Main Article Content

Abstract

Viticulture is one of the most important crop industry in the world and its cultivation is on the upward trend globally. Global water and soil resources continue to decline sharply and rampant extreme weather conditions are making serious threat to sustainable agriculture and food security. Further, the changes in climatic conditions are increasingly becoming favorable for rearing certain harmful biotic organisms which are hostile to sustained grapes and other crop  cultivation. The environmental changes have shown a projected impact on viticulture through increased biotic and abiotic stresses. Range of strategies can be employed to mitigate such scenarios, however integration of rootstocks to combat such challenges is of a sustainable nature. Grape rootstocks have exhibited their role in mitigating the problems raised due to a variety of environmental stresses. For example, certain Vitis species are used as rootstock against phylloxera and other harmful pests of grapes. Similarly, there are certain rootstocks developed which have their tolerance ability against salinity, drought, cold and iron chlorosis. Within changing environmental conditions, it is not necessary that the one rootstock performing better at a specific place may perform better on another place too. This review is presented to describe the role of grapes rootstock against biotic and abiotic environmental stresses.

Keywords

Drought Phyloxera Salinity Rootstocks Viticulture Stress

Article Details

How to Cite
Khan, M. M., Akram, M. T., Qadri, R. W. K., & Al-Yahyai, R. (2020). Role of grapevine rootstocks in mitigating environmental stresses: A review. Journal of Agricultural and Marine Sciences [JAMS], 25(2), 1–12. Retrieved from https://journals.squ.edu.om/index.php/jams/article/view/3544

References

  1. Adnan AY. 2004. Influence of salinity on Citrus: A review paper. Journal of Central European Agriculture 5: 263-271.
  2. Agustí-Brisach C, Armengol J. 2013. Black-foot disease of grapevine: an update on taxonomy, epidemiology and management strategies. Phytopathologia Mediterranea 52: 245.
  3. Akram MT, Rashad WKQ, Muhammad JJ, Faisal SA. 2019. Ampelographic and genetic characterization of grapes genotypes collected from Potohar region of Pakistan. Pakistan Journal of Agricultural Sciences 56: 595-605.
  4. Alsina MM, Smart DR, Bauerle T, Herralde F, Biel C, Stockert C, Negron C, Save R. 2011. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Journal of Experimental Botany 62: 99-109.
  5. Alsina MM, Smart DR, Bauerle T, Herralde F, Biel C, Stockert C, Save R. 2011. Seasonal changes of whole root system conductance by a drought-tolerant grape root system. Journal of Experimental Botany 62: 99-109.
  6. Ambrosi H, Dettweiler E, Ruhl EH, Schmid J, Schumann F. 1994. Farbatlas Rebsorten. 1st Ed. Stuttgart, Eugen Ulmer.
  7. Anne F. 2004. Freezing tolerance and injury in grapevines. Journal of Crop Improvement 10: 201-235.
  8. Anwar SA, McKenry MV. 2002. Developmental response of a resistance breaking population of Meloidogyne arenaria on Vitis spp. Journal of Nematology 34: 28-33.
  9. Arrigo N, Arnold C. 2007. Naturalised Vitis rootstocks in Europe and consequences to native wild grapevine. PLOS One 2: 21-26.
  10. Balasubrahmanyam VR, Eifert J, Diofasi L 1978. Nutrient reserves in grapevine canes as influenced by cropping levels. Vitis 17: 23-29.
  11. Battany M. 2015. Black Foot Disease in coastal vineyards. Grape notes. Information for grape growers in San Luis Obispo and Santa Barbara Counties. https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=17641
  12. Bavaresco L, Lovisolo C. 2000. Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39: 89-92.
  13. Bavaresco L, Lovisolo C. 2000. Effect of grafting on grapevine chlorosis and hydraulic conductivity. Vitis 39: 89-92.
  14. Becker H. 1989. Situation of the German vine plant producers. The German viticulture 44: 55-60.
  15. Blank L, Wolf T, Eimert K, Schroder MB. 2009. Differential gene expression during hypersensitive response in Phylloxera-resistant rootstock ‘Börner’ using custom oligonucleotide arrays. Journal of Plant Interactions 4: 261-269.
  16. Bleach C, Jones EE, Jaspers M. 2007. Survey of black foot disease in New Zealand vineyards. The Australian & New Zealand Grape grower and Winemaker 525: 53-54.
  17. Brayford D, Honda BM, Mantiri FR, Samuels GJ. 2004. Neonectria and Cylindrocarpon: the Nectria mammoidea group and species lacking macroconidia. Mycologia 96: 572-597.
  18. Brown DJF, Dalmasso A, Trudgill DL. 1993. Nematode pests of soft fruits and vines. In: Evans K, Trudgill DL, Walker JM, editors. Plant Parasitic Nematodes in Temperate Agriculture. Wellingford, UK: CAB International. p. 427-462.
  19. Brown DS, Jaspers MV, Ridgway HJ, Barclay CJ, Jones EE. 2013. Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection 66: 249-253.
  20. Burr TJ, Reid CL, Taglicti E, Bazzi C, Sule S. 1997. Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or competition for attachment site on grape cells. Phytopathology 87: 706-711.
  21. Chicau G, Aboim-Inglez M, Cebral S, Cabral JPS. 2000. Phaeoacremonium chlamydosporum and Phaeoacremonium angustius associate with esca and grapevine decline in Vinho Verde grapevines in northwest Portugal. Phytopathologia Mediterranea 39: 80-86.
  22. Clark JR, Watson P. 1998. Evaluation of dormant primary bud hardiness of muscadine grape cultivars. Fruit Varieties Journal 52: 4750.
  23. Cookson SJ, Cemente MJ, Hevin C, Nyamba MLZ, Delrot S, Trossat-Magnin C, Ollat N. 2013. Graft union formation in grapevine induces transcriptional changes related to cell wall modification, wounding, hormone signalling and secondary metabolism. Journal of Experimental Botany 64: 2997-3008.
  24. Coombe B. 1999 Grafting. In: Robinson J, editor. The Oxford companion to wine. 2nd ed. New York: The Oxford University Press, Inc. p. 127.
  25. Corso M, Bonghi C. 2014. Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today 1: 108-113.
  26. Covarrubias J, Rombola A. 2013. Physiological and biochemical responses of the iron chlorosis tolerant grapevine rootstock 140 Ruggeri to iron deficiency and bicarbonate. Plant and Soil 370: 305-315.
  27. Cramer G, Ergul A, Grimplet J, Tillett R, Tattersall ER, Bohlman M, Cushman J. 2007. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional Integrative Genomics 7: 111-134.
  28. Cramer GR. 2010. Abiotic stress and plant responses fromthe whole vine to the genes. Australian Journal of Grape and Wine Research 16: 86-93.
  29. Crous PW, Gams W. 2000. Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca. Phytopathologia Mediterranea 39: 112-118.
  30. Dai A. 2013. Increasing drought under global warming in observations and models. Nature Climate Change 3: 52-58.
  31. Damour G, Simonneau T, Cochard H, Urban L. 2010. An overview of models of stomatal conductance at the leaf level. Plant Cell and Environment 33: 1419-1438.
  32. Davut SA, Umit O, Serkan O, Sermin C, Ramazan OS, Kemal B. 2018. Susceptibility of grapevine cultivars and rootstocks to crown gall disease (Rhizobium vitis) in the Aegean region of Turkey. Plant Disease 27: 6229-6238.
  33. Demir G, Altın N, Ustun N, Onceler H, Akman I. 1998. Susceptibility levels of grape rootstocks and standard grape varieties to different Agrobacterium vitis isolates. Papers Symposium Papers. Yalova 424-430 pp.
  34. Dinis LT, Bernardo S, Luzio A, Pinto G, Meijón M, Pintó-Marijuan M, Cotado A, Correia C, Moutinho-Pereira J. 2018. Kaolin modulates ABA and IAA dynamics and physiology of grapevine under Mediterranean summer stress. Journal of Plant Physiology 220:181-192.
  35. Ferreira ABM, Luís GL, José LH, Ricardo H, Carlos RP, César JB. 2018. Colonization of vines Petri disease fungi, susceptibility of rootstocks to Phaeomoniella chlamydospora and their disinfection. Arquivos do Instituto Biológico 85: 1-10.
  36. Ferris H, Zheng L, Walker MA. 2012. Resistance of Grape Rootstocks to Plant-parasitic Nematodes. Journal of Nematology 44: 377-386.
  37. Fisarakis I, Chartzoulakis K, Stavrakas D. 2001. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management 51: 13-27.
  38. Flexas J, Baron M, Bota J, Ducruet JM, Galle A, Galmes J, Medrano H. 2009. Photosynthesis limitations during water stress acclimation and recovery in the drought-adapted Vitis hybrid Richter-110 (V. Berlandieri × V. rupestris). Journal of Experimental Botany 60: 2361-2377.
  39. Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho-Pereira J, Jones GV. 2016. Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology 36: 1-12.
  40. Francois H, Paul HF, Pedro WC. 2006. A review of black foot disease of grapevine. Phytopathologia Mediterranea 45: 55-67.
  41. Fregoni M, Bavaresco L. 1986. The Italian contribution to grape breeding. Vignevini 13: 1-6.
  42. Galmes J, Pou A, Alsina M, Tomas M, Medrano H, Flexas J. 2007. Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta 26: 671-681.
  43. Gokbayrak Z, Soylemezoglu G, Akkurt M, Çelik H. 2007. Determination of grafting compatibility of grapevine with electrophoretic methods. Scientia Horticulturae 113: 343-352.
  44. Gramaje D, Armengol J. 2011. Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification, and management strategies. Plant Disease 95: 1040-1055.
  45. Granett J, Walker AM, Kocsis L, Omer AD. 2001. Biology and management of grape Phylloxera. Annual Review Entomology 46: 387-412.
  46. Grant RS, Matthews MA. 1996. The influence of phosphorus availability, scion, and rootstock on grapevine shoot growth, leaf area, and petiole phosphorus concentration. American Journal of Enology and Viticulture 47: 217-224.
  47. Gu S, Ramming D. 2005. Viticultural performance of Thompson Seedless grapevines on new USDA-ARS rootstocks fo raisin production in the San Joaquin Valley. American Journal of Enology and Viticulture 56: 312.
  48. Gubler WD, Baumgartner K, Browne GT, Eskalen A, Rooney LS, Petit E, Bayramian LA. 2004. Root diseases of grapevine in California and their control. Australasian Plant Pathology 33: 157-165.
  49. Gugino BK, Travis JW. 2003. Suppression of Cylindrocarpon destructans utilizing composted soil amendments. Phytopathology 93: 31.
  50. Halleen F, Schroers HJ, Groenewald JZ, Crous PW. 2004. Novel species of Cylindrocarpon (Neonectria) and Campylocarpon gen. nov. associated with black foot disease of grapevines (Vitis spp.). Studies in Mycology 50: 431-455.
  51. Hoover E, Hemstead P, MacKenzie J, Propsom F. 2002. Rootstock influence on scion vigor, hardiness, yield and fruit quality of ‘St. Pepin’ grape. Abstract #770. XXVI International Horticultural Congress, August 11-17, 2002. Toronto, Canada.
  52. Ismail A, Riemann M, Nick P. 2012. The jasmonate pathway mediates salt tolerance in grapevines. Journal of Experimental Botany 63: 2127-2139.
  53. Jimenez S, Gogorcena Y, Hevin C, Rombola, AD, Ollat N. 2007. Nitrogen nutrition influences some biochemical responses to iron deficiency in tolerant and sensitive genotypes of Vitis. Plant and Soil 290: 343-355.
  54. Kose B, Karabulut B, Ceylan K. 2014. Effect of rootstock on grafted grapevine quality. European Journal of Horticultural Science 79: 197-202.
  55. Ksouri R, Mrah S, Gharsalli M, Lachaal, M. 2006. Biochemical responses to true and bicarbonate-induced iron deficiency in grapevine genotypes. Journal of Plant Sciences 29: 305-315.
  56. Larignon P, Dubos B. 1997 Fungi associated with esca disease in grapevine. European Journal of Plant Pathology 103: 147-157.
  57. Larignon P. 2004. La constitution d’un groupe international de travail sur les maladies du bois et les premiers résultats des expérimentations menées par l’ITV en laboratoire et en pépinières. Les Maladies du Bois en Midi-Pyrénées 12: 24-27.
  58. Larignon P. 2012. Maladies cryptogamiques du bois de la vigne : symptomatologie et agents pathogènes. http://www.vignevin.com. 74.
  59. Loescher WH, Mccamant T, Keller JD. 1990. Carbohydrate reserves, translocation, and storage in woody plant roots. Horticultural Science 25: 274-281.
  60. Loreti F, Massai R. 2006. State of the art on peach rootstocks and orchard systems. Acta Horticulturae 713: 253-268.
  61. Maluta DR, Larignon P. 1991. Pied-noir: mieux vaut prévenir. Viticulture 11: 71-72.
  62. Marguerit E, Brendel O, Lebon E, Van LC, Ollat N. 2012. Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist 194: 416-429.
  63. Mckenry MV, Safdar AA. 2006. Nematode and grape rootstock interactions including an improved understanding of tolerance. Journal of Nematology 38: 312-318.
  64. Meggio F, Prinsi B, Negri AS, Di LGS, Lucchini G, Pitacco P, Espen L. 2014. Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research 20: 310-323.
  65. Miller DP, Howell GS, Striegler RK. 1988. Cane and bud hardiness of selected grapevine rootstocks. American Journal of Enology and Viticulture 39: 5559.
  66. Nabati DA, Schmidt RE, Parrish DJ. 1994. Alleviation of salinity stress in Kentucky bluegrass by plant growth regulators and iron. Crop Science 34: 198-202.
  67. Nicol JM, Stirling GR, Rose BJ, May P, Heeswijk R. 1999. Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Australian Journal of Grape and Wine Research 5: 109-127.
  68. Nimbolkar PK, Banoth S, Amarjeet, KR. 2016. Rootstock breeding for abiotic stress tolerance in fruit crops. International Journal of Agriculture, Environment and Bioresearch 9: 375-380.
  69. Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E, Tandonnet JP, Bordenave L, Cookson SJ, Barrieu F, Rossdeutsch L, Lecourt JL, Lauvergeat V, Vivin P, Bert PF, Delrot S. 2015. Rootstocks as a component of adaptation to environment. In: Geros H, Chaves MM, Medrano Gil H, Delrot S (eds) Grapevine in a changing environment: amolecular and ecophysiological perspective. Wiley, Hoboken. p 68-108.
  70. Ollat N, Peccoux A, Papura D, Esmenjaud D, Marguerit E, Tandonnet JP, Bordenave L, Cookson SJ, Barrieu F, Rossdeutsch L, Lecourt J, Lauvergeat L, Vivin P, Bert PF, Delrot S. 2015. Rootstocks as a component of adaptation to environment. In: Geros H, Manuela M, Gil HM, Delrot S, editors. Grapevine in a changing environment: A molecular and ecophysiological perspective. Wiley, Chichester, England. p. 68-108.
  71. Padgett-Johnson ML, Williams, Walker MA. 2003. Vine water relations, gas exchange, and vegetative gowth of seventeen Vitis species grown under irrigated and nonirrigated conditions in California. Journal of the American Society for Horticultural Science 128: 269-276.
  72. Pavlousek P. 2009. Evaluation of Lime-induced Chlorosis Tolerance in New Rootstock Hybrids of Grapevine. European Journal of Horticultural Science 74: 35-41.
  73. Pavlousek P. 2011. Evaluation of drought tolerance of new grapevine rootstock hybrids. Journal of Environmental Biology 32: 543-549.
  74. Pedersen BH. 2006. Determination of graft compatibility in sweet cherry by a co-culture method. Journal of Horticultural Science and Biotechnology 81: 759-764.
  75. Pina A, Errea P, Schulz A, Martens HJ. 2009. Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiology 29: 809-818.
  76. Reddy YTN, Reju M, Kurian PR, Ramachander GS, Kohli RR. 2003. Long term effects of rootstocks on growth, fruit yielding patterns of Alphonso mango (M. indica). Scientia Horticulturae 97: 95-108.
  77. Rego C, Oliveira H, Carvalho A, Phillips A. 2000. Involvement of Phaeoacremonium spp. and Cylindrocarpon destructans with grapevine decline in Portugal. Phytopathologia Mediterranea 39: 76-79.
  78. Rom RC, Carlson RF. 1987. Rootstocks for fruit crops. New York: Wiley and Sons. 494 pp.
  79. Sara B, LT Dinis, Nelson M, José MP. 2018. Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agronomy for Sustainable Development 38: 66.
  80. Schmid J, Sopp E, Ruhl EH, Hajdu E. 1998. Breeding rootstock varieties with complete Phylloxera resistance. Acta Hort 473: 131-135.
  81. Serra I, Strever A, Myburgh PA, Deloire A. 2014. Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Journal of Experimental Botany 20: 1-14.
  82. Serra I, Strever A, Myburgh PA, Deloire A. 2014. Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Journal of Experimental Botany. 20: 1-14.
  83. Southey JM, Jooste JH. 1992. Physiological response of Vitis vinifera L. (cv. Chenin blanc) grafted onto different rootstocks on a relatively saline soil. South African Journal of Enology and Viticulture 13:10-22.
  84. Striegler RK, Howell GS. 1991. The influence of rootstock on the cold hardiness of Seyval grapevines. I. Primary and secondary effects on growth, canopy development, yield, fruit quality and cold hardiness. Vitis 30: 1-10.
  85. Sule S, Burr TJ. 1998. The effect of resistance of rootstocks to crown gall (Agrobacterium spp.) on the susceptibility of scions in grapevine cultivars. Plant Pathology 47: 84-88.
  86. Sweetingham M. 1983. Studies on the nature and pathogenicity of soil borne Cylindrocarpon spp. [Ph.D]. [Tasmania]: University of Tasmania.
  87. Theodore TK, Stephen GP. 1997. Growth control in woody plants. Cambridge, United States: Academic press. 394-435 pp.
  88. Tramontini S, Vitali M, Centioni L, Schubert A, Lovisolo C. 2013. Rootstock control of scion response to water stress in grapevine. Environmental and Experimental Botany 93: 20-26.
  89. Tsago Y, Andargie M, Takele. 2014. In vitro selection of sorghum (Sorghum bicolor (L) Moench) for polyethylene glycol (PEG) induced drought stress. Plant Science Today 2: 62-68.
  90. Vrsic S, Pulko B, Kocsis L. 2016. Effects of rootstock genotypes on compatibility, biomass, and the yield of Welschriesling. Horticulture Science (Prague) 43: 92-99.
  91. Vrsic S, Sustar V, Pulko B, Kraner ST. 2014. Trends in climate parameters affecting winegrape ripening in northeastern Slovenia. Climate Research 58: 257-266.
  92. Walker R, Clingeleffer P. 2009. Rootstock attributes and selection for Australian conditions. Australian Viticulture 13: 69-76.
  93. Walker RR, Blackmore DH, Clingeleffer PR, Correll RL. 2002. Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research 8: 3-14.
  94. Yu D, Zhang L, Zhao K, Niu R, Zhai H, Zhang J. 2017. VaERD15, a transcription factor gene associated with cold-tolerance in Chinese wild Vitis amurensis. Frontiers in Plant Science 8: 297.