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ABSTRACT: A fourth-otdér approsimation to the fundamental matnx of a svsiem of incar diflerenbal equations i presented 1n
Clesed Torme as oty exporental - The matny exponential is then discreteeed over the mierval ol mlegration Pade approximation
rogethier with the method of scaling and squanng {Moler ef ol 1978) 15 used 1o evaliate the matny expemnentinl 1 hes approach iy
suntable for solving both ential and boundare value problems sath mived boundary conditiens The approximating matos cun s
P (s s ndep et operatod of methiosds whieh require. information about the sobation along the diseretieed subintervils. A

exmple of & boundary valye problem with muxed bowndary conditions s presented

he problem bemg considered 15 governed by the
lallowing set of hnear differennal equations

y'(x) — Afeivixl,  xe|a b (1)
where y is:a vector-valuced fungtion with # components, A 15
an n x n coefficients matnx The mouvatien to study
problem (1) comes from the fact that it mcludes various
practical problems, including these ansing m optmal
control theory. The problem of obtaiming a closed-form
analytical represcntation of the fundamental matnx, has
been extensively studied with hmited success: However. if
A 15 commutative then the fundamental matnx can be
written 1 closed-form as a matnx exponential function,
{Zhu et al 1992) Shridharan er of (1995) developed the
existence-umguencss as well as constructive theory for the
solution of svstems of nonlinear boundary value problems
when only approxmmations of the fundamental matnx of the
associgted homogencous hnear differential systems are
known Roberts (1979} reported a method that directly uscs
the fundamental matnx to solve two-pomt boundary value
problems with mipheit boundan conditions. That method 1s
hased on the Alspauph-Kagiwada-Kalaba method (Alspaugh
et al 1970) of mvanant imbedding, where the fundamental
matris and its partitions are related to the Riccat equation
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The soluuon of equation [ 1) 15 grven by
viv) @y alyfal

where @(x @/ 15 the fundamental matnx. sausfying Pfa. af

I and /15 the 7 x midentity matrix. One way of evaluating
®rx, a) 15 by finding successive approximations to the
solution 1 the form of the nfinite senes, (Coddington et al,
1955}

O (x.a)=1+["Als,)ds,~ ] “Alx,) f CA(s )y, ds,

i ;-_:;1 E"'I-';-.J (‘_! “-['} (Ti-"ﬂ-‘r':}fiﬁ':d&'ld.‘iﬂ 4

However, this requires the evaluation of multiple integrals
of mcreasing complexaty i accurate answers are Lo be found
Asfar er al ( 1989a) suggested the division of the interval |a,
b] nto a number of subimtervals [x, x, Lj 0 f . fL-
1. wherex, = a and ¥ B The matnx Afx) 1s then
approximated by a constant matrex A over each submterval
[x, x| and expl(x - x ) A ) was used to approximale D,
x ) in that subinterval [n that approach exp{{x -x ) A J1sa
first-order approximation to @x, a). and was used
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successfully by Asfar er af (1989b) and by Hussein (19947,
In this work, higher order approximations to the matrix
exponential are presented.

The lundamental matnix $ix, a) satisfics the cquation
©'(x. a) = Af)Dfx, a), (2)
so that expanding ®(x, ) about x — a in powers of x - @ and
substituting in cqualion (2) gives

PO (x. a) = E ':ifla—}f PYa, a) (3)

=0

where @Y{a. a) 15 the jth derivative of @(x_ ) with respect
1o v, evaluated at x = o Dilferentating cquation {2)
repeatedly give the matrices @ a, a) as follows
$lag.ay=1

Pia,a)=4,

Qe al=A7+ 4,

Paay=A' + A4, +24,/4.+4."

and so on, where A, = Afa), A, = A, (a), A, = A"(a),

cle

Substituting the above values of @ and their derivatives in
cquation (3 and grouping equal powers af x - @, pives

(x -« ¥

©(x.a) =expl(x —ajd, ) {xj-?} Aq+ [A”A,;

3!
(x-a) . 2
TJ[AnAn +24,4

A AL+ 3AA A A A T

A

v 24,4, <A ]+ oy

(4)

In equation (4), the expression exp{(x - a)4,) 15 a first-order
approsaimation Lo @x, a), Higher order approximations to
the solution can be obtained, using the approximation

Yix a) = e.\-p[ :Z e A(e = I_J] (5)
F=]

for @(x, a) where t =x - a and r = 2, Expanding A(a + )
mn powers of f, substituting in equation (3) and grouping
equal powers ol I, give

r

Pix. a) =exp{ Z HI_%AI;I}] .o =Z 3 B (B)
T =
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Expanding the exponential function in equation (6}, and
grouping equal powers of 1, give

21 L
Wix,a)=exp((x- aju,A;) +—2:‘|l (r-a) 4,

x-ay . g )
! 31) [Bugu (A A, +AA ) 304, ]+

Wu, =/ and 4 = %, then the diffcrence & (x, a) between
Qix, a)and Pix, a) is

Elx,a) = O(x.a) - Fx.a)
(x-a) ., bl i
- T} Aoy ~ A3 +6( = 1)y

cOf(x - a)y .
With #, = | and w, = '%, the parameters .« 5, B, and B
satisfv the following cquations

o i, =1
I:"'IE‘: +D-":ﬂ':_|/£'--

(7)
(8)
The equations (7) and (8) can be used to generaic a
second-order family of approximations to ®(x, &) with two
free parameters, say . and [}, In order to keep the number
of matrix A(x) evaluations to a mimmum, (bv evaluating
Alx) only on the discretized points) the values of the free

parameters are takento be o, =42, [, =, sothat o =
and [i;= 1. Thus

Pix, @) - exp((x - a){A(a) | Ax)}2) ©)
and
-f{.r,a)Jx]'—fm (@) Afa)-Afa)A (@)-4 ()]
~O((x - a)).
(10)

Also one can take &, = (), so that ¢, = 1 and i, = 4 and
(@ +x
)
2

& (x,a)= “"i—f (4 (@A) A" (@)]O((x - a)')

Yix a) = e:cp[ (x —a)A( (11)

with

(12)
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The ¥ix, &) matrix given i equations (%) and (11)1s a
second-order approximation to the fundamental matrix $(x,
), with the error & (x. a) given by equations (10) and (12),
respectively

Fourth-order approximation

Taking r = 3 in equation (5) gives,

&(s,0) (xl—,j” (4 (@) A() - A(@)4 @)

=

F2(1 - 3u)d (@)= O ((x - a)')

where u, = | and u, = . Thus increasing the valuec of # in
equation (5) does not merease the order of approximation
However we could use the approximation

Qfx, a) = explr B, + £ B,), where 1

k| 3

B = Z adla+Bo, B, = } y,Aa +8/)

x-da,

Expanding A in powers of L and grouping equal powers,
gIves

efx - aldy,

Flx,a)=®(x.a)-Qixa)= o aply ¢

(- 2040 - 201, ¢ M

x-a)

[(1 - 3ud, +12 -3ugu,

3
~6(y,d, + ¥, O Ay A,
U= 3ugu, - 60y, 8, + 1,0, A4,
- 6uy(, + Y5 Ag)
A
- D—f-[. }:= 41:5H| 120,0¢, + ¥,

- 12u, (y,0, + ¥,0, ) AZA,

(3 = duju, - 120y, +v,) - 120y,
i 53]':'1'1:;'4;

f(1 - dudy - 1210y, vy

LU (4, 1) Ag
+12-12u, (Y, 6, +¥50,)—12u,(y 5, +Y,

dusu A, A A,
+ 11— Gugu, - 12{‘1’]5; + TZE!:}}AQATJ
43 - G, - 120y,87 + v,09) 4y 4,
13 - 120 - 240y, 8,8, + ¥,8,8,)1 4
+ O ((x -a)’)

Il
1 1 1

:]_ =— = —, U= —_ {13}

u=1 8 > i "ok
1 =3 |

'y "'Tz_"ﬂ-"l'r15[ +?1632E1Y162+Y2612E' (14)

¥ 3 1 2 y =1
Y19 T"I"za?»:ﬁ' 19 +Y254=E~
T]E]61+Y263E4:G' |:15:|

then #F(x, a) = O{(x - @)*). The parameter values given in
equations (14) and (15) result in the following relations
2%, +1 12y, -1

X —_— = 15-qr a"ﬁ — — — ﬁ
2%y : 24y,

I 3

The conditions given i cquation {13) give the following
system of four non-lincar algebraic equations, in terms of
the parameters ¢, O, ¢, [3;, B,, and P,

In order to keep the number of the coefficient matrix A
evaluations to a nunmmum, the following values are taken for

Bi-.- [‘311 i}.i and ‘?]

1
E’|=D1 ﬁ3='£1 ﬁj'L ¥,

and the other parameters are

5, =0, 86,=1, 8,=1, 8,=0,

S V. SV SV

Y S - b
Henece
Qx, @) =expl(x-a) B, +(x-a) B.) (163
where

B, = lﬁ[ﬂ(a) A4S - A,

B, = %{A (x)4(@) - A@AW)],

and
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x-da) . -1 1 b
F(x,a) ( 5!} [EAEEJUZ*EH;H“-A‘A;

A A A A 2N A A

] P2 y 2P o f ] §

+E!A-:IADAH ~Ag Ay A Ay 24,44,
Agdy Ao+ O((x -a))

which shows that Q(x, a) s a fourth-order approximation to
@(x, o), In approximating the fundamental matnx ®{x. a)
over the interval |ah], we discretize the second-order
approximation Wix, ¢} or the fourth-order approximation
Q(x.a) over [ subintervals [z, x|, [x.%] ., lxo.0x0]
wherex, =a.x, =bandx_ =x+h,, =012, . ., 1-
/). The approximating malrix is then given, over cach
subinterval, in closed Form,

Computation of the matrix exponential

The matnx exponential cxp(h0)) can be approximated
by many methods. but the method of scaling and squaring
(Maler et al, 1978) 15 appropnate especially when #1100 15
very large, where the norm s taken to be the Euclidean
norm. The method 15 based on the property of the matrx
exponential

expladd) = Jexplhdm)|™ (17)

where'm = 2. When i Q| is very large, the roundoff
errar difficalties ¢an be controlled by using a suitable value
of j for which exp(ftQ4m) can be reliably and efficiently
computed, and then to form exp{hQ} by repeated sguaring
ofexpiiQimy. The matrix exp(h@/m) can be sansfactorily
computed by the following Padé approximation;

exp(hQ) = R (hQ) = [D_(hQJ]'N, (hO). (18)

where

N, Q=3 PHQ). D, Q)= (-13Ph0)

and

phOy - 24D oy

: (2q)'(q - /)
A rather extensive treatment of Padé approximation can be
found in Ralston ef af (1978). If explh(Q/m) is to be
approximated by £_(hQ/m}, where m = 2, then the values
of jand g have 1o be chosen. Moler et af (1978) reported
that if

h)|Q1 & 2
then

[Ry(hQ/m)]™ = explhQ + Z)

where

: _. 2
12 55[#&2"] [ (@) ] (19)
O 2  (2g)2g + 1)

The value of j can be calculated from equation (17), and if
1z,
arel

then equation (19} can be used w calculate the value of g,
as reported in table (1) below, (Moler ef af 1978) which
gives the optimum values of (g, J) associated with
[R,(RQ/m)]" for a given e and h|Q .

Applications to systems of differential equations

The second-order approximation ¥ix, ). given in
equations {9) or (11), and the fourth-order approximation
Q(x. a), given in equation (16), can be used to approximate
the solution of a linear system of differential equations,
with mitial er mixed boundary conditions. Tn the case of an
initial value problem, one of the following equations

¥ix) = Wi, al yla)
or
yix) = Qx, a) y(a)

can be used to approximate step by step the solution along
the mterval of interese. Tn the case of 4 boundary value
problem, the interval [a, &) of interest is divided into L
subintervals [x, x.\ )./ =0, 1, 2, .. .. (L-1); and then the
solutions

¥ialx) = expllx-x) G (x %))y, (x) (20)

are matched at the mid points. In equation (20) above,

G, (x. x;) 1s taken to be

.
G, (x; k)= Eu!{x}} + Afx)!

for the second-order approximation, and

60
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x 1 X tx
G . (x, x) = = A(x) + 44 2 = A(x)

(c-x)
L[ A()A(x) - A(z)4()]

+

for the fourth-order approximation. The matched equations
together with the boundary conditions, give a system of
lingar algebraic equations, with band structure which can
eqsily be solved by Gaussian elimination,

Example;
In this example we consider the following two-point
boundary value problem with oscillatory coefficients over

the interval [0, T]:

yiey = Aty yio),

(21}
where
t(r)
Alfy =
m [ {WJ‘

and 7' = s&/%, the interval width T can be changed, by
changeing the value of 5, The boundary conditions are

sin(kf) cos(kt) )
cos(kt) -sin(kt)) o

w(l) - v} = 1 (22)

wT) =0, (23)
If we divide the interval [, T into L subintervals, then the
solution along each subinterval [t t,,,] is given by the
follewing set of equations

Y = expU-0)G, (@ )y (1),
: j=0,1,2 . . (L-1) J («®)

The selutions from two adjacent subintervals are equal at
the middle point, then sgquations {34) can be writien as

= exp(hG (U t DY),

¥l )
J =1, 2, 3, vl 2

(25)

with the solution at the end points

{’hﬁ:{:l' r,j}yi{ru} = hi, rﬂ}[

0
ity = " }J (28)

v(Q)

and
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LLLEFS A RO (27)

[ H(n y].-l(rf.-ll'

wngfﬁJ:e

Using the approximation in equation (18), the above three
equations (25) - (27} become

N i Dyt
N wo) 1 ¥\
.""{I_I}'J,{r}):ﬂal]yjll{II_F)L;' =23 =2
vl
Ny_(e‘__]:iJ[ ;

LA -1 L] L W)
Adapting the notation u(t) = w and v(t) = v, forj = 0,
A L together with the boundary conditions given

in equations (26) and (27). a system of 21, = 2L linear
algebraic equations with the unknowns {uq, wy. v, W, ¥,
o My Vg, b} is formed. In this example, (2.2)-Padé
approximation (g = 2) was used together with j = 0, to
approximate the matrix exponential, Table (2) below
shows, the number of subintervals needed to solve problem
(21} using either the second-order approximation, or the
fourth-order approximation for boths = & = 0 and s =
k = 40, Figures (1) - (4) represent, respectively the u(i)
and vit) components of the solution yfr) for the two sets of
sand &,

TABLE 1

The optimum values af (g, f).

£ 107 10" {1 10" 10"
el
10? (1,m (1.0) {2,0) (3.0} (3.0
0! (1,m {2.0) 2,0 (4,0} (4.0)
I (2.1 3.1 (3,00 (5.1} (6,1}
10 2,5 3,5 (4,1} (3,5) (6.5)
Ty 2.8) (3.8) (4,5) (5,8) (6,8
1o 2,11) @110 @1 (5,11 (61
10 2,15 315 @15 (515 (6,15
1y (2,180 (3,18 (4,18 (5,18  (6,18)
1 2,21 (321 @421 (521 (6.21)
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21
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Figure Liuft) tors = 10 &K =110
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0.5
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Figure vt for = = 10 & K =10,
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T
| | |

1.02F

1.08 k L L i L
a 0.5 1 i.5 2 25 3 35

Figure 3. u(t) for s = 40 & K =40,
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V(1) a lU |U' ||' ||||| | I \“ |||| ||||| 'ﬂl |
0.04+ ”l l'J' ” H | ||| l\ Il 'r\ (o

I I| ||( |||||/| | |
0.02t ~d ‘u' \“} ~L} \||| |I I| \/ || || /\ }{\

ﬂ._

-0.02 -

-0.04 : L ' 1 o . =
0 0.5 1 15 2 2.5 3 3.5

Figure 4. vl for s =40 & K =40
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TABLE 2
The number of subintervals needed

5 k Ind-order approxamation dth-nrder approximation
L [or equation (37 L for equation (3%)

1m0 10 260 EH]

40 40 550 20M)

Conclusion

A fourth-order approximation to the fundamental
matrix of a system of linear differential equations was
derived in closed form. The derived approximation was
successfully applied to a boundary value problem with
mixed boundary conditions. The approximation can be
easily applied to solve initial value problems as well, The
approximation was in the form of a matrix exponential,
which was evaluated using Padé approximation rogether
with the method of scaling and squaring.
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