Main Article Content

Abstract

This research investigates the effect of engineering design on the development of the engineering habits of mind among eighth grade students in the Sultanate of Oman. The study adopted the semi-experimental research design. The study sample had two experimental groups; the first group (23 students) was enrolled in a special program of engineering design; and the second group was a control group (25 students) which had not participated in any engineering design programs. The quantitative results revealed statistically significant differences at the level of significance (  between the performance of students of the two groups in identifying problem habits, optimization and development, and system thinking in favour of the experimental group in the scale of the habits of the engineering mind. However, there were no statistically significant differences between the performance of the two groups in the habits of visualizing, creativity in problem solving, and adaptation. Analysis of qualitative data reached similar findings. Taken together, these findings suggest a set of recommendations, including the integration of engineering design into science curricula for contribution to the development of engineering habits of mind. Further surveyed studies can be conducted to discover the most common engineering habits of mind among students of all stages in the study.

Keywords

Engineering design engineering habits of mind

Article Details

References

  1. أبو زيد، أماني (2018). فاعلية نموذج دورة التقييم المستمَّر والتدريس والتعلم في العلوم SAIL لتنمية مهارات الاستقصاء العلمي وبعض عادات العقل لدى طلاب المرحلة الإعدادية. المجلة المصرية للتربية العلمية،21(4)، 1-45.
  2. البحراني، وداد (2002). قدرات التفكير الابتكاري لدى تلاميذ التعليم الأساسيَّ والتعليم العام في سلطنة عمان. رسالة ماجستير غير منشورة، كلية التربية، جامعة السلطان قابوس، سلطنة عمان.
  3. البلوشي، سليمان محمد (2019). تعليم وتعلم العلوم والرياضيات في سلطنة عمان: الفرص والتحديات. ورقة مقدمة في مؤتمَّر التمَّيز الثالث في تعليم وتعلم العلوم والرياضيات، جامعة الملك سعود، الرياض، المملكة العربية السعودية، 12-14 مارس.
  4. رزق، فاطمة (2015). استخدام مدخل STEM التكاملي لتعلم العلوم في تنمية مهارات القرن الحادي والعشرين ومهارات اتخاذ القرار لدى طلاب الفرقة الأولى بكلية التربية. دراسات عربية في التربية وعلم النفس: رابطة التربويين العرب،62، 79-128.
  5. صالح، آيات حسن (2016). وحدة مقترحة في ضوء مدخل (العلوم، التكنولوجيا، الهندسة، الرياضيات) وأثرها في تنمية الاتجاه نحوه ومهارات حل المشكلات لتلاميذ المرحلة الابتدائية. المجلة الدولية التربوية المتخصصة، 1، (22)، 1-19.
  6. غانم، تفيدة. (2015). وحدة مقترحة في التكنولوجيا الخضراء قائمة على عملية التصميم التكنولوجي وفاعليتها في تنمية مهارات تصميم النماذج التكنولوجية واتخاذ القرار في مقرر العلوم البيئية لطلاب الصف الثالث الثانوي. المجلة المصرية للتربية العلمية: الجمعية المصرية للتربية العلمية، 18(1)، 1- 54.
  7. المجلس الأعلى للتخطيط (2019). الوثيقة الأولية لرؤية عُمان 2040. مسقط، سلطنة عمان: المؤلف.
  8. مجلس التعليم (2017أ). التقرير السنوي للتعليم في سلطنة عمان. مسقط، سلطنة عمان: المؤلف.
  9. مجلس التعليم (2017ب). فلسفة التعليم في سلطنة عمان. مسقط، سلطنة عمان: المؤلف.
  10. مجلس التعليم (2018). الاستراتيجية الوطنية للتعليم 2040: الملخص التنفيذي. مسقط، سلطنة عمان: المؤلف.
  11. وزارة التربية والتعليم (2018أ). الكتاب السنوي للاحصاءات التربوية. مسقط: وزارة التربية والتعليم.
  12. وزارة التربية والتعليم (2013). الندوة الوطنية للتعليم وكفايات القرن الحادي والعشرين. سلطنة عمان. 22-24 سبتمَّبر.
  13. وزارة التربية والتعليم (2018ب). التقرير الوطني للدراسة الدولية في الرياضيات والعلوم (2015)) الصف الثامن. مسقط: وزارة التربية والتعليم.
  14. ABET. (2007). ABET 2009 Requirements. Retrieved on 20-4-2016 from: http://www.abet.org/Linked%20DocumentsUPDATE/Criteria%20and%20PP/E001%2009-10%20EAC%20Criteria%2012-01-08.pdf
  15. Beyer, B. (2003). Improving student thinking. The Clearning House, 71(5), 262 – 267.
  16. Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in p-12 classrooms. Journal of Engineering Education, 97(3), 369-387.
  17. Costa, L., & Kallick, B. (2000). Discovering & Exploring Habits of Mind. A Developmental Series, Book 1. Alexandria, VA: Association for Supervision and Curriculum Development.
  18. Cunningham, C & Hester, K. (2007). Engineering is Elementary: An Engineering and Technology Curriculum for Children. In Proceedings of the American Society for Engineering Education Annual Conference. Honolulu, HI.
  19. Dym, C., Agogino, A., Eris, O., Frey, D & Leifer, L. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103.
  20. English, L. D., King, D., & Smeed, J. (2017). Advancing integrated STEM learning through engineering design: Sixth-grade students’ design and construction of earthquake resistant buildings. The Journal of Educational Research, 110(3), 255-271.
  21. Fortus, D., Dershimer, Ch., Krajcik, J., Marx, R & Mamlok-Naaman, R. (2004). Design-based Science and Student Learning. Journal of Research in Science Teaching, 41 (10): 1081–1110.
  22. Gero, A & Danio, O. (2016). High-School Course on Engineering Design: Enhancement of Students’ Motivation and Development of Systems Thinking Skills. International Journal of Engineering Education, 32(1A), 100–110.
  23. Haury, D. (2002). Learning science through design. ERIC (ED478715 2002-10-00) Clearinghouse for Science Mathematics and Environmental Education.
  24. Katehi, L., Pearson, G., & Feder, M. (2009). Engineering in K - 12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press.
  25. Lammi, D. (2011). Characterizing high school students' systems thinking in engineering design through the function-behavior-structure (FBS) framework. Utah State University.
  26. Lammi, M. D., & Denson, C. D. (2017). Modeling as an Engineering Habit of Mind and Practice. Advances in Engineering Education, 6, 1-27.
  27. Lancaster, M & Jones, G. (2015). Science Meets Engineering. Science Scope, 38(9), 53-62.
  28. Lewis, T. (2006). Design and inquiry: Base for an accommodation between science and technology education in the curriculum. Journal of Research in Science Teaching, 43(3), 255-281.
  29. Lucas, B & Hanson, J.‪ (2016)‪.‪ Thinking Like an Engineer: using engineering habits of mind and signature pedagogies to redesign engineering education.‪ International Journal Of Engineering Pedagogy, 6(2)‪, 4.‪ ‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬
  30. Lucas, B & Hanson, J. (2014). Thinking like an engineer: using engineering habits of mind to redesign engineering education for global competitiveness. Paper presented at the SEFI Annual Conference: The attractiveness of Engineering.
  31. Marulcu, I (2014). Teaching habitat and animal classification to fourth graders using an engineering-design model. Research in Science & Technological Education, 32(2), 135-161.
  32. Museum of Science of Boston. (2016). Engineering is Elementary. Retrieved on 3rd March 2016. From: https://www.eie.org/
  33. Museum of Science of Boston. (2018). Engineering Everywhere. Retrieved on 16th Jun 2018. From: http://www.eie.org/engineering-everywhere/curriculum-units.
  34. National Academy of Engineering (2004). The engineer of 2020: Visions of engineering in the new century. Washington, DC: The National Academies Press.
  35. National Research Council (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts and Core Idea. Committee on a Conceptual Framework for New K-12 Science Education. Washington, DC: The National Academies Press.
  36. Potter, S. (2014). Teaching biology with engineering practices. Unpublished master thesis. Michigan State University. USA.
  37. Prince, M. (2004). Does active learning work? A review of the research. Journal of Engineering Education, 93(3), 223-231.
  38. Schunn, C. (2008). Engineering educational design. Educational Designer, 1(1), 1-23.
  39. Sneider, C. (2011). A Possible Pathway for High School Science in a STEM World. From: www.ncete.org. Retrieved on: 3/ 4/2015.
  40. Strong, M. G. (2013). Developing elementary math and science process skills through engineering design instruction (Order No. 1537547). Available from Pro Quest Dissertations & Theses Global. (1364887346). Retrieved from: http://ezproxysrv.squ.edu.om:2131/docview/1364887346?accountid=27575
  41. Taylor, H. A., & Hutton, A. (2013). Think3d!: Training spatial thinking fundamental to STEM education. Cognition and Instruction, 31(4), 434-455.
  42. Ward, L., Lyden, S., Fitzallen, N., & León de la Barra, B. (2015). Using engineering activities to engage middle school students in physics and biology. Australasian Journal of Engineering Education, 20(2), 145-156.
  43. Wendell, K. B. (2011). Science through engineering in elementary school: Comparing three enactments of an engineering-design-based curriculum on the science of sound. Tufts University.