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ARSTRACT: A conventional enumeration approsch, and a new approach for the solution of the control of switched linetr systems
wath input constraints are presented. The main objeetive i this work is to delermine control sequences fUNKY i -1, ., Mandk
0.1, ... M- 1) which transfer the svstem from a given initial state X0} 10 o speeific target state Xy (or 1o b as close as posstble)
Considering both the conventional snumeration and the new approach, extensive computer simulations are performed using the
discrete ime syatern obtuned by sampling (o7 discrctiang) 4 continuons system. The new approach 15 found to be more efficient than

the enumeration one i terms of eomputations and computer storage, and perfarms adeguately under o variety of input data. The
procedire developed can be generlized and used to sobve seversl versions of the switching control prablem. In particular, a procedure

wsirie a guadralic eost funchion ¢} is given for problems with time-mvariant coeflicents
i3 dril { function (distanc g foor prohal wvith time 1 eoell 5

Thc controllability properties of dynamical svstems are
ol major importance in control theory, namely, (inding
the optimal control The controllability propertics of
dynamical systems are of major importance mn control
theory, namely, finding the optimal control U(t). The work
presented in this study focuses on the control of a certain
class of dynamical svstems, that is, the switching systems,
The work that has been done to date is primarily 1n the arca
of control and analysis of continuous bilinear systems that
have the following form:
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where X(1) £ R™, A, are n-by-n matrices, and U [0, =} =
Uty where Uty e R

The major focus of attention to date has been on the
structural aspects of bilincar systems as shown by Aslanis
(1983) where X(t) = R*and U(t) = {0, 1}. Tamer al (1973)
tested the controllability of discrete bilincar systems. Goka
et al (1973) gave necessary and sufficient conditions for the
controllability of a class of discrete bilinear systems. All the
work done in discrete bilinear svstems, considers the control
Uk} as a scalar belonging to a compact set U such that Utk)
< B. The case wherc U(k) takes just two valucs as an ON-
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(OFF system (1e., U(k) = 0 or 1} as shown by Benmerzouga
{1985}, has had hmuted treatment, An attempt to solve such
a problem is done in this paper, The problem of major
miterest is determining  control sequences {Uk), 1=1, ... M
and k=0, 1, ..., N - 1} which transfer the system from a
orven nitial state X(0) to a specific target state X, (or to be
as close as possible). A conventional enumeralion approach
and a new approach are treated in this work. They use the
rropertics of a discrele time system derived by sampling (or
discretizing) a continuous system. Two major advantages of
the new approach are observed. The first one 1s a reduction
in compulation and storage requirements compared to the
convenlional enumeration approach. The seeond advantage
15 the easy way to find the control sequences {U'(k),1=1,
wMandk=0,1,.,N- 1} that give the best performance.
Problem definition and how to obtain the diserele system
from the continuous system are given in Section 3. The
performance mdex used is described in Section 4. In Section
5, all details related o the new approach are given. Some
concluding remarks are made in Section 6.

Problem Definition

The switching control of dynamical systems can be studied
for both continuous and discrete time systems. The
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emphasis, in this paper, is mainly about discrete time
systems obtained by sampling or discretizing a continuous
system. This choice is made because of the following main
two reasons: (1) most control algonithms are implemented on
a digital computer, and (ii) when discretizing a continuous
system the discrete system obtamned will have a non-singular
characteristic matnx, sce Wismer and Chattergy (1978)
Such ground will facilitate the computations of the switching
controls, as will be shown in the subsequent sections,

Dynamics of the Continuous System

The switching control system is interpreted as follows:
the control "UYt)" can have just two valucs cither 0 or 1. The
dynamics of the continuous switching system is given by
cquation (1} and the following conslramts:

M
{r-'rlff;l_f.-'r‘flff}=ﬂ1"«.-"',{;'.-.ll|l1 s Z [.-Flff} = 1

(2)

where M is the number of systems that can be used when
steering the system from the imitial state X(0) to the target
state X,

The added constramnts will give a very interesting
dyvnamics of the system. Since just one control U{L) 15 used
at cach switch, the dvnamics will be lefl with only onc
system, re., if UMty = 1, then just the svstem with state
matrix A will be active. Therefore at any time, there will be
exactly one system in use. Henee, at any time, the dvnamies
15 ON by just a single svstem with 11ts corresponding state
matrix A, Therefore, the only 1ask lefl is 1o find a solution
1o the dvnamics given by equations (1) and {2) together,

It 15 well known in the literature of control theory of
linear systems. see Brockett (1970), Kalath (1980} and
Sandel] and Athans (1974), that the solution of a dvnamical
svstem with only one system active, in the interval [(0,1] is
grven by

X0y = e X(0),  (X(0) is given) (3)

where the matrix B s equal to any of the given statg
matrices A's. depending on which control UKt) 15 equal to 1,
i.¢., which svstem is actually active.

The transition matrix ¢ can be computed by amy
standard method  OF course. cach of these methods has itg
advantages and disadvantages as described i Hirsch and
Smale (1974), Hombeck (19735), Ralston (1965), Strang
(19763 and Wilkinsen { 1965). The method used in this work
15 the eigenvalue-gigenvector method. Hence the transition
matrix s given by

gt = Tl -] (4)

where T 1s the cigenvector matrix. and TBT' is a diagonal
matrix. Given the Fact that diagonalizing a matnx can be
obtained even when the cigenvalucs arc not distinct. All

compulations will be carried out for systems with distinct
eigenvalues.

Dynamics of the Discrete System

As stated before, the way the discrete system is
obtained 1s just by sampling or discretizing the solution of
the continuous svstem given by (3). Since the initial state
X{0) is piven, then the dvnamics of the discrete ume
switching svstem is given by the following difference
cquation:

Xk +1)=e® X(k), k=0, 1, .N-1}
(5)

Since there are M systems m the above dynamics, then the
discrete time switching svstem 15 now completely defined
and given by the following equation:

X(k+1) = Y U'(k).P,X(k), (6)
i1
where U(k) satisly constraint (2), /2, g BT fi=1,..,

M} and AT 1s the sampling interval, The matrices P's are
obtained by discretizing the solution of the continuous
system. Therefore all P's are n-by-n nonsingular matrices as
explamed in the previous subsection, Freeman (1963) and
Stewart (1973)

Cnven the dynamics (6), the main purposc of this work
i5 to find a computationally efficient approach that wall steer
the system from an mitial state X{0) to a target state X, (or
to be as close as possible). In addition (o that, to find the

control sequence |U"{ftjulf ﬂl that will achicve such goal

in a given number of steps. Therefore, the problem is to
munimize the gap (or the cost) between the final state of the
system X(N) and the target state X, when steering the
systemt from an imtial state X(0) to the target state X ina
given number of'steps. The gap (or cost) can be quantified
as a distance, a quadratic form, or something different,
depending on how we are handhing the svstem, and what the
system 15 actually doing. The form of the gap (or cost) and
how to mumimize it are described in detail in the next
Section.

The Performance Index

The performance index used is the one that mimimizes
the distance between the final state X{N} and the target state
A;ma given number of steps. N, or the one which will give
the minimum gap (or cost) when being as close as possible
to the target state Xy, Hence the objective in this analysis is

. gy M -1 s
to find the sequence [L/'(k)!; , that will mimimize the
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Figure I The different values of XN} al each slage when N increases and M=2

gap {(or cost) defined by the following form = i
hence X(2) =[1[ 5 U'U].Pf}..k’((}}.
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The cnitena and objectives. mentioned in the previous Astaniog it BUg g BRSSO I it lork

scclion, are gomg to be carmed out for both the ];:1}:!1— k41

conventional cnumeration approach and the new approach. _

The following propositions will lead to the solution of the A

problem. Xk+l) = Z L (k) 'p,] Ak),
=1

Prorosmion 1. Given the dynamies (6), the mutial state

Since the statement 1s true for N =k, the following is
X(0), the target X, and the number of steps M, the final

obtamed:
state X(N) can be computed as follows
AT M
XNy = 1Y vik).r.x0) 8
k<0 =1 M -1 A
- = .'I i r Foly &
Proor; Since X(0) 15 given, and using prool by induction, Alk+1) [ IZ]: (' (k)4 ] [ l_h[ < & U)-Pr]- X(0),

M

=1 HOY=L U0). 2 X0), and the result follows

Without loss of gencrality, the analysis from now on
forN=2 15 going to be carried out for the case of M = 2, By using
the conventional enumeration method, the following three
A observations are made;
X(2) = Z LAC)LPLX(T) (1) the number of stitcs will double from one stage to the
) . e

i1 other, as shown in Figure |, when M =2,

(u) all the different states at cach stage have to be

1 M
= [ E {7 ’{1].1’{} [z L0y P, Xfﬂ)] computed and stored
=1 i1

71



A BENMERZOUGA

TABLE |

The Different Paths, Gaps, Combinations of U'(k), and Minumum
Crups When N =3 and M =2

RN SRR U2y X3y X X3 glX(3y

1 I I | 2 13
-2 3

1 1 0 -1 il i
1 0

1 0 | 2 -3 5
-3 4

1 1] il Al il
2 |

1 1 1 | Il
| 0

) | i ] | [
-1 2

i i vl i
2 1

i i) i1 | 2 %

{ui) all different combinations of the control L'(k) have to
be stored

The followmng example will illustrate the above
observations

Exampir | Let Poand Py be 2-bv-2 matriees, X(0) and X-
be 2-by-1 vectors, and the number of stages N =3

| 0 0 1|
JJ—:1 = FZ -
-1 -1 1 0
-1
X(0y = ‘ ‘ Xio= 1

By using the conventional enumeration approach. all
the states at all stages have 10 be computed m order to
reach the last stage as shown in Figure | All the distances
between the final state X{N) and the target state X, arc
given in Table 1 The mumimum distances are found at row
2 and row 5 of Table 1. The solution obtained scems to be
not umique. Finding the séquences of {U'k),i=1, 2 and k
=1, 1, 2,3} 1snolatnvial task at all. One has 1o go back
and trace the way the optimal distances arc obtained The
dhscussion will be carnied out for the sequence [U'(k), k =
0, 1,2} enly, for the sceond sequence tU(k), k=10,1,2}
can be found usmg constramnt (2)  The smallest distances

when apphving the conventional enumeration are found by
using the sequences {U'(0), U'(1), UN2)} = {0, 1, 1} and
PO, UML) U209 = 41, 1, 0} The mimmum distance
between the final state X(N) and the target state X; 15
found to be equal to 0, which means that the system is
right on target in exactly 3 steps. OF course this is not
always the case. This is Just a coincidence In general, there
15 no guaranice to hit exactly the target in a certain number
of steps

In order to compute all different values of X(N) it is
necessary to take care of all preceding values that are on
that path as shown by Figure | The number of states at
stage k+ 1 1s the double of the onc at stage k. So the
number of states grows exponentially. Henee the problem
gets more complicated as the number of stages increascs.
Therefore considerable computations and storage arc

required  In addison 1o the above, the scequence
| ,
o+ that has a combinatonial vanation, has Lo

W ()l

be determuned. The following proposition will take care of
such difficulties and reduces the computations and storage
considerably

Proposiiion 2 Consider the following change of
coordmates Zik) = B* X(k). where B = P, (n-by-n
nonsingular matnix), The dynamics of the system in the
new space 1s given by
ZIk+1)=[1+U'(k) Q(K)Z(K) (9)
where

Qk)=B"* [B'(P, - B)|B*, and Z(0) = X(0)
PaooF Using the above change of coordinates, the
dvnamics given bv (6) and (9), and some algebraic
manipulations. Z(k+1) has the following expression

Zk+1)=Z(ky = U (k) B *|B ' (P,-B)| X(k)

which gives the required result.

ProrosiTion 3: Chiven the dynamics m (9), the matrix
(k). has the following recurrent formula.
Q(k+1}=B" Q(k) B (10)

Proor By using proposition 2 and mathematical

mduction let us see 1f (10) 1s true for all positive integer k.

When k =0, Q(0) 1s given by the following expression:
(MO0)=B "B ' (P -B)} B" =B “E =)

Whenk = |
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O(1)=B '[H ' (P-B)|.B'=B ' Q(0).B
Let us assume that

Qky=8 '"Q(k-1) B=B* Q(0).B* holds

for k, then prove it for k + 1. Then

Ok + 1) = B & ”.[5".[}?] - H}] BE-1
with simple matrix manipulations the stated result follows

Prorosrmion 4 Usmg propositions 2 and 3. the

computations and computer storage required are reduced
by half.

Proor: By just applving the recurrent form of [1H-Q(k)] on
ZI. the values of Z(N) can be computed for any stage as
shown in Figure 2. For each stage, all the different values
of the previous stage are found m the next stage, Therefore
it 1s not necessary to compute all different values of Z(N),
only halfl of them need to be computed. Furthermore, the
only values of Z{N)} that requires storage are those
computed at stage N, all prévicus ones are not needed. so
they are not stored.

When the different values of Z{N) are stored (or
listed) as shown in Table 3, and the final state Z(N) that
grves the mimimum distance (or cost), is found to be at the

1" row, finding the sequence 107 {k]'r':' u! is no longer

difficult as shown by the following proposition,

PROPOSITION 5; Suppose that the final state that gives the
minimum distance (or c¢ost) is at row J, Then the

sequence 'H.J‘I]Ek}}i.‘:{} is given by the binary

representabion of the number (rank) I
Nl )
I =y a2 (11)
£

where the values of a,'s are either O or 1, and U'(k) = a, for
k=01 ... M=

Proor: By just going back to the way Table 2 and Table
3 are constructed, the result follows,

Therefore, miven any stage N, it 15 possible to compute all
different states Z(N), starting from Z(0}) and finishing with

Ne=
11 [7+Q(k)1Z(0). The matrix Q(k) can be
k=

computed using (10). The sequence /' (k))}_, can be

easily found by taking the bmary representation of the
rank {J} of the optimal state Z{N).

The Algorithm

The algonthm is built on the basis of the previous
details. The objective is to steer the system from an initial

//_/’7
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Figure 2. The different values of #{IN} at each stage when N increases.
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TABLE 2

The New way of storing the different values af Z(X) when N increases and M= 2

Z41) Z(2) Z(3) Z{K) Z(N)

2 ¥ O = o

[E+ QU0 Z0) * ! o = o

[I-+Q{LZ) i O = o

[T+ QLB+ QN2 o C u a
[1+Q02))200) o = 0

[T+ QUZN [T+ QU A | " o

[T+ Q23]+ QC120) a " o

[+ Q2T+ QeI+ 0 [0 O " i 5
0] [EHCH L)+ A0} ™ o
[(E+QIN-10] [T QO[T QE 2 o

state X(0) to a target state {or as close as possible) in a
certain number of stages, N. Assuming that the terminal
cost {or distance} 15 minimized, the following steps arc
obtained:
Step 1: Given the number of stages N and an imitial state
X(0), a matrix S(L J) is generated which will
contamn all different values of Z{N) as 1l 15 shown
i Table 2, where | 15 the dimension of the space
and J the number of states at stage N

When searching for the minimum distance it 15
necessary to go back from Z space to the X space
using the relationship X{N) = BN_Z{N]. Hence a
need Lo compute the matrix B”
Compute X(N} = BYZ[N).
transformation back to X space
Compute all possible costs (or performance
indices) at stage N, and keep the minimum one
with its corresponding rank in the matnix S(1, )
that looks exactly like Table 3.

Given the rank (J), of the minimum cost, a binary
representation to get the

Step 2:

Step 3: namcly, the

Step 4:

Step 5:

sequence 1177 (k)! ,:' ,;:

The above algorithm facilitates the way to get the
optimal control for the original problem. Therefore, given
an mitial state of the system X(0), a target state X, and a
number of steps N, the algorithm will give us the optimal
state and its corresponding sequence of {U'(k), k=0, 1.
.-.s M= 1}, For the illustration of the above findings, many

74

cases {or ecxamples) were solved, among them, the
following example. For further details see Benmerzouga
(1985,

EXaMpPLE 2: Let P, and P, be 2x2 matrices, X(0) and X, be
2-by-| vectors, and the number of stages N = 3.

_|n:::1

=
|

After computing |1 + Q(k)}] for k=10, 1, and 2, the final
states Z(N) are given by Table 4. The minimum distance
15 found to be cqual to 0. The solution is found at two
ranks. namely, rank 3 and 6 respectively. The binary
representations of 3 and 6 will give the optimal sequences
U0 U'(1), UN(2)3={0. 1, 1} and {U'(0), U'(1), U'(2)}
=11, 1, 0} Exactly the same results as Example 1 where
the conventional enumeration method was used.

Conclusions

This work presents a conventional enumeration
approach and a new approach to solve a switching control
prablem for discrete time systems (M = 2). The discrete
time system is obtained by sampling (or discretizing) the
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TABLE3

The New way of Storing The Different Values of Z(N) When N = 3 and M = 2, theirr Corresponding U'tk), and Thewr Corresponding Rank J.

Zi1) Z(2) Z(3) U0y u') u'(2) Rink: J
7i) . Q o ] 0 0 ]
[T+ N * o o 1 0 I:J 1
1T+ 200) o o i 1 i 2
[F OF O A Q 0 i | ] 3
114 Q23] 200) a il ] [ 4
[EHCH2 1+ )2 o | 0 | 5
[+ 20+ Q0 A0 o 0 1 [ 6
[T U2+ QLY L+ 01 200) o I 1 | 7

TABLLE 4

The Different Values of Z{0) And XiN), their Corresponding Ranks,
and The Menumum CGaps When N =3 and M =2

£ X131y el X(3)] Hank

| I &

I 5

-2 -1 1

-] i3

1 4] 5 3
-1

«] -1 " 3

-1 I

2 - 1 4

-1 2

3 i 25 5

2 -3

-1 -1 o 6

| ]

2 | 13 7

| -2

continuous svstem  The analvsis 15 restricted to the case
where the cigenvalues of the state matrices A, are distinet
The same resulls were obtained when applying both
approaches to the above example But when using the
conventional cnumerational approach, all the states at cach
stage have 1o be computed and stored On the other hand
just half of the states have to be computed and stored with
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the new approach

There are additional good propertics associated wath
the new approach that helped in achieving such an
efficieney, 1e, the nice recurrent formula for the matnx
k), the back ransformation from Z-space lo X-space,
and the matrix B® When the number af sleps 1 small the
procedure is nol computationally difficult. Therelore both
approaches perform basically the same. But when the
number of steps increases the new approach will take over
all the way. In other words, the computations and storage
involved in the procedure will be cut down by at least
50%. Also, another important ingredient that improves the
efficiency of the algorthm 1s the easy way to determine the
sequence {U'(k), k=0, . N- 1}, which 15 cumbersome
and not straightforward i the conventional enumeration
approach

The construction of the algorithm, corresponding to
the new approach, was developed The computer
simulations showed that the obtained algorithm performed
successfully m computing the sequences {U'(k), k=0, ...,
N - 1} The algonthm was shown to perform adequately
when the number of steps increases.
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