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Abstract: The Growth Mixture Model (GMM) is associated with several class enumeration issues. The con-

temporary advancement of automated algorithms presents two promising alternatives that merge confirmatory 

Structural Equation Modeling (SEM) with exploratory data-mining algorithms: SEM Tree and SEM Forest. 
This study investigated the performance of the aforementioned three methods (i.e., the GMM, SEM Tree, and 

SEM Forest) to detect latent heterogeneity in academic growth across four high school grades using an illus-

trative subsample of the Longitudinal Study of High School of 2009. The findings showed remarkable differ-
ences in detecting latent heterogeneity across the three methods as indicated by a parsimonious number of 

classes, with more unique growth trajectories, capturing the latent heterogeneity in the growth factors. In con-

trast, SEM Tree and SEM Forest were better at tracking the influences of covariates in the model parameters’ 

heterogeneity, as indicated by providing more accurate measures of covariate importance and a detailed de-
scription of the role of covariates at each level of the tree or the forest. These findings imply the complementary 

use of these methods to obtain a clear separation between growth trajectories, as estimated by GMM; and the 

inclusion of most influential covariates, as identified by SEM Tree and Forest (208 words). 
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 المتعدد، وشجرة النمذجة البنائية، وغابة النمذجة البنائيةالتباين الضمني في النمو الأكاديمي لدى طلبة الثانوية: مقارنة بين نموذج الخليط 

 أمل الهدابي

 السلطان قابوس، سلطنة عُمانجامعة 

لأمثل يعد نموذج الخليط المتعدد من النماذج التقليدية التي تساهم في نمذجة التباين الضمني وفي ذات الوقت يعاني من إشكالية تحديد العدد ا الملخص:

ة وتنقيب ة الممثلة لهذا التباين. وتوفر التطورات المتسارعة في علم تنقيب البيانات الخوارزميات الأتوماتيكية التي تجمع بين النمذجة البنائيللمجموعات الضمني

يط المتعدد. لذا هدفت الدراسة البيانات، وهما: شجرة النمذجة البيانية وغابة النمذجة البيانية. وتعدان طريقتان واعدتان في حل الإشكالية التي تواجه نموذج الخل

ن الضمني في النمو الأكاديمي إلى المقارنة بين أداء ثلاث طرق إحصائية )نموذج الخليط المتعدد، وشجرة النمذجة البنائية، وغابة النمذجة البنائية( في تحديد التباي

بين الطرق الثلاثة وهرية . أظهرت النتائج اختلافات جة بالولايات المتحدة الأمريكيةلدى طلبة الثانوية باستخدام عينة توضيحية من الدراسة الطولية للمدارس الثانوي

ة التي توضح التباين في نمذجة التباين الضمني حيث أظهر نموذج الخليط المتعدد أداءً أفضل من خلال تحديد عدد أقل من المجموعات الضمنية، ومسارات نمو فريد

النمذجة البنائية وغابة النمذجة البنائية أظهروا أداءً أفضل في تحديد أثر المتغيرات الديموغرافية في تباين معاملات النمو من  في معامل النمو. في المقابل، شجرة

اضح في مسارات على فرق و  خلال تحديد درجة أهمية كل متغير ودوره في كل تفرع للشجرة أو الغابة. وأشارت هذه النتائج إلى أهمية التكامل بين هذه النماذج للحصول 

 وأهمية الذي توفره شجرة وغابة النمذجة البنائية.
ً
 النمو الذي يوفره نموذج الخليط المتعدد، وتضمين أكثر المتغيرات تأثيرا
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Introduction 

Modeling the latent heterogeneity in longitudinal 

data has been growing in popularity because it pro-

vides a more in-depth representation of the sample’s 
underlying variability, forming several latent classes 

with unique growth trajectories and unbiased model 

parameters. The improved accuracy can be ascribed 
to modeling the extra variability between persons, 

which is considered a sizeable unexplained error var-

iance when using other simple analyses (Preacher et 
al., 2008). Therefore, a broad range of disciplines 

have modeled latent heterogeneity in the growth of 

several developmental phenomena, such as educa-

tional outcomes (e.g., Alhadabi & Li, 2020) and psy-
chological states (e.g., Infurna & Grimm, 2017), to 

name a few. 

One of the more popular methods for capturing latent 
heterogeneity is the Growth Mixture Model (GMM). 

The GMM models the intra-person change over time 

(i.e., within-person growth), inter-person growth 

(i.e., between-persons variability), and the heteroge-
neity in the latent intercept and slope growth factors. 

In other words, the GMM achieves numerous tasks 

simultaneously, including (1) Estimating the initial 
status (i.e., intercept) and rate of change (i.e., slope), 

(2) Creating several latent classes with distinct 

growth factors, (3) Exploring the associations be-
tween the estimated classes and theory-driven se-

lected covariates, and (4) Predicting distal outcomes 

by class membership (Muthén, 2008).   

Despite the appealing implications of the GMM, 
mounting doubts have been recognized in the educa-

tional and psychological literature (e.g., Bauer, 2007; 

Nylund et al., 2007). These doubts can be attributed 
to the following: (1) Complexity of the class enumer-

ation (i.e., identifying the correct number of classes), 

(2) Inconsistency among fit indices, and (3) Diversity 

of the factors influencing the GMM’s accuracy. First, 
class enumeration is complex and follows a two-step 

approach. That is, several GMMs with an increasing 

number of classes are fitted (e.g., one-class, two-
class, three-class, etc.). Then, a comparison of the fit 

indices is made to identify the best class structure 

(Ram & Grimm, 2009). 

 Second, several criteria are used to evaluate the op-

timal number of classes (e.g., Likelihood Ratio Tests 

[LRTs], Information Criteria [IC], entropy statistics, 

and multivariate skewness and kurtosis tests). Previ-
ous studies have produced contradictory conclusions 

under the same conditions (e.g., Grimm et al., 2014; 

Tofighi & Enders, 2007). For instance, Nylund and 

colleagues (2007) identified the Bayesian Infor-
mation Criterion (BIC) as the best of the IC. In con-

trast, Li and Hser (2011) suggested that the BIC per-

forms well only with large sample sizes and high sep-
aration.  

Third, various factors influence class enumeration 

and latent heterogeneity deduction (e.g., class separa-

tion, sample size, mixing proportions, the inclusion 
of covariates, deviation from normality, etc.). Even 

though multiple prior studies have reported similar 

findings regarding the effect of some factors (e.g., 
sample size, class separation, and mixing propor-

tions), a mixed bag of findings has been found for 

other factors (e.g., nonnormality and the inclusion of 

covariates). For instance, numerous studies have 
found that the inclusion of adequately chosen covari-

ates increases class enumeration accuracy in the con-

ditional GMM (e.g., Lubke & Muthén, 2007). On the 
other hand, other studies have found that the inclu-

sion of covariates hindered class enumeration (Bauer, 

2007; Tofighi & Enders, 2007).  

The more recent data mining literature presents sev-

eral automated algorithms that can capture the latent 

heterogeneity and alleviate some of the class enumer-

ation issues associated with the GMM (McArdle & 
Ritschard, 2014). Two of these automated algo-

rithms, which incorporate theory-guided structural 

equation modeling (i.e., SEM) and two data mining 
algorithms (i.e., decision tree and random forest), are 

SEM Tree (Brandmaier et al., 2013) and SEM Forest 

(Brandmaier et al., 2016). The SEM Tree algorithm 
models growth while recursively partitioning the da-

taset into nodes (i.e., classes) that maximally explain 

the differences in the model parameters, conditioning 

on observed covariates (Brandmaier et al., 2013).  

Nonetheless, only a few studies have examined the 

performance of the SEM Tree in detecting latent het-

erogeneity (Jacobucci et al., 2017; Usami et al., 2017; 
Usami et al., 2019). Likewise, very little applied re-

search has used the SEM Tree (Alhadabi, 2021; 

Brandmaier et al., 2013; Brandmaier et al., 2017). 

From these few studies, several technical issues have 
been discovered, including (1) divergence in the tree 

structure when using different control methods for se-

lection bias and tree depth, (2) instability of the esti-
mated classes, (3) dependency of the subsequent 

splits on the first split, and (4) computational burden 

(Brandmaier et al., 2016; Jacobucci et al., 2017; 
Strobl et al., 2009).  

The SEM Forest, however, relieves some of the 

above-mentioned technical concerns associated with 
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a single tree (Brandmaier et al., 2016). The advantage 

of using a forest (i.e., an ensemble of trees) is that it 
has the ability to stabilize the estimated classes and 

rank covariates based on their importance. Detailed 

investigation into how well the SEM Forest detects 

latent heterogeneity has received less attention in 
methodological studies. Also, a limited number of ap-

plied studies have utilized it (Brandmaier et al., 

2017). To the best of the authors’ knowledge, none of 
the applied studies to date have examined SEM For-

est’s performance in spotting heterogeneity when fit-

ting the GMM.  

Therefore, the current study aimed to compare the 

performance of three methods (i.e., the GMM, the 

SEM Tree, and the SEM Forest) using one of the il-

lustrative a national data set. This empirical data set, 
the High School Longitudinal Study of 2009 

(HSLS:09), addresses academic growth across four 

high school years (Ingels et al., 2011). The upcoming 
section provides an overview of the three methods 

and the measured heterogeneity in academic achieve-

ment. 

Literature Review 

Growth Mixture Model (GMM)  

The GMM provides a parsimonious representation of 

between-person differences in within-person change 

over time, identifying various unobserved classes 

(Muthén & Muthén, 2000). Each latent class has 
unique values of latent growth intercept, slope, and 

variance-covariance parameters. Ignoring such unob-

served heterogeneity leads to misleading information 
and incorrect growth parameters (Muthén & Shed-

den, 1999). Below is the mathematical notation for 

the measurement and structural parts of an uncondi-

tional GMM with c classes, as proposed by Muthén 
and Asparouhov (2008): 

𝑌𝑖𝑡|𝐶𝑖= 𝑐 =  𝚲𝑐𝛈𝑖𝑐 + 𝛆𝑖 (1) 

𝛈𝑖𝑗|𝐶𝑖= 𝑐 =  𝛂𝑖𝑐 + 
𝑖
 (2) 

Where Yit is the T × 1 vector of the measured outcome 

at T time points and Ci = [1, 2,…, k] is the c × 1 vector 

of latent categorical classes. For a class c, Λc is the T 
× 2 matrix of factor loadings in case of linear growth, 

and it extends to T × p, where p is the number of latent 

growth factors when modeling nonlinear growth 
trends; ηic is the p × 1 vector of growth factors; εi is 

the T × 1 vector of the error terms and is assumed to 

have a mean of zero and to be normally distributed. 

Furthermore, homogeneity of variance is assumed 

(i.e., homoscedastic across persons) at time T (Enders 
& Tofigi, 2008). Equation (2) describes each class’s 

average value of the growth factors and the individ-

ual’s variation around these average trajectories. As-

suming a linear growth in class c, αic are the average 
intercept and linear slope. ζi = [ζ1, ζ2] is the individ-

ual’s variation around the average class growth fac-

tors (i.e., variance-covariance matrix terms), which 
are assumed to be multivariate normally distributed 

with a mean of zero and a covariance matrix (). 
Time-invariant and time-varying covariates can be 

included. The measurement and structural parts of a 

conditional GMM are shown in Equations (3) and (4). 

 Yit |Ci = c = vc + Λcηi + KXi + εi (3) 

 ηij |Ci = c = αjc + Bηi + Γjc Xi + ζij                                 (4) 

As clarified in Equations (1) and (2), only additional 
terms are explained. vc is the T × 1 vector of measured 

initial status (i.e., observed intercept) at T time points 

for class c, which is constrained to zero for model 
identification (Bollen & Curran, 2006), K is the q × 

p matrix of regression coefficients, where q and p are 

the number of covariates and latent growth factors, 
respectively; and Xi is the q × 1 vector of exogenous 

time-invariant covariates. In Equation (4), αjc is the p 

× 1 vector of average latent factors in class c; B is the 

p × p matrix of correlation coefficients between the 
latent factors and the repeated measures; Γjc are the 

regression coefficients between covariates and 

growth factors; and ζij are the residual terms.  

The class probability (i.e., the likelihood of classify-

ing a person i in class c) is identified by a multinomial 

logistic regression model for k classes given a covari-

ate Xi (Muthén & Asprouov, 2008), as shown in 
Equation (5).  

  

𝑃(𝐶𝑖 = 𝑐|𝑋𝑖) =
𝑒(𝛼𝑐+ 𝛾𝑐

′ 𝑋𝑖)

∑ 𝑒(𝛼𝑐+ 𝛾𝑐
′ 𝑋𝑖)𝑘

𝑐=1

=
𝑒(𝛾0𝑐+ 𝛾1𝑐𝑋𝑖)

∑ 𝑒(𝛾0𝑐+ 𝛾1𝑐𝑋𝑖)𝑘
𝑐=1

  (5) 

P(Ci = c | Xi) is the class probability. The γ1c repre-

sents the increase in the log odds of being in class c 
relative to a normative group, given the covariate Xi. 

By default, the last latent class is considered the nor-

mative class (Muthén, 2008). The class probability is 
used to estimate the mixture distribution density in 

the GMM using Equations (6) and (7).  
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𝑓(𝑦𝑖|) =  ∑ 𝜋𝑐𝑓𝑐(𝑦𝑖|𝜃𝑐)

𝑘

𝑐=1

 
(6) 

 = (,  ) (7) 

Where πc is the c × 1 vector of the marginal distribu-

tions of k classes, which are also known as mixing 

proportions (McLachlan & Peel, 2000), where 
0≤πc≤1, and the sum of all mixing proportions equal 

one. The fc (yi) is the c × 1 vector of the conditional 

density function of y, given class membership that is 

assumed to be multivariate normal. The  is a vector 

of unknown parameters in the model implied matrix 

(i.e., contain mixing proportions [1,…,  k-1] and the 
model parameters for each class [θ1,…, θk]; McLach-

lan & Peel, 2000). 

SEM Tree 

The SEM Tree is an automated model-based 

classification method that detects latent hetero-

geneity conditioning on significant covariates 

(Brandmaier et al., 2013). The classification out-

come is a set of model parameters (e.g., intercept, 

slope, and variance-covariance matrix when fit-

ting the growth curve model). The SEM Tree al-

lows for the simultaneous achievement of three 

tasks: (1) modeling several SEM template mod-

els, (2) the selection of the most influential co-

variates that explain the variability in the model 

parameters, and (3) the classification of persons 

by partitioning the dataset into homogenous 

nodes  (i.e., classes) in terms of model parame-

ters (Brandmaier et al., 2014). In other words, the 

SEM Tree searches for the covariates that make 

the best split points, which results in a maximum 

within-class homogeneity (i.e., the most homog-

enous model parameters within a node) and 

greatest between-class heterogeneity (i.e., the 

most diverse model parameters among the 

nodes; Jacobucci et al., 2017). For instance, the 

SEM Tree may partition a dataset with two po-

tential predictors (e.g., age and gender) based on 

one covariate or a combination of two covariates 

or neither depending on the strength of associa-

tions between the covariates and the model pa-

rameters (Brandmaier et al., 2013).  

Following the mathematical notation adopted by 

Brandmaier and colleagues (2013), the SEM 

Tree algorithm has five steps. First, a pre-split 

template SEM model is estimated by a likelihood 

function f(θǀDF) for the whole dataset (DF: original 

learning dataset), where a vector of model pa-

rameters is calculated θF, as shown in Equation 

(8).  

 f(θǀDF) = -2 ℒℒ (θ̂ǀ DF) (8) 

Second, The full dataset is then split into non-

overlapping subsets (D1, . . ., Dk).These independ-

ent subsets are used to test a compound model 

(i.e., the post-split model with nested nodes). The 

likelihood functions of the subsets are estimated 

independently. These functions are then summed 

to calculate the likelihood function of the com-

pound model, as shown in Equation (9).   

 

−2ℒℒ = (𝑇ǀ𝑫) ∑ −2ℒℒ(𝑀(

d∈D

𝜃Ψ(𝑇,𝑑))ǀ𝑑) =  ∑ 2ℒℒ(θ̂iǀ Di)

𝑘

𝑖=0

 
(9) 

The D is a data set matrix and represented by n × 

(k + l), where n, k, and l are the sample size, re-

peated measurements, and un-modeled covari-

ates, respectively. The l is not included in the ob-

served dataset that is used to estimate the model 

parameters. That is, the SEM Tree creates two 

sub-datasets: (1) a dataset (i.e., Dk) of repeated 

measures/observed variables that are used to es-

timate model parameters and (2) a covariate da-

taset (Dl) that is used to match the person (d) to 

the node with the best fit sub-model, considering 

the person’s covariate values using a mapping 

function [(T, d)]. The mapping function 

traverses the tree with respect to the covariates. 

Meaning, it represents a process of visiting and 

checking each node across each covariate space, 

matching the person with the best sub-model to 

the correct node. When a nonsignificant covari-

ate is found, the traversal process stops, terminat-

ing the classification process. Outweighing the 

issue of estimating local maxima in the GMM, 

the likelihood of observing the person within 

specific values of covariates in each node is max-

imal in the SEM Tree (Usami et al., 2017). There 

is no room for overlapping during the partition-

ing process because the estimation of model fit is 
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conducted using one data set (Dk). In contrast, the 

mapping function of the covariates is performed 

using another dataset (Dl). 

Third, a likelihood ratio test (Λ) is estimated, test-

ing for the null hypothesis that the model param-

eters of the pre-split model equal the model pa-

rameters of the post-split model using Equation 

(10):   

 

 𝛬 =  ∑ 2ℒℒ(θ̂iǀ Di)

𝑘

𝑖=0

− 2 ℒℒ (θ̂ǀ 𝐃𝐹) 
(10) 

Values of Λ greater than a critical value (i.e., 

threshold) support the acceptance of the split, re-

flecting a maximum increase in the likelihood 

function after splitting, as inferred by a signifi-

cant p-value. Fourth, steps 1 through 3 are re-

peated for all covariates and submodels. A pro-

cess of numerous comparisons between the esti-

mated probabilities is then executed, looking for 

the highest difference in the likelihood ratio to 

identify the most significant covariate at each 

splitting point.  

This process may result in a long tree with many 

highly unstable, uninformative nodes which can-

not be generalized (Hayes et al., 2015), consid-

ering the nature of the SEM Tree as a greedy re-

cursive partitioning procedure (Brandmaier et 

al., 2013). Different methods have been sug-

gested for controlling the tree depth and informa-

tiveness of estimated nodes. These control meth-

ods include: (1) prespecifying constraints or cus-

tomized stopping criteria (pre-specified number 

of nodes, pre-specified number of participants 

per node, and prespecifying depth of the tree; 

Brandmaier et al., 2014; Usami et al., 2017), (2) 

applying the Bonferroni or cross-validation (cv) 

correction to control multiple comparisons, in-

flated Type I error, and selection bias (Usami et 

al., 2017), (3) applying one of the four maximum 

likelihood (ML) control methods that are known 

as pruning techniques (i.e., naïve, cv, fair, and 

fair3; Brandmaier et al., 2014; Jacobucci et al., 

2017), and (4) a score-guided SEMTree.  

The literature provides little guidance on which 

methods should be used. For instance, Jacobucci 

and colleagues (2017) state that prespecifying 

constraints are highly questionable. Further-

more, Brandmaier et al. (2013) suggested using 

ML control methods, precisely fair and cv. How-

ever, the precision of subsequent splits is ac-

counted for by the first split’s accuracy when us-

ing ML control methods (Grubinger et al., 2011). 

This means that failing to accurately estimate the 

first split results in a cumulative inaccuracy in 

the subsequent splits. Therefore, the score-

guided SEM Tree may act as a remedy for mul-

tiple ML comparisons by proposing an addi-

tional five methods. One recent simulation study 

found that two score-guided methods (i.e., 

maxLMO and CvM) outperformed ML methods, 

as indicated by higher statistical power, reduced 

computational time, and better node recovery 

when examining multiple parameters (Arnold et 

al., 2020). 

SEM Forest 

The SEM Forest method is a hybrid of a theory-

driven approach (i.e., SEM) and a data-driven 

approach (i.e., random forest). The random for-

est ranks and selects the influential covariates 

from a large set of covariates, considering the 

complex interactions among all covariates, re-

sulting in a proximal clustering of cases adhering 

to model parameters (Brandmaier et al., 2016). 

The pre-specified SEM model is fitted to a 

trained dataset and validated on an out-of-bag 

dataset. The selection of the best model is based 

on the most informative covariates.  

The mathematical notation presented by Brand-

maier et al. (2016) states that for each tree in the 

SEM Forest algorithm with a size of t trees, a 

trained sample (Di
Train) and an out-of-bag sample 

(Di
OOB) are created. The Di

OOB is used as a valida-

tion sample for the split decision estimated using 

the trained data, thereby strengthening the stabil-

ity of estimated classes and ensuring the accu-

racy of the splitting decisions. This cross-valida-

tion approach provides realistic estimates of 

nodes that are expected to appear in new datasets 

(Hapfelmeier & Ulm, 2013). A subgroup of can-

didate covariates (c) is randomly chosen and an-

alyzed by each tree to account for the covariates’ 

variability. The literature has not produced a spe-
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cific rule of thumb for the exact number of can-

didate covariates (i.e., mtry) to be tested. One op-

tion is to specify a fixed number of candidate co-

variates. Another option is to use an equation 
(e.g., c = √m, where m is the total number of covari-

ates) to determine the number of candidate co-

variates (Breiman & Cutler, 2014).  

Unlike the SEM Tree, the SEM Forest provides 

a visual presentation of two unique measures: 

Variable Importance (VI) and Case Proximity 

(CP). VI is a measure of model misfit when re-

moving the covariate c from the sample (i.e., per-

mutation importance). VI is estimated by follow-

ing a four-step process (Brandmaier et al., 2016) 

as follows: (1) estimate a likelihood of model fit 

using an out-of-bag sample [LL(Di
OOB|Ti)], (2) 

create a new out-of-bag data by randomly re-

moving covariate c values (i.e., scrambled D̃i
OOB), 

(3) estimate the second likelihood of model fit 

using the scrambled data and (4) calculate the 

differences in the misfit. The covariates are then 

ranked in descending order (i.e., from the highest 

to lowest misfit). Greater misfit (i.e., large differ-

ences in log-likelihood functions) indicates that 

the covariate is highly informative of the model 

parameters. Strobl et al. (2009) noted that small 

values around zero or even negative values illus-

trate low predictive values and low importance 

in identifying nodes. The CP quantifies the de-

gree of closeness between each pair of cases in 

the sample (Breiman & Culter, 2014). Therefore, 

cases that are located in the same terminal node 

have a higher level of proximity. The proximity 

values are plotted with multidimensional scaling 

to measure the distance/dissimilarity between 

cases. 

Academic Achievement in High School  

Significant heterogeneity has been recognized in 

the academic achievement growth trajectories 

across the four high school years (Alhadabi & Li, 

2020; Bowers & Sprott, 2012; Hodis et al., 2011; 

Lee & Rojewski, 2013; Muthén, 2008), resulting 

in the grouping of students into distinct latent 

achievement classes. This considerable hetero-

geneity is found in the starting values (i.e., inter-

cept growth factor), the steepness of slope 

growth factor (i.e., the magnitude of change in 

GPA over time), and the shape of the change 

(i.e., linear or nonlinear).  

The literature, however, does not agree on the 

number of latent classes. While some prior stud-

ies have found that two classes presented the un-

observed variability well (e.g., Gottfried et al., 

2017; Lee & Rojewski, 2013), other studies sup-

ported a three-class structure (e.g., Alhadabi & 

Li, 2020; Liu & Lu, 2011; Muthén, 2008;), and a 

four-class solution (Bowers & Sprott, 2012). As 

for  growth shape, even though some prior re-

search demonstrated a linear growth trajectory 

(Bowers & Sprott, 2012), other studies have sup-

ported a nonlinear trajectory (e.g., quadratic; 

Choi et al., 2016). Alhadabi and Li (2020) 

showed that the freely estimated nonlinear 

growth model had the best model fit.  

A thorough review of the literature suggests that 

several individual-related and contextual-related 

covariates can explain this heterogeneity. The 

current discussion is limited to student-related 

covariates because this study investigated the 

performance of the simplest model, single-level 

GMM. At the student level, gender and socioec-

onomic status (SES) were the most influential 

covariates (Gottfried et al., 2017; Hodis et al., 

2011; Lee & Rojewski, 2013; Muthén, 2008). 

Other covariates — including ethnicity, student 

locale, and negative student behavior — were 

also significant predictors but to a lesser extent 

(Alhadabi & Li, 2020; Bowers & Sprott, 2012; 

Muthén, 2008). For example, more female stu-

dents and students with high SES were classified 

in the high-achieving class, while more male stu-

dents and students with low SES were included 

in the low-achieving class (Hodis et al., 2011; 

Lee & Rojewski, 2013). Regarding ethnicity, the 

low-achieving class was more likely to have 

more African Americans (Alhadabi & Li, 2020, 

Muthén, 2008), while the mid-decreasing class 

had more Hispanics, and the high-achieving 

class had more Asian students (Bowers & Sprott, 

2012). 

Study Aim and Research Questions 

As noted above, the literature has described various 
methods for modeling latent heterogeneity (i.e., the 

GMM, the SEM Tree, and the SEM Forest). Most of 
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the published studies used the GMM (e.g., Gottfried 

et al., 2017; Hodis et al., 2011; Muthén, 2008). 
Jacobucci et al. (2017) examined the differences be-

tween finite mixture models and the SEM Tree. None 

of the prior studies compared the performance of the 

GMM and the SEM Forest. Furthermore, little is 
known about the performance of the SEM Tree and 

the SEM Forest in applied education research. This 

study, therefore, sought to compare the performance 
of three methods of modeling latent heterogeneity in 

academic growth; it aims to highlight the similarities 

and differences using illustrative data that assess ac-
ademic achievement among a nationally representa-

tive sample of high school students in the United 

States.  

The following questions were addressed:  

1. Is there significant heterogeneity in the model pa-

rameters when modeling GPA growth? To what ex-

tent do the model parameters estimated by the three 
methods vary? 

2. What is the best class structure when fitting GMM, 

and what is the number of estimated nodes when 
SEM Tree and SEM Forest are used?  

3. What are the most influential covariates that ex-

plain the latent heterogeneity?  

Methods 

Illustrative Data 

A random subsample of nationally representative 
high school students in the United States (N = 9,957) 

was taken from a public-use dataset, HSLS:09. The 

subsample was drawn from only those students who 
responded to the second follow-up phase of data col-

lection (Duprey et al., 2018). This dataset was chosen 

because it assesses academic data for four successive 

years of high school, representing more recent data 
about Millenials’ academic performance. The data set 

also includes several personal and contextual covari-

ates that can affect students’ academic performance 
(Ingels et al., 2011). The selected subsample contains 

complete data sets. A small subsample (i.e., n = 

1,000) was plotted (see Figure 1) to visualize the 
growth in the dataset. The subsample showed diverse 

growth trajectories, with some scores increasing over 

time and others declining over time. The rate of 

change also was not constant.  

 
Figure 1. Trajectories of a random subset of 1000 

students from 9th to 12th grades 

 

Five covariates were examined: gender, ninth-grade 

SES, and three ethnic groups (i.e., White, Black/Af-

rican American, and Hispanic). The sample had 49% 
males (n = 4,770) and 51% females (n = 5,187). Three 

ethnic groups were identified in the selected data: 

Whites (n = 7,536), Hispanic (n = 1,374), and African 
American (n = 1,451). The composite score of ninth-

grade SES was computed using three variables: par-

ents/guardians’ education, family income, and the 

parents’ occupations (Duprey et al., 2018). The mean 
SES of the sample was .12 (SD = .79). 

Data Analysis 

Descriptive statistics were assessed using R (R Core 

Team, 2020). A preliminary inspection of the data 

was conducted (e.g., missing data, normality, and 

outliers). This section reviews the specification of 
three methods (i.e., the GMM, SEM Tree, and SEM 

Forest; see codes in supplementary material).  

Specification of the GMM 

 A two-step approach was adopted to fit the GMM, 

modeling the growth trajectories using Mplus 8 

(Muthén & Muthén, 2017). In Step 1, multiple uncon-
ditional class-invariant variance and covariance mod-

els (GMMs-CIs) with nonlinear growth and an in-

creasing number of classes were fitted to identify the 
best class-structure (Ram & Grimm, 2009). Justifica-

tion for fixing the variance-covariance matrix across 

latent classes came from Alhadabi and Li (2020). 
They analyzed a large sample of HSLS:09 (N = 

12,314) and found that GMM-CI with a freely esti-

mated slope (i.e., capturing the nonlinearity) had the 

best model fit. In Step 2, a conditional model was fit-
ted, identifying the most influential covariates (see 

Figure 2). The current study modified the multiple 
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default options, which were: (1) STARTS = 400, 100, 

(2) LRTSTARTS = 0 0 100 25, and (3) LRTBOOT-
STRAP = 50. These modifications were conducted to 

fix local maxima and improper solutions, consistent 

with Hu et al. (2017). 

 
Figure 2. The conditional GMM 

Several indices were evaluated, which include: (1) 
AIC, BIC, and SABIC from the IC, (2) LMR, VLMR, 

and BLRT from the LRTs, and (3) Entropy. Overall, 

a model with the lowest IC heralds a good fit (Tofighi 
& Enders, 2007). Related to LRTs, a significant p-

value suggests acceptance of the k-profile model and 

a rejection of the k-1 model, where k is the number of 

latent classes. Entropy values of 0.80, 0.60, and 0.40 
indicate high, medium, and poor classification, re-

spectively (Muthén, 2008). Other criteria were con-

sidered, including (1) average posterior probabilities 
(i.e., should be near one and ≥ 0.70; Wang & Wang, 

2012), (2) profile size (i.e., < 5% was dismissed), (3) 

parsimony of the model, and (4) interpretability of es-

timated class-structure (Berlin et al., 2014). 

Specification of the SEM Tree 

The SEM Tree analyzed a GMM following four 
steps: (1) Create the SEM model using the OpenMx 

package in R (Boker et al., 2011; Grimm et al., 2017), 

(2) Run a single tree with no control method using the 

semtree package (Brandmaier, 2015), (3) Create a 
control object, and (4) Rerun the tree. In the first step, 

a latent growth model (i.e., assuming a single class) 

was run. The reason for fitting the latent growth 
model instead of GMM was an error message that 

stops running the tree when fitting GMM directly. 

Jacobucci et al. (2017) used a similar approach when 
fitting finite mixture models, thus lending support to 

the decision made in this study. 

A global constraint was specified in the second step, 

which states that four error variance terms and 
within-class variance-covariance terms were set to be 

equal across the nodes, aligning with the GMM spec-

ification. Then, the tree was run without applying any 

control methods, which maximally explain the differ-
ences in the model parameters (i.e., intercept and 

slope growth factors) conditioning on influential ob-

served covariates. In the third step, three options were 
specified to control the tree depth, including (1) the 

max depth of the tree (i.e., max.depth = 3), (2) speci-

fying score-guided control method to avoid the pit-
falls of ML control method, and (3) controlling for 

multiple comparisons using the Bonferroni method. 

These options aligned with some prior studies (Ar-

nold et al., 2020; Brandmaier et al., 2013; Jacobucci 
et al., 2017). A visual presentation of the tree and the 

growth trajectories for each node were obtained.  

Specification of SEM Forest 

Five steps were followed to specify the SEM Forest, 

including (1) creating the model, (2) running a single 

tree with no control method, (3) creating a control ob-
ject and rerun the tree, (4) creating a control object 

for the SEM Forest, and (5) creating a forest to visu-

alize the covariates’ importance and estimate case 
proximity (Brandmaier, 2015). The specification of 

the first three steps was identical to those used in for 

the SEM Tree as stated above. In the fourth step, four 

options were specified to create a control object, in-
cluding (1) num.trees = 30 (i.e., representing the total 

number of trees in the forest), (2) SEM forest.control 

= fair (i.e., controlling for selection bias of covariates 
and splitting points), and (3) mtry = 2 (i.e., defining 

the number of covariates that are randomly selected 

at each splitting point to estimate variable im-
portance). In the fifth step, SEM Forest was run. 

Next, the variable importance measure was plotted. 

In addition, a case proximity matrix (P) was created, 

and principal component analysis (PCA) was con-
ducted to project the cases across a two-dimensional 

plot and facilitate the interpretation of clusters in the 

proximity matrix.  

Results 

Descriptive statistics and correlations. Table 1 sum-

marizes the descriptive statistics indicating that nor-
mality was fulfilled. The Zero-order Pearson correla-

tion coefficients between the variables were esti-

mated. These coefficients reflected significant asso-
ciations between the studied variables. 
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GMM Results 

The findings of several unconditional GMM-CI mod-

els showed that the three-class, four-class, and five-

class models were candidates to capture the latent 

heterogeneity accurately (see Table 2). The four-class 
and five-class models had the lowest AIC, BIC, and 

SABIC. They also had higher entropy and significant 

LMR-LRT and BLRT. However, the class sizes and 
average posterior probabilities were smaller than the 

optimal range (i.e., < 5% for Class 2 in the four-class 

and five-class GMM), suggesting a deficient classifi-

cation. In addition, several convergence issues ap-
peared despite altering the default setting, as summa-

rized in the methodology. In contrast, the three-class 

model had similar smaller values of AIC, BIC, and 
SABIC. The class average posterior probabilities and 

class sizes were optimal. These results suggest that 

the three-class GMM-CI had the best model fit and 
had the most accurate class enumeration. 

On average, students in Class 1 were low achievers 

in ninth grade (ηI = 2.08, p < .001, n = 1,727) and 

showed non-significant GPA decline over time ((ηS = 
-.05, p = .06). This class was named “Low-achievers” 

(see Figure 3). Students in Class 2 started with mod-

erate academic achievement in ninth grade (ηI = 2.29, 

p < .001, n = 950) but increased their GPA during the 

four years of high school (ηS = .05, p < .01). Thus, 
Class 2 was named “Moderate growing-achievers 

and”. Lastly, students in Class 3 were relatively 

highly achievers with an average intercept (ηI = 3.29, 

p < .001, n = 7,280) and their performance remained 
constant over time (ηS = .003, p = .06). This class was 

named “High-achievers”. Significant variability was 

identified in the intercept (00 = .22, p < .001). How-

ever, the slope variance (11 = .00, p = .21) and co-

variance were not significant (01 = .003, p = .06).  
 

Figure 3. Three-class GMM-CI model. 
 

 

Table 1. Pearson Correlation Coefficients between the Selected Variables (N = 9,957) 

Variables 

1. 9th-

grade 

GPA 

2. 10th-

grade 

GPA 

3. 11th-

grade 

GPA 

4. 12th-

grade 

GPA 

5. Gender 6. Hispanic 7. White 
8. 

Black 

9. 9th-

grade 

SES 

M 2.97 2.94 2.95 3.05 1.52 .14 .76 .15 .17 

SD .78 .78 .76 .74 .50 .34 .43 .35 .79 

S -.60 -.60 -.65 -.84 -.08 2.10 -1.20 2.01 .29 

K -.20 -.16 .06 .60 -1.99 2.41 -.57 2.03 -.21 

1 -         

2 .81*** -        
3 .72*** .79*** -       

4 .65*** .69*** .74*** -      

5 .15*** .16*** .15*** .18*** -     

6 -.15*** -.14*** -.12*** -.11*** .01 -    

7 .07*** .09*** .07*** .10*** -.01 -.01 -   

8 -.21*** -.21*** -.18*** -.19*** .02 -.02** -.52*** -  

9 .35*** -.34*** .33*** .30*** -.02** -.24*** .07*** -.13 - 

Note. *p < .05, **p < .01, ***p < .001.  
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Table 2. GMM_CI Models with Freely Estimated Slopes 

Fit Statistics  Two-class Three-class Four-class Five-class 

A. GMM-CI     

     LL(No. of parameters) -30633.25(14) -30314.25(17) -30129.71(20) a b -30041.76(23)a b 

     AIC 61294.50 60662.49 60299.41 60129.53 

     BIC  61395.39 60784.99 60443.53 60295.26 

     SABIC  61350.90 60730.97 60379.97 60222.17 

     Entropy  .82 .72 .75 .74 

     LMR-LRT(p) 1059.52(.00) 615.72(.00) 356.18(.00) 169.74(.00) 

     BLRT(p) -33182.20(.00) -30633.25(.00) -30314.24(.00) -30129.71(.00) 

Group size (%) C1  9027(91%) 950(10%) 956(10%) 581(6%) 

                          C2 930(9%) 1727(20%) 435(4%) 382(4%) 

                          C3  7280(70%) 7166(72%) 5365(54%) 

                          C4   1400(14%) 2987(30%) 

                          C5    642(6%) 

Note. a small class’s probabilities, b convergence issues (e.g., negative variance, the likelihood has not replicated and local 

maxima)

The finding of a conditional three-class GMM_CI 
(see Table 3) showed that Hispanic, White, and Afri-

can American were negatively associated with the in-

tercept growth factor in three classes. In contrast, 
gender and ninth-grade SES positively correlated 

with latent intercept, implying females and students 

with a higher SES had higher 9th-grade GPA. In com-

parison, only three covariates (i.e., White, African 
American, and SES) had significant associations with 

the latent slope in three classes. White and African 

Americans negatively correlated with latent slope, in-
dicating that the GPA of White and African Ameri-

cans declined over time. However, students with 

higher SES showed positive GPA growth over time. 
The other two covariates (i.e., gender and Hispanic) 

did not significantly correlate with GPA change over 

time, suggesting that students in three classes had a 

similar GPA growth regardless of gender and ethnic-
ity.  

The multinomial logistic regression coefficients re-

flected the likelihood of belonging to a specific latent 
class relative to a normative class, the “High-Achiev-

ers” class. Odds were estimated for the significant co-

efficients (see Table 3.C). The odds of classification 

in “Low-Achievers” class increased by (1) .70 when 
students were male, (2) 1.53 when students were Af-

rican American, and (3) .45 when the students had a 

low SES. Most students in the “Moderate-Growing 
Achievers” class were male, African American, and 

students with low SES.  

 

 

SEM Tree Results 

The SEM Tree found that 9th-grade SES, Black/Af-

rican American, and gender were the most influen-

tial covariates in classifying students based on 

model parameters’ heterogeneity (see Figure 4.a). 

The tree resulted in six splitting points and seven 

nodes. Overall, all nodes had different starting val-

ues, and they had ascended to constant growth over 

time. In other words, no major differences were ob-

tained in the magnitude and the direction of the 

slopes (see Figure 4.b). 

 

Figure 4. Modeling growth using SEM Tree 

Note. Black in [NO] = If No, it means Black; if Yes, it 

means non-Black. SEX in [F]= If No, it means male; if 

Yes, it means female.
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Table 3. Multivariate Standardized Regression and Multinomial Logistic Regression Estimates of Covariates on the 
Latent Growth Factors and Class Membership 

 
Low Achievers Class 

Moderate-growing 
Achievers Class 

High Achievers Class 

 Intercept latent factor 

Gender .19*** .19*** .19*** 
Hispanic  -.11*** -.10*** -.09*** 

White -.08*** -.07*** -.07*** 

African American  -.27*** -.28*** -.22*** 

9th-grade SES .22*** .23*** .26*** 

 Slope latent factor 

Gender -.03 -.03 -.03 

Hispanic -.02 -.02 -.02 
White -.13*** -.12*** -.12*** 

African American -.11*** -.12*** -.09*** 

9th-grade SES .05*** .05*** .06*** 

 Class Membership where High Achievers is a Reference Class. 

 Low Achievers Class Moderate-growing Class 

 Coefficient Odds Coefficient Odds 

Gender -.36*** .70 -.59*** .56 

Hispanic -.17  -.16  
White -.03  .18  

African American  .43* 1.53 .66*** 1.95 

9th-grade SES -.80*** .45 -.86*** .42 
Note. *p < .05, **p < .01, ***p < .001.  

In detail, the 9th-grade SES was the most influential 

covariate, resulting in the first split that classified stu-
dents into low SES (i.e., < .39) and high SES (i.e., ≥ 

.39) groups. Among low SES students, gender and 

Black/African American created the second and third 
split, respectively. These splits resulted in the for-

mation of four nodes/latent classes: (1) Low-Moder-

ately growing GPA, (2) Moderate-slightly growing 
GPA, (3) Average-Moderately growing GPA, and (4) 

Relatively high-slightly growing GPA.  

Students in the first class (i.e., Low-Moderately 

growing GPA; n = 506) were males, Black, and had 
low 9th-grade SES. These students had the most infe-

rior initial status and showed a moderate growth as 

indicated by the highest slope compared with other 
nodes (i.e., ηs = .06). Students in the second node, 

“Moderate-Slightly Growing GPA”, were males, 

non-Black with low SES (n = 2,431). They started 
with moderate initial GPA status at 9th grade and 

demonstrated a slight growth. The third node’s stu-

dents (i.e., Average-Moderately growing GPA; n = 

603) were Black, females, and had low SES. They 
started with an average 9th -grade GPA and showed 

comparable growth with their male peers in the first 

node. In the fourth node (i.e., Relatively High-

Slightly Growing GPA; n = 2,677), students had a 

near 3.0 GPA and demonstrated slight growth over 
time. These students were female, non-black, and 

with low 9th-grade SES.  

In contrast, Black and gender made the second and 
third split among students with high 9th-grade SES 

(i.e., > .39), respectively, which resulted in classify-

ing these students into three nodes: (1) Moderate-
slightly growing GPA, (2) High-constant GPA, and 

(3) High-constant GPA. Students in “Moderate-

slightly growing GPA” node were Black students 

with high SES (n = 345). They had GPAs below 3.0 
and demonstrated a slight growth over time (i.e., ηs = 

.04). The other two nodes started with a high 9th-

grade GPA (i.e., above 3.0) and maintained this 
steady performance across time. One of them con-

sisted of non-Black males with high SES, while the 

students in another node were non-Black females 
with high SES.  

SEM Forest Findings 

The findings of the first SEM Forest measure (VI) 
showed that the 9th-grade SES was the most influen-

tial covariate, as indicated by an average absolute in-

crease of -2LL of 1809.55, reflecting the increase in 
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the misfit when SES was permuted from the data (see 

Figure 5). Gender and Black were the second and 
third informative covariates with a relative increase 

in the misfit of 362.34 and 333.26, respectively. 

These findings substantiate the nodes’ structure esti-

mated by SEM Tree. As suggested by Brandmaier 
and colleagues (2016), a single tree was run to iden-

tify the best split point in the continuous covariate 

(9th-grade SES). The finding showed that a split point 
at .36 was the most significant level of 9th-grade SES. 

Then, the SES was recoded to a dichotomous variable 

(i.e., low and high SES) to facilitate the interpretation 
of the case proximity measure.  

 

Figure 5. SEM Forest’s VI measure. 
 

The second measure, a case proximity matrix (P), 

was created for each pair of the sample (N = 9,975). 

A dissimilarity matrix was created (P -1; Brandmaier 

et al., 2016). Then, a principal component analysis 
(PCA) was conducted using the obtained matrix to 

project the cases across a two-dimensional plot (see 

Figure 6). The findings showed a two-cluster struc-
ture. The principal vertical axis accounted for 39.02% 

of the variance, expressing a range of two levels of 

9th-grade SES:  Low SES (i.e., presented by black 
color) and high SES (i.e., showed by red color). The 

principal horizontal axis explained 35.52% of the 

data’s variance based on gender. The dashed vertical 

line split the data based on gender, resulting in a two-
cluster structure: Male (i.e., left side) and female (i.e., 

right side). The shape illustrates the differences based 

on the being non-black (i.e., clusters of circles in the 
left and right side across the horizontal line) and 

Black (i.e., triangles in the middle area across the hor-

izontal line). 

The case proximity showed the presence of eight sub-
clusters that had unique participants. A latent growth 

model was fitted for each cluster (see Table 4). The 

findings showed that the clusters had unique growth 

trajectories (see Figure 7). Overall, several observa-

tions were noted. Groups with high 9th-grade SES 
had higher initial GPA and demonstrated better 

growth compared to students with low SES. When 

holding SES and gender constant (e.g., male who had 

low SES), the clusters with Black students started 
with lower initial status (ηI = 2.32) com-pared to non-

Black students (ηI = 2.69); however, they had rela-

tively higher growth across time. When fixing the 
SES and ethnicity (e.g., High SES and Black), the 

clusters that contained female stu-dents had higher 

initial status and better growth over time than males. 

 
Figure 6. Case proximity measure. 

Note. The color theme represents two levels of the 9th-

grade SES: low (black) and high SES (Red). Ethnicity was 

presented by different shapes: Black (triangle) and non-

Black (circles). The dashed line split the data based on gen-

der: Male (left side) and females (right side). 

Like the nodes obtained from SEM Tree, these clus-

ters were: (1) Cluster 1 contains Blacks males with 
low SES and was named as a low-moderate growing 

cluster (n = 499), (2) Cluster 2 had males, non-

Blacks, had low SES (n = 2,384) and named as “Av-
erage-slightly growing GPA”, (3) Cluster 3 started 

with average GPA at 9th grade and showed moderate 

growth across time, containing Black females with 
low SES (n = 598), (4) Cluster 4 had a near 3.0 GPA 

at 9th-grade and had an average increase across time, 

comprising non-Black females with low SES (n = 

2,638), (5) Average-moderately growing cluster that 
contains Blacks males with high SES (n = 164), (6) 

High-slightly decreasing cluster (n = 1,723) where 

students were non-Blacks males with high SES, (7) 
High-slightly growing cluster that comprises Blacks 

females with high SES (n = 190), and (8) High-con-

stant growing cluster that contains non-Blacks fe-
males with high SES (n = 1,761). 
 



Latent Heterogeneity in High School Academic Growth Vol. 16 Issue 4, 2022 

 

367 

Table 4. Growth Parameters for the Subgroups Derived from the SEM Forest 

Description 
Low SES High SES 

Male Female Male Female 

 Black 

(n = 499) 

Non-Black 

(n = 2,384) 

Black 

(n = 598) 

Non-Black 

(n = 2,638) 

Black 

(n = 164) 

Non-Black 

(n = 1,723) 

Black 

(n = 190) 

Non-Black 

(n = 1,761) 

Model Parameters         

 Intercept  2.32 2.69 2.57 2.94 2.63 3.17 2.98 3.41 

 Slope .05 .03 .05 .04 .04 -.004 .03 .01 

Figure 7. Growth trajectories for SEM Forest clusters.  
 

Methods Comparison Findings 

Several difficulties were faced to obtain a common 

criterion to compare between the confirmatory GMM 

and the data mining methods because they adopt dif-
ferent approaches in classifying persons. That is, 

GMM tends to form the classes based on estimating 

maximum likelihood (i.e., probabilistic approach) 

that maximizes the heterogeneity between classes in 
terms of growth factors whether covariates are in-

cluded or excluded. In contrast, SEM Tree and SEM 

Forest follow greedy, top-down, recursive partition-
ing procedures that stop splitting the data when no 

important covariate is identified (i.e., all-or-nothing; 

Brandmaier et al., 2013). Five comparison criteria 
were examined: (1) The number of estimated classes, 

(2) The heterogeneity in the model parameters, (3) 

the covariates importance, and (5) Strengths and 

drawbacks, aligning with Jacobucci and colleagues 
(2017).  

In detail, the number of estimated latent classes var-

ied across GMM (i.e., three classes), SEM Tree (i.e., 
seven classes), and SEM Forest (i.e., eight classes). 

Related to heterogeneity in the model parameters, 

clear separation in the latent intercept factor was ob-
served across three classes estimated by GMM. In 

contrast, less breakup and greater homogeneity in the 

intercept were noted across the classes obtained by 

SEM Tree and SEM Forest. GMM produced latent 
classes with more distinct patterns of change across 

time (i.e., latent slope factor), whereas the classes es-

timated by SEM Tree had similar growth trends. In 
between, SEM Forest produced more unique growth 



Journal of Educational and Psychological Studies - Sultan Qaboos University  (page 355-372) Vol. 16 Issue 4, 2022 

 

368 

 

trajectories compared to SEM Tree. These observa-

tions can be attributed to the approach followed by 
these methods in the formation of classes. Meaning, 

GMM tends to form classes based solely on the het-

erogeneity of growth factors, resulting in more clear 

differences in the growth factors across the classes. 
However, data mining algorithms (i.e., SEM Tree and 

SEM Forest) create classes based on the growth fac-

tor heterogeneity conditioning on influential covari-
ates (Brandmaier et al., 2013; Brandmaier et al., 

2016). That is, the data split accounts more for co-

variates’ importance.  

Around covariates importance, the results from three 

methods confirmed that 9th-grade SES was the most 

significant covariate. Related to the second and third 

levels, while GMM found that Black was the second 
most influential covariate, SEM Tree revealed gender 

and Black were interchangeably important as second 

influential covariates. That is, SEM Tree provided a 
more detailed description of the influence of these co-

variates. For example, gender was at second rank in 

terms of importance among students with low SES, 
followed by ethnicity as Black/African American. In 

contrast, Black was the second important covariate 

among students with high SES. SEM Forest aligned 

with SEM Tree by giving more weight to gender as a 
second most crucial covariate, resulting in a more re-

markable misfit when permuted. This finding contra-

dicts GMM findings that identified gender as the 
third important covariate based on the magnitude of 

the regression coefficient. Outweighing the detailed 

description presented by SEM Tree, GMM provided 

two sets of regression coefficients, gauging the influ-
ence of covariates on the intercept and slope growth 

factors separately.  

The three methods had several strengths and draw-
backs, implying the complementary use of these 

methods. That is, GMM requires manual setting of 

the expected number of classes, estimating of multi-
ple fit criteria, and conducting a comparison between 

models with an increasing number of classes when 

fitting unconditional model. Further specification is 

needed after identifying the best class enumeration by 
examining the effect of covariates when fitting con-

ditional GMM. Data mining algorithms, in contrast, 

require no prior specification of the number of classes 
and no input related to the influence of covariates. In 

other words, SEM Tree and Forest automatically 

identified the associations between model parameters 
and covariates.  

However, SEM Tree and Forest had many draw-

backs. First, not all SEM models can be directly fitted 
using these methods. For example, this study found 

that GMM cannot be fitted directly, as indicated by 

obtaining an error message that prevents running the 

tree. Meaning, the tree failed to run the model when 
analyzing a mixture of classes. Second, the findings 

of these algorithms depended on the selected control 

method. That is, various control methods resulted in 
different tree-structure, the magnitude of covariates 

splitting points, and the number of nodes. Little meth-

odological guidance was found related to the specifi-
cation of these methods, suggesting conducting more 

simulation studies investigating the influence of the 

control method would be highly valuable. Third, the 

computation burden of the forest was enormously 
large, mainly when the sample size was large (i.e., N 

> 5,000). The resulted proximity matrix was huge in 

which the device failed to analyze. Correspondingly, 
a smaller number of trees was used to alleviate this 

issue. 

Discussion 

Modeling latent heterogeneity provides a more com-

prehensive examination of latent growth factor vari-

ability when analyzing longitudinal data. As a result, 
several latent classes are created with accurate model 

parameters reflecting distinctive growth trajectories. 

The GMM, a traditional probabilistic approach of 

modeling this heterogeneity, had several well-known 
concerns. Recent development in the literature pre-

sents two new analytic alternatives (i.e., SEM Tree 

and SEM Forest) that merge structural equation mod-
eling and data mining algorithms. Therefore, the cur-

rent study compared the performance of these three 

methods (GMM, SEM Tree, and Forest) in modeling 
the latent heterogeneity using one of the illustrative 

national data set (HSLS:09). 

The unconditional GMM found that the three-class 

structure had the best fit, aligning with previous re-
search findings (Alhadabi & Li, 2020; Muthén, 

2008). The conditional GMM found that five covari-

ates (i.e., gender, Hispanic, White, African Ameri-
can, and ninth-grade SES) had significant effects on 

the intercept growth factor. In contrast, only three 

factors (i.e., White, African American, and ninth-
grade SES) were significantly associated with slope 

growth factor. These findings align with Alhadabi 

and Li (2020) findings, who found more and stronger 

influences of studied covariates on the intercept 
growth factor in their research. Simultaneously, they 



Latent Heterogeneity in High School Academic Growth Vol. 16 Issue 4, 2022 

 

369 

 

revealed limited and weaker effects of covariates on 

slope growth factor.  

In detail, Hispanic, White, and African Americans 

had lower 9th-grade GPA compared to other students 

in three classes, while females and students with a 

higher SES had higher 9th-grade GPA, consistent 
with previous studies (Alhadabi & Li, 2020; Gott-

fried et al., 2017; Hodis et al., 2011; Muthén, 2008). 

Related to slope growth factor, White and African 
Americans showed negative growth (i.e., declining 

slope), whereas students with high SES had a signif-

icant positive increasing rate of change compared to 
other students. These findings substantiate Bowers 

and Sprott (2012) findings, which revealed that stu-

dents with high SES showed greater academic growth 

over time among the high-achievers class. Most stu-
dents in the “Low Achievers” class were male, Afri-

can American, and had a low ninth-grade SES. Simi-

larly, the odds of classification in the “Moderate-
Growing Achievers” class significantly increased 

when students were male, African American, and had 

a low ninth-grade SES. In contrast, most students in 
the “High Achievers” class were female, non-African 

American, and students with high ninth-grade SES. 

The SEM Tree findings revealed that a seven-class 

structure was the most reasonable structure in captur-
ing the heterogeneity in growth factors conditioning 

on the influential covariates, contradicting previous 

studies, which estimated the class structure using 
GMM (Liu & Lu, 2011; Muthén, 2008). Like GMM, 

these significant covariates were 9th-grade SES with 

the best split-point of .39, gender, and Black/African 

American. The estimated classes had similar values 
of initial GPA status and demonstrated similar rising 

to constant growth trajectories. Unlike GMM, less 

clear heterogeneity in the growth factors was ob-
served between classes. Because the formation of 

classes was not made solely on growth factors, but 

rather it was made by conditioning on influential co-
variates, this adds support to the findings of prior 

studies (Jacobucci et al., 2017). Like GMM, the class 

that contains Black males with low SES had the low-

est initial 9th-grade GPA and showed the highest 
growth over time. When fixing the SES level, fe-

males had a higher 9th-grade GPA compared to their 

male peers. Overall, non-Black students had higher 
initial status than Black students. Nevertheless, Black 

students demonstrated a positive and greater rate of 

change across time compared to non-Black. The esti-
mated influences of examined covariates validate the 

findings of prior studies (Hodis et al., 2011; Lee & 

Rojewski, 2013). 

 SEM Forest provided greater support to an eight-

class structure compared with GMM and SEM Tree. 
In a continuum between GMM and SEM Tree, SEM 

Forest showed intermediate heterogeneity between 

classes in the growth factors. Like GMM and SEM 

Tree, SEM Forest found that SES was the most influ-
ential covariate with a slightly different splitting 

point (i.e., SES < .36 and SES ≥ .36), where high SES 

classes had higher 9th-grade GPA and showed rela-
tively smaller to constant slope compared with low 

SES classes. Unlike SEM Tree, SEM Forest placed 

gender second in importance, followed by Black. The 
classes containing females had better average initial 

performance compared to males when fixing SES and 

ethnicity. When holding SES and gender constant, 

the clusters with Black students started with lower in-
itial status than non-Black students; though, they had 

a relatively higher rate of change across high school 

years, extending the findings of Alhadabi and Li 
(2020). 

Implications and Limitations 

This study resulted in constructive conceptual and 
methodological findings. The current study demon-

strated significant variability in academic growth 

among high school students, suggesting that treating 
students as a homogenous group may result in biased 

generalization. Sources of this variability imply the 

inherent effect of circumstantial variables (SES, eth-

nicity, and gender) beyond students’ academic abili-
ties. For instance, despite Black/African American 

males with low SES having the lowest average initial 

status, they showed relatively greater growth across 
high school. This study also highlighted the charac-

teristics of students that were classified in each class, 

providing data-driven recommendations for conduct-
ing targeted interventions to empower students’ aca-

demic performance. These interventions and initia-

tives are not necessarily limited to the student level; 

they can be oriented to school administrators and ed-
ucators. For instance, targeted initiatives are needed 

for students in low-achiever classes, particularly in 

communities and school districts where the majority 
of students have low SES in Black/African American 

communities.   

This study articulated many essential methodological 
differences among the three methods in detecting la-

tent heterogeneity. The GMM resulted in a sparse 

number of classes with good separation in growth 

factors, whereas the SEM Tree and Forest produced 
plentiful classes with nearly similar growth parame-

ters. Second, the SEM Tree and Forest were superior 



Journal of Educational and Psychological Studies - Sultan Qaboos University  (page 355-372) Vol. 16 Issue 4, 2022 

 

370 

 

to GMM in providing a detailed description of the ef-

fects of the covariates at each level of the tree. These 
findings emphasize the importance of the comple-

mentary implementation of the three methods. Mean-

ing the SEM Tree and Forest can be used in a prelim-

inary step to identify the most influential covariates, 
mainly when the data contain a large number of ex-

planatory variables. Subsequently, an unconditional 

and conditional GMM with the most influential co-
variates can be used to model the latent heterogene-

ity.   

In addition, GMM is a confirmatory approach, while 
SEM Tree and Forest are exploratory data-driven al-

gorithms. The dilemma between these confirmatory 

and exploratory analyses is crystal clear in the litera-

ture. There is an obvious preference for developing 
well-articulated hypotheses that should be modeled 

using confirmatory techniques, which hypothetically 

leads to substantial findings with small margins of er-
ror (Schumacker & Lomax, 2016). In practice, re-

searchers conduct simple and complex statistical 

analyses in a more exploratory style, specifically in 
the case of statistical non-significance or poor model 

fit (McArdle & Ritschard, 2014). With the plethora 

of available big data and statistical development, the 

importance of mutually implementing these confirm-
atory and exploratory analyses to answer more pro-

found and diverse research questions is becoming un-

deniable. This study aimed to bridge the divide be-
tween these methods by highlighting the similarities 

and differences in detecting latent heterogeneity.  

This study also has multiple limitations. It investi-

gated a limited number of student-related covariates, 
which does not reflect the abundance of explanatory 

covariates at the family and school levels because the 

public version of HSLS: 09 suppresses many contex-
tual variables and identifiers of schools, resulting in 

the exclusion of the higher level of nested data. The 

current study used a score-guided control method to 
adjust the tree depth. Nevertheless, the tree structure 

may vary considerably based on the selected control 

method (Hayes et al., 2015). This research also used 

a small number of trees (i.e., 30 trees) in the forest to 
manage the computational burden associated with a 

large sample size.   

Based on the findings, the current study has several 
recommendations. First, educational researchers 

should use a multilevel growth mixture model to ex-

amine the effect of contextual covariates on academic 
heterogeneity and account for the hierarchical struc-

ture of the national data. Second, methodological re-

searchers should develop a new automated unsuper-
vised algorithm that merges the strengths of GMM 

and SEM Forest. Further examination of the new al-

gorithm with these three methods is suggested by 

conducting a simulation study that examines different 
experimental conditions. Lastly, based on the present 

study, the authors strongly advocate for performing a 

simulation study investigating the effects of various 
control methods in the performance of the SEM Tree 

and Forest under several design factors. 

Conclusion  

To confirm the differences between the sets of early 

and late-acquired words, the researchers conducted a 

paired In conclusion, detecting the latent heterogene-
ity in longitudinal educational and psychological at-

tributes leads to accurate and unbiased estimates, 

which enrich the literature with precise findings and 
valuable recommendations. Several methods can be 

used to detect this heterogeneity. The current study 

investigated the performance of the traditional esti-

mation method (i.e., ML/EM) and the two data-min-
ing automated estimation methods (i.e., SEM Tree 

and Forest). This study attempted to build bridges be-

tween the confirmatory and exploratory approaches 
by highlighting the similarities and differences.  

The findings found remarkable differences in the per-

formance of the three methods. The scale of positive 

performance was tilted toward GMM, as indicated by 
forming classes with more unique growth trajecto-

ries, and more accurately capturing the latent hetero-

geneity in the growth factors. SEM Tree and Forest, 
in contrast, performed better in tracking the influ-

ences of covariates on the model parameters’ hetero-

geneity, as indicated by providing more accurate 
measures of the covariates importance. The findings 

emphasized that the performance of the three meth-

ods was not totally optimal. In the end, the current 

study recommends the complementary implementa-
tion of these methods to obtain a clear separation be-

tween growth trajectories, as estimated by GMM, and 

the inclusion of the most influential covariates, as 
identified by the SEM Tree and Forest. 
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