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ARSTRACT: Moudel-tracang based approach to intelligen program diegnosis and mmrng emphasses the P thad theswadent’s
degipn degisiong are taced s the studest develops the program Systems based on this model monitor the user’s actions ns he
moves glong the solution path, automaticalls anals zes partal solutions for semantic errors and misconceptions, und olfers
siidimes whenever he deviaes from the correct solution path. In thes sy, the sy stem always checks to see if the student i
(vl bormwiniz o dlesipn parh of an adeal model. Bugss paths are prused as soon ds they are discovered, Through this approach o
autonutie dgrosts and titorme a model-trscmg system can O disgnose vers specific emmors and nmsconceptions, dnd provide
elear advice and explunsion within proper and immedinte context 127 explicitly fuide the user in thig process ol arginizing
different programming coneepts ail statements. snd (31 simplify the engineering of astomatic diasgnosss by, préventing multiple
bugs und errors. Howiever, this approach s very directive and iterventiomst. The user 5 ughly comstreined m the selutions
that can be developed, since he must conform 1o the sk decomposition and coding sequence enforced by model-tracing
systems: This: paper eritically looks ot modeltracing and suggests severil solutivns and goidelines for by passing the

shorlgomings sassocigted with the approach

ntelligent program diagnosis and tutoring systems can

be classified by their primary means of program
analysis, The maost distinctive split 15 between those
syvstems that are unable to analyze partial code segments
as they are provided by the user and must wait until the
entire solution code is compieted before attempimg ans
diagnosis, and those that are capable of analvzing partial
solutions. The former perform Pasr-evenr Diggmosis while
the later perform fn-event Diagnosiv.

Systems using post-evemt diagnosis can be further
divided according to ther methods of isolating and
lecalizing errors imo (1) those using specification based
analysis, such as Proust (Johnson, 1990}, (2) those using
trace-hased analysis, such as PDS6 (Shapiro, 19831, (3)
those using 0 based analysis. such as BIP (Barr, 1976),
and (4) those using model-answer based analysis: such as
Talus (Murray, 1986)

Systems using  in-event diagnosis can be further
divided according to their methods of reasoning about the
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user into those supporting active analysis and those
supporting  passive analvsis. Systems using passive
analysis do not trace the intentions of the user or his
design decisions while being developed and require him
to exphieitly request the automatic diagnosis of his code
segments. These systems localize errors in the user
programs either by looking for surface structural forms
{plans) (Rich, 1986) or by acceunting for differences
between forms and actual code sezments. Generally
speaking, these systems rely onsome sort of pre-stored
requirements for a complete solution. and hence are
normally classified as model-answer based systems,

On the other hand. systems using active analysis
perform automatic dingnosis by implementing model-
tracing (Anderson, 1982), Through this approach, these
systems subdivide tasks into smaller steps that must be
solved one at a time. The user’s design decisions are
traced as he develops the solution. On each step taken by
the user, these systems check to see if the user is
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following a design path known to be correct or buggy.
Bugey paths are pruned as soon as they are detected by
giving the user intelligent feedback and allowing him to
trv-again. Example of such systems include GREATERP
(Anderson, 1990) (also known as Lisp Tutor), GIL
{Reiser, 1992 and DISCOVER (Ramadhan, 1992); These
systems tend to be directive and constrain the user in their
own-developed  solutions.  However, through  rich
interaction and flexible immediate feedback, these
systems detect very specific bugs and misconceptions.

Model-tracing based diagnosis

Model-tracing, used in the Lisp Tutor {Anderson,
1982) and GIL (Reiser, 1992), simply expresses the fact
that the novice user is made 10 follow the system’s model
quite closely. A model-tracing based system analyzes
cach and every step of the user’s solution to determine
whether it 15 on a correct path toward a solution or
mdicates a misconception. In the Lisp Tutor and GIL.. the
user's step is analyzed by comparing 1t with the rules
currently considered by the system, which represent the
ideal user model,

If the step taken by the user is one that can be
produced by executing one of the rules in the ideal user
madel, the rule is applied and the user is considered to be
moving on a correct solution path.  In this case, the
system remains silent in the backaround and permits the
user o continue, Alternatively, il the user’s step cannot
be produced by the ideal model. the system considers its
bugey model, which represents general patterns of erears,
Misconceptions are flagged and diagnosed when the
user’s step is produced by one of the rules of the buggy
model.  Mere the svstem interrupts and offers advice
associated with the buggy rule. In this way, the system
understands each step the user takes 10 build his program.
It 15 this combined use of the ideal and buggy models,
together called the generic model, which is what delines
the model-tracing methodology: the system traces out the
path currently taken by the user through the generic
model and insists that the user stay on a correct path.

In short, the main features of model-tracing hased
diagnosis and tutoring are the following:

« The system constantly menitors partial steps
taken by the user and intervenes whenever he
shows an evidence for a misconception by
deviating from a solution path.

= The interface in these systems triss to climinate
the problem of checking low-level syntax of the
language being learmed (e.g. via the use of
structure editors), and thus reduces the mental
overhead associated with problem-solving.

= The interfuce is highly active in that it responds
o every step (e.g. asingle Lisp symbaol) the user
provides,
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Through this approach to automatic diagnosis and
tutoring, a model-tracing system can (1) diagnose very
specific errors and misconceptions, and provide clear
advice and explanation within proper and immediate
context, {2) explicitly guide the user in the process of
organizing different  programming concepts and
statements, and (3} simplify the engincering of automatic
diagnosis by preventing multiple bugs and errors.

Anderson’s work on model-tracing and immediate
teedback (Anderson, 1990) has strongly argued that these
advantages make it worthwhile 1o incorporate this
approach in the design of intelligent diagnosis and
tutoring systems.  His well documented empirical
evaluations of the effectiveness of model-tracing and
immediate feedback in procedural domain indicate that
users learn procedures more quickly than conventional
tutoring when provided with a model-tracing based
environment, Students can more easily utilize feedback
and cxplanations when the system. the Lisp Tutor,
supports the capability of automatically tracing, analyzing
and reasoning about their partial solution steps that led to
the error. Anderson (19900 has also shown that such a
tutoring strategy can prevent long episodes of counter-
productive floundering by interactively trapping errors
and correcting themn as they show up in their proper
context during the performance of a task, Similar results
have also been reported by Reiser (1992) on his model-
tracing. interactive, graphical Lisp tutoring system GIIL,

Problems with the model-tracing approach

Despite the achievement of the model-tracing based
methodology to intelligent diagnosis, the approach sullers
several drawbacks and shortcomings. First, by restricting
the user 1o a symbol-by-symbaol based top-down coding
order. model-tracing  hinders the opportunity  for
experimentation that might lead to a clearer understanding
of the problem and thereby does not allow the users to
explore and discover new strategies nor does it allow
them to detect and correct their own errors and
misconceptions. The main driving force behind model-
tracing based systems is the detection of deviations from
the ideal user model. These svstems reject any other
correct approach 1o solving a problem if it differs from
the path currently followed by the system (Wenger, 1987:
Mwana, 19917,

Second, the suceess of model-tracing based systems
depends heavily on the extent of their model-tracing
knowledge; this includes the number of correct rules in
the ideal user model and the number of the mal-rules in
the bugay user model (Nwana, [991), For example, the
production system of the Lisp Tutor currently contains
mare than 1,200 rules. more than half of which are mal-
rules. Production systems. despite their many advantages,
impose several computational problems when utilized to
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suppart model-tracing based diagnosis and tutoring,
especially of large problems (Anderson, [99]])

Third, the important programming activity of
debugging is taken away from the user since model-
tracing based systems, in principle, do not permit
floundering (Wenger, 1987. MNwana, [991). As a
conseguence, such systems may weaken the user’s
personal motivation and sense of discovery. To address
these issues, we have designed a prototype system called
DISCOVER {(see  (Ramadhan, 1992) for a detailed
description of the DISCOVER s visual environment). The
system uses a different implementation of model-tracing,
supports an improved engineering of model-tracing based
diagnosis, and provides a slightly more flexible style of
tutorial interaction (e.g. than the Lisp Tutor) while
preserving close ties to the underlying cognitive modeling
of the model-tracing based diagnosis.

An overview of the system DISCOVER

The aim of the DISCOVER system 15 1o teach the
novice programmer how to compose and coordmate
programming concepts and statements to solve given
programming problems under the guidance of the
intelligent programming expert, and thus build effective
problem-solving skill. The user has to build the solution
to the problem presented by properly putting together
programming concepts from the menu, Once a concept is
completed and accepted by the svatax directed editor, 1t
15 passed 1o the diagnosis expert for automatic analysis. In
dome so. DISCOVER attempts to model the steps taken
by the user by evaluating his actions and responses.
DISCOVER analyzes the surface code of the completed
statement (partial solution code) without much specific
knowledge about the problem to be solved or about how
1o design and construct an algorithm (ie. DISCOVER
cannat solve the problem itself).

Much like Talus and Bridge (Bonar, 1992),
DISCOVER relies on a prestored reference solution (the
ideal student model) for a given problem and applies
various heuristics and pattern matching technigues to
mateh the solution cede provided by the noviee with the
reference  solution  in order to spot  errors and
misconceplions, Unlike these systems,  however,
DISCOVER like the Lisp Tutor is capable of interactively
analvzing partial selution code and providing immediate
feedback on both success and failure. By doing that,
DHSCOVER explicitly guides the novice in the process of
putting together programming concepts to solve the given
problem. DISCOVER monitors the novice's actions, not
on a symhol-by-symbol basis like the Lisp Tutor and GIL.
but on a complete statement-by-statement basis. As long
as each statement represents a correct goal on & salution
path, DISCOVER continues guiding the novice towards
the final goal, reasaning about the goals already satisfied

and hinting at the goals that still remain to be satisfied.

Linlike the Lisp Tutorand GIL. however, DISCOVER
{ 1) utilizes goals and plans {not a production system) to
represent the knowledge of its demain expertise, (2) does
not keep an account, at least currently, of comman error
patterns (the bugey model), (3) supports an explicit
planning mechanism during all stages of the problem-
solving process to trace the user’s intentions (e.g. by
selecting the ::nnccpts' from the menu during problem-
solving, the wser non-intrusively tells the system his
intentions and goals), and (4) supparts an ahility to give
delaved Feedback by incréasing the grain size of
automatic  diagnesis 1o a  complete  programming
statement (not just a single symbol or token) and an
ability to do limited backtracking by giving the user some
chance to delete previously entered code and restar,

The programming language ol DISCOVER 15 a
pseudo-cade  based. algorithm-like  language. The
language is kept simple in arder to reduce the number of
abstract programming ideas and concepts, The language
omits advanced concepts such recursion  and
procedures, avoids having too many programming tricks
to be learned, and avoids requiring the learming of low-
level syntax details. Programming concepts supported
currently include create, pur, read in write our. while-
erdwhile, if-istrue-isfalse. The interface, a3 shown in
figure |, appears to the user as a collection of eight
windows, The four windows: on the left side of the
interface, namely the memary spetce, inpuispeace, o
space, and the algorithm space, represent the madel ol the
underlying notional maching,

Despite these positive aspects of DISCOVER. the
svstem has several weaknesses when compared against
other model-tracing based systems (discussed in more
detail in the sections to fnllow). Briefly, the mam
weaknesses of the system include:

. The system has no explicil representation of
knowledge,  DISCOVER utilizes o hand-coded
reference solution to conduct automatic diagnosis,
Ihe reference solution is represented in terms of a
Proust-like goal-and-plan tree. However, these goals
carry no structure and are used for keeping track of
various programming concepts selected by the user
during the problem solving task.

The plans are used as a tool for coding and matching
syntactic lemplates that correspond to the low-level
code objects in DISCOVER s language. hence plans
in this context are language dependent and reflect the
actual implementation and not  the  possible
implementation of the underlying Knowledge of
NOVICCs.

The current representation of the reference solution
limits DISCOVER s ability to handle large programs.
Since DISCOVER must assume a small number of
goals and plans in order to be able to predict what the
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Figure 1. DISCOYER s interface,

novice's current state might be at any given time
during problem-solving process, it can handle only
those programs which achieve a relatively small
number of gouls, To support larger problems would
certamly increase the bushiness of the reference
solution trees, and both the time and effort needed
1o implement.

DISCOVER’s approach to model-tracing

Like the Lisp Tutor and GIL, DISCOVER analvzes
each and every step of the user’s solution to determine
whether 1t 15 on a correct path toward a solution or
mdicates a misconeeption. However, the grain size of
automatic diagnosis m DISCOVER is not confined 10 a
single language token or command, but to a complete
statement and expression. This feature gives the user
some opportunity for self-correction and provides a
larger context for witarial instruction,

o consider a simple example, suppose the user is
expected to compute the average by generating "PUT

L3
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tatalfcount IN average” statement in DISCOVER
language. IMSCOVER will not diagnese individual
parameters and tokens that make up this expression and
will wait until the user submits the completed statement
as his current step by hitting the return key. Even if the
user selects an entirely different concept than  the one
expected by the svstem, for example ‘READ” instead of
‘PUT" in this case, the system will immediately
recognize the bad selection but will not flag an error and
thus gives the user some opportunity for self-correction,

In DISCOVER, the user’s step 15 analyzed by
comparing it with the goals and plans of the reference
solution, and not rules. [f the step taken by the user is
the one that can be matched with one of the plans (¢.g.
with the syntactic templates of plans) that are currently
considered by the system. the plan is applied (e.g. the
plan’s template 1s matched with the code object in the
user's statement) and the user is considered o be
moving on a correct solution path, In this case, the
system permits him to continue. Alternatively, il the
user’s step cannot be matched with any of the plans
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currently considered by the system, the system
interrupts and offers-a feedback message that attempts
o explain the misconception in relation to s current
context,

In short, DISCOVER relies on its explicit planning
mechanism (discussed in the next section) to trace the
user’s planning and design decisions during problem-
solving:  As each complete statement in the user's
program is entered, DISCOVER checks to see if the
user 15 following a correct design path. Incorrect paths
are pruned as soon as they are detected and the user 15
allowed to try agaim. [T the user cannot determine how
to proceed, DISCOVER can assist him and if necessary
can provide the next correct slep,

An improved version of model-tracing

Several altermative design  principles can  be
proposed to tackle some of the pitfalls associated with
the madel-tracing approach, as it is implemented in the
Lisp Tutor and GIL.. However, before stating these
principles. two issucs are worth noting here. First, a
number of empirical studies have shown that novices
normally tend o follow a top-down approach when
learning 1o program and debug, and quite infrequently
tackle their prablems vsing a bottome-up approach, even
when 1t 15 supported by the system.

It 15 warthwhile to clanily the use of the term “top-
down™ in this paper, since it has another usage in the
For the purpose of this
rescarch, the term top-down” simply expresses the fact
that novice programmers tend o use 8 depth-Tirst
approach when trying to comprehend the hehavior of
their programs and when trying to solve programming
probilems, During the comprehension process, novices
tend 1o read the program statements in their physical
order to gain understanding of parts of the program
{Manja, [988). Novices start with the first statement in
the program and move all the way down to the last

programming - lieratore.

stiatement in the program, emphasizing the physical
order in which these statements are written. In other
words, novices tend to read the program from the
beginning to end like a piece of prose. This is in
marked contrast to the expert programmers who tend 1o
read the program in the erder it would be executed. thus
emphasizing the dvnamic order in which the statements
are executed |

Dhirmg problem-solving, novices tend to write their
PrasErams .l,'hllﬁ:rnu.:ul-h:-,v:i[{!ltcm-:n[, MEovIng on to the next
statement only when the current statement is completed.
Even at the statement level, novices tend to complete the
statement in a lefi-to-right order. e moving in a
torward reasoning direction (Reiser, 1992) In shor, the
term “top-town® implies here that novices tend to write
their programs in a depth-first, lefi-to-right. forward
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reasoning direction. In a way, this corresponds to the
procedural and textual decomposition of the program,
and NOT 10 the stepwise refinement model used by the
expert programmers and  software engineers  for
decomposing a task from high-level specifications into
more elementary levels,

The second issue concerning model-tracing is that
the ideal svstent needs to carefully monitor interaction
with the user, When desigming intelligent programming
systems for novices, the emphasis should not be given
only to the final product (a complete program) but also
1o the very process of programming itself through which
the user has to go to come up with the Onal solution.
This requires the system (o suppoert a model-tracing
based approach to diagnosis.

The issue being tackled here is not whether model-
tracmg and immediate leedback provide a useflul
diagnosis methodology nor whether a top-down strategy
15 appropriate for novices nor even whether in-event
debugging svstems are better than post-event syslems,
The issue is how we can improve the model-tracing
approach, as it is implemented in the Lisp Tutor and
GlL, while preserving close ties 1o the underlyving
cognitive madeling on which it is based,

One approach  would be to suppoert the following
features and capabilites:

I Inereasing the grain size of automatic analysis and
tutoring to handle a complete expression and
statement, rather than a single token, and thus
delaying the feedback until the whole statement i3
submitted. This will give the user some fexability
for self-correction of errors.  [his approach will also
provide the system o larger context for automatie
diagnosis.  This larger context in turn will enahble
the system to support a more flexible mode of
tuterial interaction.

Supporting an explicit planning (though low level}
mechanism through which the information about the
user's planming and design actions are provided 1o
the svstem naturally and voluntarily using a menu
during all stages of the problem-solving process and
not only in response to the Lisp Tutor like
mterventionist dialogue. which occurs-at the last
stage of the diggnosis process (e.g. when the system

[

fails to determine the user’s planning decisions).
This will not only provide the vser with an
opportunity o decompose the problem inte smaller
steps but will also simplify the computational cost
imvalved in the automatic diagnosis process ( Bonar,
19927,

1. Representing the ideal model using some other
knowledge representation Formalism that is more
practical in terms of implementation and less
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expensive in terms of cost associated with time and
space than the production system currently used in
the Lisp Tutor and GIL.

EXPLICIT PLANNING MECHANISM: To model the
prablem-solving  process, DISCOVER utilizes -an
explicit planning mechanism. Through this mechanism,
DISCOVER, like Bridge and GIL, explicitly requires
the novice user to select programming concepts from a
menu, These selections externalize and represent the
user’s design actions. In this way, the information about
the user’s overall planning decisions is provided to the
swstemn by the user naturally while solving a problem.
[n other words, the information about the user’s goals
(eie. programming concepts to be selected in this case)
needed to monitor his progress on a solution path is
provided nomintrusively as an integrated part of
problem-solving.

The novice is presented with a menu of
programming concepts that represent high-level goals.
The novice solves the problem by selecting these
concepts and putting them together in their proper
positions, Selecting a REALY IN concept, for example,
mdicates to the system that the noviee™s current goal is
probably to get a value or an input from the user,
Through this mechanism, the svstem always gets the
information needed 1o trace the novice’s actions in
building the program.

This approach greatly simplifies the problems
associated with the suomatic dingnosis of the selution.
The does not need to establish pgoals
(programming concepts) because the novice spells them
out for i, Thus, the time spent by the system in
disgnosing the errors could be certainly reduced, since
the uncertainty in what path the novice would take is
greatly minimized. The system compares the concept
selected by the noviee, which represents his current
goal, with the one expected by the system (considered in
the reference solution) and generates feedback without
relving on a bug catalog.

This mechanisim, however, docs notl eliminate the
plan-recognition problem.  The representation of
HSCOVER s reference solution resembles the goal-
and-plan tree of Spohrer (Spohrer, 1985). For each
goal. there are a number of plans that may be applied to
implement and satisfy that goal. Although the novice
tells the system what goal he wants to pursue (e, what
concept he wants to seleet), the system still needs to
recognize the plans (i.e. code ohiects) used by the
novice to properly implement the selected goal:

SVELCM

PLAN-BASED MODEL-TRACHNG: A frequently  used
strategy in representing domain knowledge is to use a
set of problem solving rules
description of a particular problem situation and a step

Each rule contains a

Led

o take in that situation, basically an action-oriented
approach (Clancy, 1987). A combination of these rules
make up what is known to be the production system. A
production system based system {races a user’s selution
by matching each partial step provided by the user
against the conditions of the rules in its problem solving
model. GIL and Lisp Tuter are the classic examples of
programming tutoring systems that follow this
approach.

Froduction systems. despite their advantages, are
not the most efficient way (eg. in terms of
computational costs associated with time and space 1o
implement model-tracing (discussed in the next section),
These systems have to consider very large number of
rules at any peint during diagnosis process to be able to
trace all possible next steps that the novice might
follow. Moreover, to cope with the probléem of
nondeterminism, these systems have 1o be uscd
nondeterministically (i.e. more than one rule active at
once) w be able to trace multiple paths before
disambiguating information is encountered (Anderson.
1994,

The inability of these production systems 1o easily
handle a larger grain size of modeling, for example a
complete programming expression or statement (see
next section), while supporting model-tracing. greatly
contributes to their weaknesses, Theoretically, there is
no reason why a production system cannot handle larger
grain sizes of modeling. In practice though. this would
require large increase in the number of rules, as will be
shown shortly. In fact, it 1s for this reason that the
systems based on such representation forces a particular
interpretation of the novice’s behavior on the novice
(e.g. single-symbol based tutoring), rather than waiting
until the novice generates enough of the solution step
{c.z, complete statement), which in turn will enable the
system to establish an adequate context for dealing with
ambiguity. Therefore, to increase the gramn size of
tutoring. a modeldracing svstem needs o deparnt
somehow from using production svstems as its driving
force during the process of automatic diagnosis and
tutoring,

Implementing a production system also has high
computational cost both in terms of space and time.
Problems tend to become more costly as they become
larger even if they involve the same underlying
knowledge. This is because the working memory of the
production system tends to increase, as does the
nondeterminism. In terms of time, a production based
tutoring system becomes very slow when trying to
simulate the user dyvnamically and interactively in arder
to trace and guide him,

Running the production system through an off-line
compiler would solve the computational cost associated
with time, but would increase the computational cost
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Figure 2. An example of DISCOVER'S reference solution.

associated with space. Because when the system 1s run
ahead af time to produce the trace tree, it is necessary o
follow every branch at an or-node so that later the
svstem can trace the user down any possible branch.
This requires exhaustively searching the trace tree for
possible alternatives in the user solution, and also results
in very large structures needed to store the trace tree.
Additionally, 1t 15 also an onerous task to develop
complete production systems that also include a good
set of huggy rules to model possible misconceptions and
errors (Nwana, 194917,

DISCOVER uses a different  approsch
implementing a model-tracing based wtoring. Instead
of developing a complete production system with all the
necessary mal-rules in it. DISCOVER uses a reference
solution to trace all the possible solution paths needed to
guide the diagnosis process. Currently. the system has
no knowledge of what bugs and misconceptions are
likely to occur in the novice program. The system relies
on its explicit planning mechanism to trace the user’s
high-level goals and utilizes pattern matching and
heuristics to lrace the user’s plan-oriented actions.
Through this approach, DISCOVER detects and
diagnoses very specific bugs when they arise in their

Lad
h

immediate and proper context. Figure 2 shows an
example of a reference solution for a simple problem,
which creates cells ‘'num2” and “mynum’, stores the
number 5 in cell ‘'mynum’, and stores the result of
multiplying the content of cell "mynum’ by 7 in cell
‘num’.

As shown, the reference solution is represented in
terms of a Proust-like goal-and-plan tree, except that it
includes explicit relationships to constrain user steps on
a solution path, and thus allows DISCOVER to preserve
strong ties with the model-tracing paradigm. In
addition, plans in the reference tree also have provision
for associating a feedback message with user behavior,
Cioals represent different programming concepts which
the novice needs to have in his solution and the plans
represent the correct implementation ot goals. Thus
plans are used to indicate the textual structure that the
user code must have and the goal-subgoal structure of
the code. Note how variability as well as constraints
over the user solution are represented using ANDYOR
clauses. It is this representation coupled with pattern
matching which makes DISCOVER capable of
supporting more variability (e.g. than the Lisp Tutor and
GIL) and larger grain sizes of modeling,
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RULES Vs, PLANS: It is not easy for a rule-based system
to allow the type of wvariability supported by
DISCOVER. while at the same time handle active
diagnosis and tutoring.  The following discussion
illustrates this point. Consider the following function
call in the case of the Lisp Tutor { + fodr listl) fedy
fist2)). Since the ordering of arguments to the function
+ is nol important, the system allows the user to code
the two arguments in either order. Thus, when the goal
is set to code the first argument, there are two candidate
productions, each of which codes cafr. When the user
types cdr, the context is not large enough to make it
possible for the system to determine which aroument the
wser 15 coding. This ambiguity could be resolved only
in the next cvele when the next symbol is (vped,
However, to postpone resolution for a evele, it would be
necessary for the production system to follow both
passible branches. That requires matching the user’s
nexl step to the subgoal of ¢ach production, and thus
mereasing the amount of pattern matching required.

Moreover. even this simple variability that concerns
the typing of the arguments in any order, as long as the
ordering s unimportant, becomes very costly when the
number of arguments grows larger than two. Currently,
the Lisp Tutor easily handles different unimportant
orderings of arguments as long as the number of
arguments 1s not greater than two. This requires enly
two productions to keep track of the two arguments, one
cheeks for the *list]®, in our simple example. and the
other for the “list2”. When the number of arguments is
3. for example, the number of different orderings
becomes 4! (24 orderings).  This implies that the
production system either has to have four productions,
each with 4 matching eomponents, or 24 differemt
praductions. [n both cases, 24 different matchings are
required. In addition, these productions have o follow
al least 4 branches at the same time to he able 1o resalve
the ambiguity. this in turn inereases the computational
cost ivalved.

Had we decided to represent DISCOVER's
knowledge using a rule-based approach, the same
problems would have made the attempt 1o handle larger
gram sizes of modeling very dilficult to implement. In
the case of DISCOVER, only 4 plans are required fo
cheek  the unimportant  ordering of 4 different
arguments.  For cxample, consider the following
statement PUT fngmnd *4) + (num2®3) + (num3*7) +
fnaemS 85 IN sewnum.  Since the entire statement is
submitted at once. the first plan verifies the existence of
the argument (rune! *4) in the statement, regardless of
its order.  This is done by making sure that the pattern
fimm [ *4) does exist in the statement. The second plan
verifies the existence of the pattern (rum2*3), and so
on. Since these patterns are hand coded in the reference
solution, only one matching operation is required per
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plan. For example, the following plan (expressed in
POP-11 programming language)

MEMBER(™ (num3*7)", statement) would he
enough to make sure that user has indeed included this
argument in his statement, This would have been
impossible had DISCOVER allowed the user 1o only
enter one single symbol or token at a ime. Of course,
the production system could incorporate this approach
in its implementation (e.g. requires expected pattemns to
be hand coded in its rules 1o reduce the amount of
matching compenents). But then, this would make the
system become more or less DISCOVER-like, hand
coded reference solution, which in turn would make the
system lose its-ability to svnthesize the solution and
stmulate the user,

IMMEDIACY oF FEEDBACK: To develop the novice's
programming skill, a program diagnosis svstem must be
able to trace the novice s actions and determine when he
diverges from a correct solution path so that it can offer
suggestions or criticism on individual steps, rather being
limited to advice on complete solution step. By
following the novice's actions while trying 1w put
programming concepls together, the svstem can respond
to the underlying misconceptions that motivated the
behavior rather being restricted 1o comments concerning
the surface form of the whole solution.  This requires,
besides model-tracing, support for immediate feedback
on both failure and success (see (Anderson, 19905 for a
more detatled discussion on this principle),

THE NEED FOR FLEXIBLE INTERACTION: The principal
features of the Lisp Tutor’s interaction style can be
summarized as follows:

* The system insists that the novice stay on a
correct selution path and immediately flags
errors. The system reacts to every symbol the
novice types and provides immediate feedback
as s00n . as the novice deviates from the solution
path,

=  The system does not allow the novice to
backtrack and delete previously entered code.

= The system uses a menu-based dinlogue to track
planning decisions and behaviors when it fails
Lo trace them nonintrusively.

»  The system forces the novice to enter the code
in a left-to-right, top-down manner. This
implies that the next picce of code or the next
step on a solution path is decided by the system
and not by the novice. Oceasionally though, the
user is given some freedom in dealing with
arguments whose ordering is not important, or
even with functions which have the same
underlying functionality, such as cons, append
and fist,
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While each of these [features has pedagogical
justification and ¢lose ties to the underlying cognitive
modeling, there is no reason why some of these features,
especially the first two, cannot be improved to support
a more Mexible style of totorial interaction while
preserving a close relationship 1o the model-tracing
approach. Some amount of self-detection and correction
of errors may lead to a clearer understanding of the
problem and a better explanation of the programming
process by the novice and certainly is something that
users using the Lisp Tutor have said they wanted.
Providing immediate feedback vpon every single Lisp
svimbol is also extremely undesirable and restricting in
situations  where not enpugh  context  has. been
established Tor the noviee 1o understand why his
solution is wrong,

DISCOVER'S  INTERACTION SiyYLE: DISCOVER
supports a more flexible style of tutorial interaction that
is based on improving the first two features of the Lisp
Tutor's interaction style mentioned above, This is
achieved by increasmg the grain size of automatic
tutoring and by providing novices with  some
opportunity for selt-correction of errors. The principal
features of MSCOVER's interaction style can be
summarized as follows:

« The system reacts (o every complete
procramming statement and expression, not 1o
g single symbol. and provides immediale
feedback as soon as the novice wanders of the
correct solution path

» The system supporis limited backiracking by
allowing novices w delete previously entered
code (cop. parts of the statement currently being
completed),

«  The svstem supports an explicit planning
mechanism to trace the mntentions and high-
level goals of the novices, Novices externalize
their planning decisions by choosing from a
menu ol programming concepts rather than
thringh 4 dialogue.

= The system requires the novice to enter the code
in a top-down manner

By increasing the grain size of tutoring to a complete
statement and expression, DISCOVER provides novices
some opportunity for self-correction and also a larger
context for mstruction. Since the grain size of wtoring
is confined toa single symbaol, the Lisp Tutor finds it
difticult 1o explain why a novice's action is wrong at the
pomt which the misconception 1s first manitested
because there 15 not enough context.

o consider an example. compare a noviee who
provides “(append (list x)y)" where ‘cons x yJ is better.
[t would become easier to explain the choice after the

complete statement has been provided rather than after
‘{append’ has been entered, In the case of DISCOVER,
this problem does not arise. If the novice provides, for
example, 'READ 5 IN num’ where *PUT 3 IN num’ is
more appropriate, the svstem explains the choice alter
the complete statement has been typed in rather than
inmediately after "READ has been selected.

This allows DISCOVER to generate more appropriate
explanations and advice that can derive mapping,
generalization and coordination that exist berween
similar programming concepts. For example, in the case
of *"READ instead of "PUT", DISCOVER inlTorms the
novice that it would be better in normal cases where
getling an input from the user is not required to use the
PUTY concept for assigning values 1o cells. This
explanation would not become possible to generate if
DISCOVER could not wait to see whether the novice
mdeed wanted to read 5 and not some other values in
cell "num’.

[HMSCOVER also supports limited backtracking by
allowing  novices to delete  previously  entered
parameters and operators of the statement currently
being completed.  Unfortunately, a1t presenmt the
backtracking is confined to the current statement only,
The novice can also cancel the selection of 4 concept
and select a new one that represents best his next goal.
For example. if the novice selects the *"READ” concept
where "WHILE® is expected and realizes after
completing the selected concept, but before submitting
it, that he made an error, he can backspace over the
statement,  The system would ighore the selection
without considering it a deviation from a solution path.
This gives the novice some opportunity for self-
correction. In lact, there are cases in which the novice
may be confused about what goals and plans are
appropriate in the current situation and would realize
only if he s given a little more time 1o self-correct. This
is not possible with the classieal version of the Lisp
Tutor, Besides supporting larger grain size of tuloring
and backtracking, DISCOVER alse gives immediate
feedback on success.

Conclusion

An mtelligent program diagnosis system using
madel-tracing based approach can (1) diagnose very
specific errors and misconceptions, and provide clear
atdvice and explanation within proper and immediate
contex!, (2) explicitly suide the user in the process of
organizing  different  programming  concepts  and
statements. and (3) simplify the engineering of
automatic diagnosis by preventing multiple bugs and
errors. However, this approach tends to be very directive
and interventionist. The user is highly constrained in the
solutions that can be developed, sinee he must conform
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to the task decomposition and coding sequence enforced
by model-tracing systems. To bypass the pitfalls
associated with traditional model-tracing approach as it
was implemented in Lisp Tutor and GIL, model-tracing
systems need to support the following features and
capabilities:

I, Inereasing the grain size of automatic analysis and
tutoring to handle a complete expression and
statement, rather than a single token, and thus
delaving the teedback until the whaole statement is
submitted. This will give the user some flexibility
for self-correction of errors. This approach will also
provide the svstem a larger context for automatic
diagnosis, This larger context in turn will enable
the system to support a more flexible mede of
tutorial interaction,

2. Supporting an explicit planning (though low level)
mechanism through which the infermation about the
user’s planning and design actions are provided to
the system naturally and voluntarily using a menu
during all stages of the problem-solving process and
not only in response o the Lisp Tutor like
imterventionist dialogue, which occurs at the last
stage of the diagnosis process (e.g. when the system
fails to determine the user’s planning decisions).
This will not only provide the user with an
opportumty to decompose the problem into smaller
steps but will also simplify the computational cost
involved in the automatic diagnosis process { Bonar,
1993},

3. Representing the ideal model using some other

knowledge representation formalism that is more:

practical in terms of implementation and less
expensive in terms of cost associated with time and
space than the production svstem currently used in
the Lisp Tutor and GIL.,
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