botany 38: 893-898.

Dwivedi R, Rafeeq M, Smitha BR, Padmakumai KB, Thomas LC, Sanjeevan VN, Prakash P, Raman M. 2015. Species identification on mixed algal bloom in the northern Arabian Sea using remote sensing techniques. Environmental Monitoring and Assessment 187: 51.

Furuya K, Saito H, Sriwoon R, Omura T, Furio E F, Borja V M, Lirdwitayaprasit T. 2006a. Vegetative growth of Noctiluca scintillans with green flagellate endosymbiont Pedinomonas noctilucae. African Journal of Marine Science 28: 305-308.

Furuya K, Saito H, Sriwoon R, Vijayan AK, Omura T, Furio EE, Borja VM, Boonyapiwat S, Lirdwitayaprasit T. 2006b. Persistent whole-bay red tide of Noctiluca scintillans in Manila Bay, Philippines. Coastal Marine Science 30: 74-79.

Goes J I, Thoppil P G, Gomes H R, Fasullo J T. 2005. Warming of the Eurasian landmass is making the Arabian Sea more productive. Science 308: 545-547.

Gomes HR, Goes JI, Matondkar SG, Parab SG, Al-Azri A, Thoppil PG. 2008. Blooms of Noctiluca miliaris in the Arabian Sea - An in situ and satellite study. Deep Sea Research Part I. 55: 751-765.

Gomes HR, Matondkar P, Parab S, Goes J, Pednekar S, Al-Azri A, Thoppil P. 2010. Unusual blooms of the green Noctiluca miliaris (Dinophyceae) in the Arabian Sea during the winter monsoon. In: Wiggert JD, Hood RR, Naqvi SWA, Brink KH, Smith SL, Editors. Indian Ocean Biogeochemical Processes and Ecological Variability. American Geophysical Union USA. 185: 347-363.

Gomes HDR, Goes JI, Matondkar SGP, Buskey E, Basu S, Parab S, Thoppil P. 2014. Massive outbreaks of Noctiluca scintillans blooms in the Arabian Sea due to spread of hypoxia. Nature Communications 5: 1-8 doi: 10.1038/ncomms5862.

George JV, Nuncio M, Chacko R, Anilkumar N, Noronha SB, Patil SM, Pavithran S, Alappattu DP, Krishnan KP, Achuthankutty CT. 2013. Role of physical processes in chlorophyll distribution in the western tropical Indian Ocean. Journal of Marine Research 113-114: 1-12.

Hansen PJ, Miranda L, Azanza R. 2004. Green Noctiluca scintillans: a dinoflagellate with its own greenhouse. Marine Ecology Progress Series 275: 79-87.

Harrison PJ, Xu J, Yin K, Lee JHW, Anderson DM, Liu HB, Ho AYT. 2010. Algal blooms and red tides in Hong Kong: Which, when, where and why. Proceedings of 13th International Harmful Algal Bloom Conference, Nov. 2008, Hong Kong, p. 49-53.

Harrison PJ, Furuya K, Glibert PM, Xu J, Liu HB, Yin K, Lee LHW, Anderson DM, Gowen R, Al-Azri A, et al. 2011. Geographical distribution of red and green Noctiluca scintillans. Chinese Journal of Oceanology and Limnology 29: 807-831.

Harrison PJ, Piontkovski S, Al-Hashmi K. In press. Understanding how physical-biological coupling influences low oxygen and fish kills in the Sea of Oman and the western Arabian Sea. Marine Pollution Bulletin.

Hood RR, Bange HW, Beal L, Beckley LE, Burkill P, Cowie GL, D'Adamo N, Ganssen G, Hendon H, Hermes J, Honda M, McPhaden M, Roberts M, Singh S, Urban E, Yu W. 2015. Science Plan of the Second International Indian Ocean Expedition (IIOE-2): A Basin-Wide Research Program. Scientific Committee on Oceanic Research, Newark, Delaware, USA.

Katti RJ, Gupta TRC, Shetty 1988. On the occurrence of "green tide" in the Arabian Sea off Mangalore. Current Science 57: 380-381.

Koch F, Burson A, Tang YZ, Collier JL, Fisher NS, Sañudo-Wilhemy S, Gobler CJ. 2014. Alternation of plankton communities and biogeochemical cycles by harmful Cochlodinium polykrikoides (Dinophyceae) blooms. Harmful Algae 33: 41-54.

Kudela RM, Ryan JP, Blakeley MD, Lane JQ, Peterson TD. 2008. Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7: 278-292.

Kudela, R.M., Gobler, C.J., 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitate bloom formation. Harmful Algae 14: 71-86.

Kumar SP, Roshin RP, Narvekar J, Dinesh Kumar PK, Viveanandan E. 2007. Response of the Arabian Sea to global warming and associated regional climate shift. Marine Environmental Research. 68: 217-222.

Kumar SP, Roshin RP, Narvekar J, Dinesh Kumar PK, Viveanandan E. 2010. What drives the increased phytoplankton biomass in the Arabian Sea? Current Science 99: 101-107.

Lee CK, Park TG, Park YT, Lim WA. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30S: S3-S14.

Liao X, Zhan H, Wei X. 2012. Low-frequency variation in primary production in the Oman upwelling zone associated with monsoon winds. Chinese Journal of Oceanology and Limnology 30: 1045-1053.

Lirdwitayaprasit T, Meksumpun S, Rungsupa S, Furuya K. 2006. Seasonal variations in cell abundance of Noctiluca scintillans in the coastal waters off Chonburi Province, the upper Gulf of Thailand. Coastal Marine Science 30: 80-84.

Marra J, Barber R. 2005. Primary productivity in the Arabian Sea: A synthesis of JGOFS data. Progress in Oceanography 65: 159-165.

Moffett, JW, Vedamati J, Goepfert TJ, Pratihary A, Gauns M, Naqvi SWA. 2015. Biogeochemistry of iron in the Arabian Sea. Limnology and Oceanography 60: 1671-1688.

Montani, S, Pithakpol S, Tada K. 1998. Nutrient regeneration in coastal seas by Noctiluca scintillans, a red tide causing dinoflagellate. Marine Biotechnology 6: 224-228.

Morrison, JM, Codispoti LA, Gaurin S, Jones, B, Manghnani, V, Zheng Z. 1998. Seasonal variation of hydrographic and nutrient fields during the US JGOFS Arabian Sea Process Study. Deep-Sea Res. II 45: 2053-2101.

Nair RV, Ittekkot V, Manganini SJ, Ramaswamy V, Haake B, Degens ET, Desai BN, Honjo S, 1989. Increased particle flux to the deep ocean related to monsoons. Nature 338: 749-751.

Nawata T. Sibaoka T. 1976. Ionic composition of pH of vacuolar sap in marine dinoflagellate Noctiluca. Plant and Cell Physiology 17: 268-272.

Naqvi SWA, Moffett JW, Gauns MU, Narvekar PV, Pratihary AK, Naik H, Shenoy DM, Jayakumar DA, Goepfert TJ, Patra PK, Al-Azri A, Ahmed, SI. 2010. The Arabian Sea as a high-nutrient, low chlorophyll region during the late southwest monsoon. Biogeosciences 7: 2091-2100.

Parab SG, Matondkar SGP, Gomes HD, Goes JI. 2006. Monsoon driven changes in phytoplankton populations in the eastern Arabian Sea as revealed by microscopy and HPLC pigment analysis. Continental Shelf Research 26: 2538-2558.

Patra P, Kumar MD, Mahowald N, Sarma V. 2007. Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. Journal of Geophysical Research 112: C05029.

Piontkovski S, Al-Azri A, AL-Hashmi K. 2011. Seasonal and interannual variability of chlo- rophyll-a in the Gulf of Oman compared to the open Arabian Sea regions. International Journal of Remote Sensing 32: 7703-7715.

Piontkovski SA, Claereboudt M. 2012. Interannual changes of the Arabian Sea productivity. Marine Biology Research 8: 189-194.

Piontkovski S, Nezlin NP. 2012. Mesoscale eddies of Arabian Sea: Physical-biological interactions. International Journal of Marine Science 2: 51-56.

Piontkovski S, Al-Gheilani HMH, Jupp BP, Al-Azri A, Al-Hashmi, K. 2012a. Interannual changes in the Sea of Oman ecosystem. The Open Marine Biology Journal 6: 38-52.

Piontkovski S, Nezlin NP, Al-Azri A, Al-Hashmi, K. 2012b. Mesoscale eddies and variability of chlorophyll-a in the Sea of Oman. International Journal of Remote Sensing 33: 5341-5346.

Piontkovski SA, Claereboudt MR, Al-Jufaili S. 2013. Seasonal and internannual changes in epipelagic ecosystem of the western Arabian Sea. International Journal of Oceans and Oceanography 7: 117-130.

Piontkovski SA, Al-Jufaili S. 2013. Coastal upwellings and mesoscale eddies of the western Arabian Sea: Some biological implications. International Journal of Oceans and Oceanography 7: 93-115.

Piontkovski SA, Al-Oufi HS. 2015. The Oman shelf hypoxia and the warming Arabian Sea. International Journal of Environmental Studies http://dx.doi.org/10.1080/00207233.2015.1012361.

Piontkovski SA, Queste B, Al-Shaaibi A, Al-Hashmi K, Bryantseva J, Popova E. (Submitted). Subsurface algal blooms of the western Arabian Sea. Marine Ecology Progress Series.

Pithakpol S. Tada K. Montani S. 2000. Ammonium and phosphate pools of Noctiluca scintillans and their supplies to the water column in Harima Nada, the Seto Inland Sea, Japan. La Mer 37: 158-162.

Prakash S, Ramesh R. 2007. Is the Arabian Sea getting more productive? Current Science 92: 667-671.

Prakash S, Ramesh R, Sheshshayee MS, Dwivedi RM, Raman M. 2008. Quantification of new production during a winter Noctiluca scintillans bloom in the Arabian Sea. Geophysical Research Letters 35, L08604, doi:10.1029/2008GL033819.

Ravichandran M, Girishkumar MS, Riser S. 2012. Observed variability of chlorophyll-a using Argo profiling floats in the southeastern Arabian Sea. Deep-Sea Research I 65: 15-25.

Richlen ML, Morton SL, Jamali EA, Rajan A, Anderson DM. 2010. The catastrophic 2008-2009 red tide in the Arabian Gulf region with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9: 163-172.

Roxy MK, Modi A, Murtugudde R, Valsala, V, Panickal S, Kumar SP, Rivichandran M, Vichi M, Levy M. 2016. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophysical Research Letters 43: 8260832.

Saifullah S M, Chaghtai F. 1990. Incidence of Noctiluca scintillans (Macartney) Ehrenb., blooms along Pakistan shelf. Pakistan Journal of Botany 22: 94-99.

Smith SL. 2001. Understanding the Arabian Sea: Reflections on the 1994-96 Arabian Sea Expedition. Deep-Sea Research II 48: 1385-1402.

Subrahmanyan R. 1954. A new member of Euglenineae, Protoeuglena noctilucae gen. et. Sp. n., occurring in Noctiluca miliaris Suriray causing green discoloration off the Sea of Calicut. Proceedings of Indian Academy of Science 39: 120-127.

Sweeney B M. 1976. Pedinomonas noctilucae (Prasinophyceae), flagellate symbiotic in Noctiluca (Dinophyceae) in Southeast Asia. Journal of Phycology 12: 460-464.

Takeda, S., A. Kamatani, and K. Kawanobe.1995. Effects of nitrogen and iron enrichments on phytoplankton communities in the northwestern Indian Ocean, Mar. Chem., 50, 229-241.

Thangaraja M, Al-Aisry A, Al-Kharusi L. 2007. Harmful algal blooms and their impacts in the middle and outer ROPME sea area. International Journal of Oceans and Oceanography 2: 85-98.

Tholkapiyan, Shanmugam P, Suresh P. 2014. Monitoring of ocean surface algal blooms in coastal and oceanic waters around India. Environmental Monitoring and Assessment 186: 4129-4137.

Ward BB. Devol AH, Rich JJ, Chang BX, Bulow SE, Naik H, Pratihary A, Jayakumar A, 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461: 78-81.

Wiggert JD, Hood RR, Banse K, Kindle JC. 2005. Monsoon-driven biochemical processes in the Arabian Sea. Progress in Oceanography 65: 16-213.

Wiggert, JD, Murtugudde RG, Christian JR. 2006. Annual ecosystem variability in the tropical Indian Ocean: Results of a coupled bio-physical ocean general circulation model. Deep-Sea Research II 53: 644-676.

Wiggert JD, and Murtugudde RG. 2007. The sensitivity of the southwest monsoon phytoplankton bloom to variations in aeolian iron deposition over the Arabian Sea, J. Geophys. Res., 112, C05005, doi:10.1029/2006JC003514.

Young DK, Kindle JC 1994. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea. Journal of Geophysical Research 99: 22,619-22,632.

Wyrtki K. 1971. Oceanographic Atlas of the International Indian Ocean Expedition, 531 pp., National Science Foundation, Washington, D.C.

Zhao J, Temimi M, Ghedira H. 2015. Characterization of harmful algal blooms (HABs) in the Arabian Gulf and the Sea of Oman using MERIS fluorescence data. Journal of Photogrammetry and Remote Sensing. 101: 125-136.

DOI: http://dx.doi.org/10.24200/jams.vol23iss1pp11-23


  • There are currently no refbacks.

Copyright (c) 2019 Paul Harrison, Sergey Piontkovski, Khalid Al-Hashmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.


This journal and its content is licensed under a Attribution-NoDerivatives 4.0 International.

Flag Counter