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ABSTRACT: In this paper we derive recurrence relations thal desenbe how the equilibnum mean of the number of molecutes of
a reactant vanes with cach of the parameters defiming the initial stale for four basie reversible chemecal reactions In essence, the
relalions privide & rbonske T updating the equilibrivm mean following the addition (or remoeval ) of & molecule of one of the types
mwvirdvied wn the Teacthon; there béing a refation for cach type. With 2 new parametrization introduced for each reaghion, the relalions
provide a convenent means of evaluatig the means, vanances and other mmportant moments without any need w0 work out the
underlving distnbutions. As an application, the relations are vsed to numencally assess-approximate expressions for the means and

YATHIOCES

Thu stochastic approach to chemical reaction kinstics
{ef, ez Darvey er af (1996}, 5taff (1967). Oppenhemm
et al (1969, Thakur et @f (1978), and Formosinho and
Miguel { 1979)) treats the quantities of the reaclants present
at anv time as random variables and offers a deseription of
the course of the reaction concerned by finding the
carresponding probability distributions. Interest 1s usually
focussed on the equilibrium situation However, the
equilibrium distributions of the number of molecules of the
reactants are (difficult to handle algebraically and
computationally As an example consider the equlibrium
distribution for the number of molecules of reactant A in the
reaction

*‘-:
A+B=

Ky

as given by below (2.7a) below. where o, B, ¥ are the
number of molecules of reactants A, B, € present at the start
of the reaction, and X 15 the ratio of the forward to the
backward rcaction rates. In the simplest practical situation
the support of this distribubion may well span all the inlegers
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in an nterval like [0, 10°] The equilibrium means cannot be
expressed solelyv in terms of the parameters. and computing
it through the defimtion would entaill workmg out the
complele distribulion, a massive exercise even for a single
sel of paramelers, The approach adopted in the literature has
been to seek normal and other approximations (o these
distnbutions and their moments. {See for example Dunstan
and Reynolds, 1981 and Hall, 1983 This solves most of the
practical situation. However, as wall be shown here, the
exact solutien has more Lo offer.

[n this paper. we look at the equilibrnium distribution
from a different angle, agam refemng to (2. 7a) as an
cxample. Instcad of conswdenng (2.7a) as a single
distnbution for a given fixed set of parameters, we look at
it as a family of distributions indexed by the natural space of
these parameters, noting that «. A, and ¥ are non-negative
integers: It will be shown that members of this family are
tizd by simple recurrence relations that are also reflected
therr moments, Cur main emphasis will be on the means and
the varnances. If these are known for a given member, they
can be deduced for other members using the recurrence
relations, This should be compared to the direct approach of
computing the means and vamances, where, for cach
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member{i.e. for cach set of paranicters), the complete
distnbution (2 7a) 15 worked out In fact, for some
members of the family the means will be trivially known.
g if i=y=0, then the mean equals & This, coupled with
the recurrence relations mven m Thearem 2.1, can be used
to penerate the mean for any member in the family

In this paper, we shall be concerned with the four basic
reversible chemucal reactions A4B = C, A+B = C+D, 2A =
CtD and 2A = C discussed by McQuarne (1967) i his
survey paper on the stochastic approach to chemical
kinctics. For each of these reactions, we denve recurrence
relations that desenbe how the equilibrium miean varies with
cach of the parameters defimng the inital state when the
other parameters are kept constant As a byproduct we also
abtain expressions for the vanances The relations can be
interpreted. in the subject-matter context, as means of
updating the equilibrium mican following the addition or
removal of a molecule of one of the types involved n the
reaction. This 1s appealing because it gives nise 1o the
discovery of what mught be considered basic chemical laws,
assuming the validity of the stochastic model It would be
mteresting if these laws can be justified, independently, by
a purely chemical arpument The relations can also be used
to derive approximate expressions for the means and
vartances as will be shown in section 7 In addinon. as
mentioned above, the relations provide a very effective
means of computing the means and vanances and this
facihity has been conschdated by inroducing a new
parametnzation for cach reaction This makes it feasible,
perhaps for the first tme, to numencally assess the
approximate expressions for the equilibnum means and
vanances over a large set of parameters. as will be done for
the reaction A+B = C nsection 7. Fmally, the relations can
b used Lo control the equilibrium mean o desired levels by
gauging the imtial condiions. The stability of the level
might also be controlled by making use of the relanons
obtained for the vanances This use of the relations is not
deall with here.

The 1deas involved in deriving the recurrence relations
for the four reactions are essentially the same. To avoud
repetition we give proofs only for reaction A+B = C_ dealt
with in scction 20 In sections 3, 4 and 5 we give the
corresponding relations for the other three reactions Each
relation is verified using a simple example. In section 6 we
denve recurrence relations myvolving the factonal moments.
Finally, in section 7, as a demonstration of the usefulness of
the recurrence relations, we miroduce and numernically asscss
approximate expressions for the equilibrium mean and
variance for reaction (2.1)

The reaction A 8=

Consider the reversible reaction

(2.1}

where K and K. are the forward and backward reaction
rates Assumc imtially we have @ | } and y molecules of
types A, B and C respectively, Let

K=K, K, (22)
The number of molecules of types A, B, and C at time 1 will

be denoted by N (1), N, (1), and N (1), respectively. The
conservation cquations

e -N)=0-Nyt)=NAt)-¥y (23)

imply that the course of the reaction can be described by one
random vanable We choose N, The usual assumptions {or
modeling the reaction as a stochastic process are as follows:

In any small interval of tme (1, ¢+ 4),

(1) the probability of a single AB association 1s

K! "'\'IL_I{I}‘&"'_.:_J{;_]'I] x ”{h} ’

(11) the probabibity of a dissociation of a moleeule of C 15

KNA(tYh~alh) .
and

(1) the probability ol the occurrence of more than one event
15 oA}, where

|imM -0

k=0 h
Lt

p.1)=PIN (t)=r) (2:4)

be the probability distnibution of N,(¢). Using the standard
procedure of representing p (r-4) as a difference equation
in p(e) 115 easy to show that p (1) sausfics the following
differential difference equation

A
abd.' K=y -r+1)p, (0+K (r+1)(P-a+rr+1)

P (K {esy-r)y+ Kr(B-a+r)pl)

(2.5)
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where r can take any integer value provided p (1) is defined
as 0 for r outside the range max(0, a-B)< r < a+y The
equilibrium solution 15 obtained by putting the derivative in
{2.5) equal to zero and solving for g, = (=) It can casily be
verified that p, satisfies the recurrence relation

Kir=1)B-eavrel)p  =(a+y-rip,

(2.6

with solution

= (e -y)'(P-e)! r.
EK'rl(w+y-r)!'(f-a+r)!

(2 7a)

for max(0, o-B) = r < oy, where g, 15 taken as O outside
thus range. The equilibrium selution of M- can be obtamed
similfarly as

- K+ (3 <)) :
pf = (e +y) (P ~v) P,
@y By )
(2.7h)
for 0 = r = minfaty, B=y), where prf- 15 taken as

outside this range.
Summing (2.6} over all » and stmplifving gives

Ku(f-e+p)+Kol=a-y-p
8)

where (and o are the mean and vanance ef the equilibrium
distribution of &, It is customary to put o’ equal to 0 in
order to approximately express posolely in terms of the
paramecters of the reaction. This 1s equivalent to using the
determunstic value, Here. we take the approach ol first
denving an expression for 0 and then plugging itin (2.8) to
gelt an exact relation in means frec of vanances As
mentioned n the introduction. such a relation ean have
seversl apphications

MNOTE ON NOFEATION As secen from {2.7a), the distnbution
pand tts moments are functions of ¢, (. v, and K. However.
whien considermg the vanation of p, or its moments with
spme of these parameters, keeping the others fixed, only the
arguments that are vaned will be shown expheitly. Thus, for
example; plo) will be used to denote poas a function of « for
fixed B, v, and K. whereas plee, I3 will be used lo denote
a5 a function & and B for fixed v and K Simularly for
wiee, By ). This convenent notation 15 followed throughout
starting fraim (2, 9a) below.

Considering the dependence of p, on ¥y, for fixed o, B
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and K, we have by replacing v by v-1 on both sides of (2. 7a)

Jrr( - I}
La+ry)p ly-1)= (e y-r)p (y) HEl_ip
pPLY)

(2.9a)

Thus relation 1s true for all # By construction, it is true over
the support of p.(y-1), namely, mas{0,e-B) 2 » < a+y-1. 11
15 true for r=a+y by direct substitution and noting that this
value is outside the support of p(y-1). Finally, it i3 trivially
true for all other values of v as these are outside the supports
of both p{y-1)and p(v)

In a smilar way, we can also obtam the following
relation from (2 7a)

: _ et |
(ry)p, (e D=ty -r)p. (a) JL_}

P, (o)
(2.9b)
It can be shown that this relation 15 also true for all ».
Now, summing (2.%a) over all » we get
2,00 - 1)
#,0¢)

oy
o=y - uly)

(2.10)

Multiplying (2.%a) by r and summung over all 7 leads to the
CHPICSSIon

(s puly -1 =[ary)ply) - p?(y)
. ply-1)
=aY)] ————
£.07)
(210
[t follows frem (2.10%and (2.1 1) that
o (y) = (w+y —plyNply) - ply - 1)]
(2120

It follows simuilarly from (2.9b) that

“['z{m} = s b H;{ﬂ”[u[{&} - .u(-l:ﬁ B I}J

(2.12h)

where o, 2 and p,. are the variance and mean of V.. Bul

as seen from (2.3) we have
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& frugmary-pou e, 0t s0 =0 =0
(2.13)
Hence, substituting in (2.12b) we get
o*() = p(e)ple - 1) — pe) +1]
(2.14)

Finally, interchanging cc and P and p(= u,) and p,. we see
from (2.14), by symmetry, that

0*(B) =, (B) = wy(Blpa(P- 1) - (B)=1] -

(215

Henee, substituting from (2 13)in (2.15), we get

o(B) =[P e u(B)IwP-1)-u(P)]

(2.16)

Substituting (2.12). (2 14) and (2.16), in turn, into (2.8) and
simplifving the resulting expressions we amve at the
following theorem

theorem 2.1, The equilibrium mean p satisfies cach of the
following recurrence relations:

[K(B+v)+ 1 +Kp(e, B,y - Dule,B,y)
=@ +y+ K{a+y)ule, B,y - 1)

(217
[1+Ku(e, f-1,y)]ulep.v)
=ty -K(p-a)u(ep-1,v)
(218
[K(B-crl+p(e-1,B,y )+ 1] wla,p,y)
=0+
(2.19)
with mmitial values
WO B O=0 and we 0 0)=a
(2.20)

Note that 1f the reaction starts with ne molecules of
types A and C, then the number of moleeules of tvpe A will
remaimn zero irrespective of the number of molecules of tvpe
B. This explains the first iitial value given in (2.20), The
same logic 1s followed throughout m determiming mitial
values.
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The relations i Thearem 2.1 clearly deseribe how the
equilibrium mean varies following the addition or removal
of a molecule of one of the types involved in the reaction.
They can be looked upon as basic chemical laws, assuming
the validity of the medel. One interesting application of the
relations 15 i the evaluation of the means and variances.

The equilibrium mean can be evaluated using recurrence
relauon (2:17) and either of relations (2.18) or (2.19) with
the appropriate starting values, Thus, for example, one can
puty=0in(2 18) andset B =1, 2, etc .. to express ule, B
0} in terms of ple.0.0), making use of the second mitial
value in (2. 200 One can now use (2.17) with u(e, B, 0) as a
starting value to cvaluate plee(.y) It is possible. however,
to evaluale p using a single recurrence relation For this we
troduce the parameters N and M defined by

N-a+y, M=P+y
(2.21)

This parametnzation is the natural one in some applications.
For example, in the study of the behaviour of ion-channels,
reaction (2.1} corresponds to the so-called classical theory
of drug action. where A 1s the molceule of the aporust drug,
B 15 the [rec (closed) channel and C is the open channel (see,
for example. Colquhoun & Hawkes, 1977, 1981) In that
formulation M 1s the total number of molecules of the
agomst drug and N is the total number of channels

Noting the correspondences (e-1.B,%) ~ (V-1 M), (e.
fi-ly) = (M M-1), and (e foy-1 )~ (V-1, M-1). we can now
rephrasc and arrange fheorem 2.1 and the expressions for
the vamance i (2. 12), {2 14} and (2 16} in the following
thearem,

Theorem 2.2 (1) The equiblibrium mean satisfies cach of the
relations:

[RIM-NV ) = BEuiN- | M) - LN M) N,
Lt M =
(2.22)

[T+ K (N M= 1) (N, M) = N - KM -N) afN. M-1),

HING) =N

(2.23)
[EM vl + KpN-LM-1)] ufN. M) - NI+ Ky -
LM-1) [, ufN0) -N, wO M —0

(2.24)

(i) The corresponding expresswons for the variance
idrc
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& (N.M) = ufN, M) [ufN -1 M) - N, M)+ 1],
(2.25)
(N, M) =[N -M~ u(N, M)J[uN. M-1) - u(N, M)] |
(2.26)
o (N.M) = [N - ufN M) ] [N, M) - p(N-1. M-1)] .
(2.27)

It should be noted that any two of the relations (2.22),
{2.23), and (2.24) lead to the third.

The use of Theorem 2.2 1o ¢valuate p and o 1s best
ilustrated by an example,

Fxample: Let =2, =3, y=1 and K=1. Thus N=3 and
M=4. Using (2.6) or (2.7a) 1t 1s casy to see that the
equilibrium distnibution is given as

¥ 1] | 2
24473 6/73 12/73

Lad

1/73

Dhireel computation gives
n=np (3, 4)=063/73 and o” = 07(3, 4) = 28205329,

From relation (2.22), the most feasible i the number of
steps necded to obtamn the mean in this case, we have:
u(l.4) =145, u(2, 4)=10/21, and u(3, 4) = 63/73, as
requited. Note the ease with which these three means are
generated without reference to the underlving distributions,
as compared Lo the dircet approach where we need first (o
wark oul those distributions. Now, from (2.24)

aH(3.4) = pi3 A2, 4) - (3, 4) + 1]=2820/5329,

The varance can also be obtamned from (2.7), Relatnons
(2.22) and (2 23) lead to the same answers.

The reaction A+ =C+0
For the reaction
KE
A+ B~ +0
£

(3.1}

we assume imitially we have o, i, v and & molecules of
tvpes A, B, C and D respectively, The cquilibrium
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distnbution of &, satisfies the recurrence relation

K(r+1)(B-a+r+l)p  =(a+p -re+d-rip, .

(3.2)
with solution

i (a+y) ! {a+6) (B -a)!
LK ey -r) e d-r) (Boa )l

o

(3.3)

From (3.2) 1t follows that

Ku(B-a+p)~Ko?=(a+y-pla+d-u)+o® -

34)
Note that when K=1, we have
y o= le-y)(e+a)
: a-fry+d
(3.3)

Proceeding in exactly the same way as we did for reaction
(2.1} 1t 15 easy to see that the expressions (2.12), (2. 14y and
{2.16) for @® are still valid (but now o is a function of e, b,
y and & ). The vanation of o with & 15 governed by the
relation

o (8) = [e + 8 - u(8)I[u(d) - u(d 1)

(3.6)

Eliminating o between each of these expressions and
cquation (3.4) we-obtain the following theorem.

Theorem 3.1 Keeping the other parameters fixed. the mean
vancs with the argument according 1o the following relations

[KP-a+l)+2e+y+5-1H(K-1) pie-1)]ule) =

(o 4 y) (o + &), (3.7)

le+P +y+ 8+ (K-Dp (-1 = (e y)(a+ &)

- (K- 1B -ejuif - 1) (3.8)

(KB +yrret+d+(K-Tpuly - D] uly) = (o +yiet+8&)

+ (K- Do +yluly - 1) {39
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[K(B+8)ro+y+(K-1)p@-1)]ud) = (a+y)e +0)

(K- e+ &) nid- 1) (3,109
Note that when £=1 then, in each case, p reduces to the
expression in (3.5) as it should.

For the casy computation of p we introduce the new
parameters defined by

N=g+y, M=R+y, §=ad+8, R=0+5.

(3.11)
With thus parametrization Theorem 3.1 can now he
rephrased 1n the following,

fhearem 32 Keeping all parameters fixed exeept those
shown in the argument of u we have the following relations

I8+ M+ (K- DM -1)aM) = SN (K -1)(M -N) a(M-1),

H -|'l 'f-'l )I J?"rr.

(3.12)

KNS+ N+ (K-1)ufS-1]u(S) — SIN 1 (K-1)u(S-1)],

gft) =0,
(3.13)

IN-R(K-1)a(R-1)]uR) ~ NS - (K1 J(R-S)a[R-1),

afl)- S,
(3.14)
[KIM-N=1) =8=(K1) N1} (N =N[S-u(N-1) ],
a(l) =0,
(3.15)

[t should be mentioned that relation {3.13) 1s not an
mmmediate consequence of Theorem 3.1 1t Tollows alter a
process of climination using the other relations.

We illustrate the use of Theorem 32 by the following
example:

Example: Take =2, =3, y=1.06=2, K=1/2 Thus N=3,
Af=4, 5=4. i=5 The equhibrium distribution 15 given by

¥ 4]
JLE .I'I4S

| F ]
12/45 24/45 Hida
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Thus w=28/15 and o°=116/225, To economize on
the number of steps needed to obtain p we choose the
relation involving &V, the smallest of the 4 parameters. Direct
computation leads to u(1)= 2/3, p(2)=40/31, u{3) = 28/15,
as 1l should The other three relations lead to the same
conclusion. The variance can now be oblained from (3.4).

The reaction Fd-e=i0 + 2

Far the reaction

e
24 = (T4 [ .
e

(4.1

the equilibrium distribution of N, satisfies the recurrence
relation

Kir=1)r+2)p_ .=(a+2y-r)a+28-r)p
(4.2)
The equilibrium mean thus satistics
2Ku(u -1)+2K0® (e +2y - )e +26 -u) + o’
(43}

Manmipulations simular to those employed in reaction (2.1)
lead to the following expressions for o7

ofe)=ule)ula-1)-ule)+1] -

(4.4
oy )= [e =2y - p(y Nlp(y Y -u(y -13]
(4.5)
o*(B) = [ +28 - p(d)][u(d) - w(d-1)]
(4.6)

Eliminating ¢° between cach of these expressions and
cquation {4 3} we armive at the following theorem

Theorem 4.1, The equilibnium mean u varies with cach of
. ¥. 0, keeping the other two fixed, according to the
following relations:

2o +y +8)-1+ (2K - Dpfee - 1} ple ) = (e + 2y) (e + 28),

(4.7)
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{e+ 28+ 2K(e+ 2y - 1)+ (2K - Dyuly - 1) nly) =

(e+2y) Je+28+(2K- Duly - D).

(4.8)
lo+ 2y + 2K (e + 26 - 1)+ (2K - Dy (B - 1)] u(d) =
(e +28) [o+ 2y + (2K - 1) p(d -1}
{4.9)
We introduce the new parameters defined by
a+2v=N aot28=M
(107

Note that o + 2y = 0 imphes that «=0 and y=0. Also
a+2y=1 implies that ¢=1 and y=0 and henee p=1. This
explains the starting valucs that hold when expressing
Theorem (4.1)1n the following theorem

Theorem 4.2, The equilibrium mean p varies with N and
M, according to the following relations

IM < 2K (N - 1)+ (2K 1) ufN - 2}] u(W) = Nf(M + (2K -

DpN-2)] pth) =10, ufl) = 1,

(4.11)
[N - 2KM - 1)+ (2K - (M- 2)juiM) — MIN + (2K -
1) ufdd -2} wiO1=0. uct) =1

(4.12)

Fxample: Take N=4. M=6. K=I,
distribution 1s given by

The equlibrium

r 0 2 4
p. 19 6/9 2/9

Hence u=20/9 and o* = 104/8]. Using (4.11) we have
u(0) =0, u(2) = 3/2, u(4) = 20/9. The other relations lead
to the same answers. Had & been odd, onewould have
started with (1) =1

The reaction A=

For the reaction

KJ
i ol G (3.1}
&y

we have

Kir+1)r+2)p, ,=(e+2y —r)p,
(5.2)

It follows that

Kp(u-1)+Ko* = +2y -
(5:3)

Proceeding as for the previous réactions it can casily be
shown that

o’(e) =ple) (e - 1) -u(e)«1]

(5.4}
of(y ) = [a =2y - p(y Nlu(y ) - uly - 1))
{5.3)
Hence, we have Theorem 5/
[L+&p e -D)ple) =<2y (3 6)

[K{at2y-11+ | + Ku(y-D]ply) = (e+2y)(1+Kuiy-1)
(3.7)
We define the new parameter

N=a+ 2y (5.8]

The following theorem is immediate from Theorem 5.1
Theorem 3.1,
[1+ Ku(A - L)JR(N) = N, 1(0)=0
(5.4
[KiN - 1)+ 1 +Ku(N-2)] g(N) =

N(I+ K, p(N=2)], (0} = 0, g(1) = 1.
(5 10)

Example: Let N=5, K=1_ Then
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3 3

r ] :
10426 1126

15/26

Thus p=25/13 and o° = 220/169. Starting with u(1)=11n
(5. 10) we have p(3) = 3/2, n(5)=25/13.

Evaluating other moments

Factonal moments of the équilibrium distribution of N,
can be cvaluated recursively, once the value of the
cquilibrium mean is provided The recurrence relations that
make this possible are given, for each of the four reactions.
in the following thearem.

Theorem 6.1, Let m, =] and

m, = EIN (N -1) (Nynt )], #=1.2.3, (6.1)
The following relations hold for reaction (2.1), (2.2),(2.3)
and (2.4), respectively, for cach n=0, 1, 2.

Km, = (aty-n)m, - [K(B-a+)yrntlm,., . {6.2)
(K-1)m_ . =(ety-n)etd-nim, -|K(B-atnt])
Hlatyd-2n-1lm, (6.3)

(2K-1m, o = (et 2y-m)(e+28-nhm, - 2{a-y+8)-2n-1]m__, |

{6.4)

Km o= (e42y-n)m_-m. (6.5)

Proaf; We prove relation (6.2) The other relations can be
proved simularly. From (2.5), 1t can easily be shown that

d*G _

2

0

(@) G($)-[KPB -+ 1)+ 99 ks
ds

o

(6.6)
where

Gr(s) = F(5 Fa )

is the probability generating function of the cquilibnum
distribution of N, The result follows by differentiating (6.6)
# times, using the rule for the #* derivative of a product of
two functions, namely,

n §

Y l:);;{r}(;in-ﬂ‘

F =1

(FGy™

84

and then putting s = 1,

Assessment of Approximate Formulas for the Mean
and Yariance

The normal approximation denved by Dunstan and
Reynolds (1981) gives approximate expressions for the
mean and variance of the distribution in terms of the mode.
A direct approximation of the mean, not much different from
theirs, can also be justified Note, for example. that
replacing (N - 1M -1) by u(N, M ) in (2.24) should make
little difference for fairly large values of M and N, This
amounts to approximating p from (2.8) by simply putting o’
cqual to zero. Thus, an approximate expression for the mean
number of molecules of tvpe A in reaction (2.1) is given by
the positive root of the equation

Ku(M-N+u)=N-yu - (7.1)

where M and N arc as defined n (221} It can also be
shown, for the same reaction, that p varics with K according
to the relation

dp.__uz
K

R

(7.2)

Dnfferentiating (7 1) with respeet to £ and simplifying leads
4]
[K(M-N+u)+Ku+«1]0"=Ku(M-N+p)
(7.3)

Using (7.1) again we gt

+ ) (7.4}

This 15 the same expression given by Dunstan and Reynolds
exeept that the approximate mode 15 replaced by the
approximate mean, The same expression was also derived
by Babiker and Elsheikh (1992) assuming (7.1) and
symmetry of the distribution. The other three reactions can
be treated similarly,

It should be stated that. differentiating both sides of
cach of the relations {2 22), (2.23), and (2.24), and making
use of (7.2) leads to the followng relations:

NG (N) = w(N)[N - p(N) - Kp(NYo(N - 1)]»
(75)



RECURRENCE RELATIONS FOR THE EQUILIBRIUM MEANS

TABLE |

Compted and Approximate means and variances for reaction(2.1)

N M K mean approx. Mean varlancc approy
Ppr
Vanance
i’ EF [ 31640 316.2 158.1 158 |
[0 ¢ o 3112670 3112673 1531753.2 I531732
1 | 1M QOGOG00N0.1 GeagainLo | GUTGR 0OTHE
107 i o BG99snn0nt 2 G9g9as0001 2 24994 4 245494 4
Lo 10 10" 501249949 SOE2499:.8 249371849 2493718 S
100 107 1o 9512490 9512492 451473.1 4518731
o | 1.0 QG000 4 SO00MHLD {10 NEE
1’ 10* 1o® 00917 90917 82650 82650
[ 1 e 104 1001 1l 1001
0 [0 10 994 8 9950 49510 4950
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