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ABSTRACT: I this paper, & methed for constructing node-disjoint {parallel) paths in &-ary r-cube interconnection networks
1z described. We start by shewing in general how to construct parallel paths in any Cartesian product of bwo graphs based on
known paths m the factor graphs, Then we apply the general result to build a complete set af parallel paths (i.c., a5 many paths
as the degree of the network) berween any two nodes of a d-arv m-cube which can be viewed as the Cartesian product of
complete graphs, Each of the constructed paths 15 of length at most 2 plus the mmimum distance between the two nodes. These
parallel paths are useful in speeding-up the transfer of large amaunts of data between two nodes and in affering alternate routes

m cases of faulty nodes,

Many graphs have been studied as altractive
interconnection topologies for large
multiprocessor systems including the binary-hypercube
{Saad and Schultz, 1988), the 2-dimensional torus (Dally
and Seitz, 1986, Gravano et al, 1994), and the k-ary n-
cube (Agrawal and Bhuyan, 1984, Lakshmivarahn and
Dhall, 1988, Graham and Sedel, 1993}, There 1s
confusion in the literature about which graph is called the
k-ary n-cube. For example, what is called the torus
network in Dally and Seitz (1986) and Gravanoe et al
(1994) 1s called the k-ary m-cube in Linder and Harden
(1991) and in Bose et al (1995) while in Graham and
Seidel (1993} the k-ary n-cube refers to a different
topology. As defined later, the k-ary n-cube considered in
this paper is the same as m Graham and Seudel (1993).
Graham and Seidel (1993) have shown that the k-ary -
cube performs better in terms of one-to-all broadcasting
and complete broadcasting than the star graph with a
comparable number of nodes for practical netwark sizes.
In general, the eriteria used in evaluating interconnection
networks relate to their topological properties of
symmetry, scalability, low degree and diameter, efficient
distributed routing algorithms, recursive structure, fault
tolerance, low-cost embedding of other topologics,
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support of efficient broadeasting and existence of parallel
paths. This paper contributes to the study of k-ary n-cubes
by presenting a method for constructing complete sets of
node-disjoint (parallel) paths between arbitrary nodes.
These scts are complete in the sense that we obtain as
many parallel paths between any two nodes as the degree
of the network. Furthermore, the obtained paths are of
optimal lengths plus at most 2 mdépendently of the
network size and the distance between the two nodes,
Many research works have addressed such constructions
of parallel paths on various interconnection networks such
a5 the hypercube (Saad and Schulte, 1988), the star graph
{Day and Tripathi, 1994), and the arrangement graph
{Day and Tripathi, 1998).

Preliminaries

In the following we present a number of defimitions
and notations used in the paper.

DeFmITIoN 1: (Graham and Seidel, 1993): The k-ary #n-
cube @ is formed of N = k" nodes labeled by the
base-k integers of the form a,_ja, ;..a;, where 0 <, <k
for 0 =i < n Two nodes are connected i’ and only if they
differ by exactly one of their i digits.
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It has been shown that g: has degree (k-1)n and
diameter n (Agrawal and Bhuyan, 1984).

DeFmITION 20 (Leighton, 1992); The Cartesian product
G = G &G of two graphs Gy = (V, E)) and G, = (J5,
£5) 15 the graph G = (F, £), where I and E are given by

1)
1l

V=|<xy>|xel, and y £V5), and

If w =<, y,>and v=<x,y, >1n V" then (4, v)
15 an edge in £ T either {x,, x ) € £, and v,
=y,or{y,p)e Eyandx, =x,.

he edge (u, vhis called a Gy-edge 1f (x, .6 ) is an
edge m £y, and it 1s called & Gy-edge of (v, 1) 15'an edge
m #yo We call v, the G -component of w and v, the
(4 -component ol w.

Let Mo 8y . Ay be respectively the size (number of
nodes), degree, and diameter of G j; and let N 5. 65, A 5
ke respectively the size, degree, and diameter of (7. The
stze N, degree 8, and diameter A of (7 & G5 are given by

N=N N3 b=06+05 A=A +A 5 The size and degree
expressions are farly obvious. As for the diameter
expression 1t can be justified by noticing that a path
between any Iwo vertiees b = <x,, v, = andv=<g. W=
of Gy G 5 18 composed of two types of edges: U -edges
{affecting the Gy-component) and (7y-edges (affecuny the
(ry-component). 11 all the 7 -edges (resp. the G,-edges)
i the path from w to v are extracted and listed
mamntamning their relative order, we obtan a path from x,
tox,in & (resp. fromy 1oy, G ). Therefore 1 would
be at @ maximum distance from v in Gy G, if, and only
if, x, 15 at maximum distance from x, i G and y, 15 at
maximum distance from y, i (5.

Ler K denote the complete graph with & nodes. If we
perform the Cartesian product of K by K, for n times, the

k-ary n-cube Q: will be obtained.
Lemma 1 @ isisomorphicto Ky e Ky & .8 K (n
times).

Proof: This can be shown by induction on n_ First, notice
that g,* is isomotrphic to K (tnvial). Next, we can
abitain an isomorphism between Q: and K; » Fo b :

by mapping the node a,_d,.2.dg0f @, 1o the node
<ty q 0,005 of K e Q: | - By defimition 2, the
nodes connected to the node a = <a,_y, @, 3d,.3...dp> M
K e Q:_l are the nodes b =<8, b3 B3 -y = such
that h,_; 1s connected toa, | m K, (ie g =8 ) or

b3l .y is connected to the node @ |, _ 5@, 3. gin
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¥ = n GleG2 Similarly, f M=x % ..

0. , (re. diffening only 1n one of their #-1 positions),
but not both. Therefore a and b are connected if for
exactly one position i, 0 < { < n, a, = b, which corresponds
to the same connectivity condition Q: .

Parallel Paths in a Cartesian Product

In this section we show that If G1 and G are two
regular graphs such that for cach one of these graphs there
exists a complete family of parallel paths (1.e. as many
paths as the degree of the graph) between any two of its
nodes, then the same property holds for Gle G2

We start by miroducing some notations used mn the
construction of parallel paths. A path 70 in some graph
from a node wy to a node u, going through the
ntermediate nodes tia, g i, Will be denoted by: =
iy ot The length me- 1 ol such a path TCis denoted by
[7t]. We wall also denote TT-1 the path from u) to g,
obtained from TC by removing its last edge.

Consider two paths T =ty oug and T = v, vy,
in some graph such that the destination node of T,
comnctdes with the source node of T3 (Le. wy, = v ). The
concatenation of T and 70 denoted 70 (|78, 1s the path
e
and s

' Hm'l'l =

v, obtained by joining the two paths T

Let x be-a node mn Gy and let T =¥ )5 .. ¥, be a path in
;. We denote by <x, Tt> the path <x, y;= <x)45> .. <X,
%, i5apathin
G, and y 1s a node in G2, then <T, y> denates the path
XN LS i Glae G

DEFINITION 21 A regular graph G of degree & is said to
have complete parallel paths with maximum length
fneregse s if and only if, for any two distinet nodes w and
vof G, there exists a set of 8 node-disjoint paths between
w and v such that each of these paths is of length at most
dist(uv)=r, and at least one of these paths 15 of length
distluv), where dist(uyv) s the mimimum distance
between w and v i (G, We use the abbreviation: & has
CPP/r-MLI

TueoreM 10 If G, 15 regular of degree 8, (75 is regular
of degree 8,, G| has CPP/r;-MLI, and G 3 has CPP/r ;-
MLI, then G2 G has CPP/mux(2,r ;1 5)-MLI.

Proof: Let u=<x,, ¥, > and v = <1, ¥, > be two distinct
nodes in G& G,. We distinguish two cases:
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Casel:Ifx, = x andy, # y,.

Let =7, nf’ be 6, parallel paths between x, and

x, in G7y. These paths exist since x, # x,, (7; is regular of
degree &, and (7| has CPP/r;-MLI. Each of these paths is
of length at most dist(x,,x J+r and at least one of them
) 15 of length dist{x,. x, ). Similarly, there
exists 6, paralle] paths T : s : T between v, and
¥, in G,. Each of these paths’is of length at most dist (3,

1
7

¥

(say m,

¥, )Fr; and at least one of them (say
dist{y,. v.). We must therefore have:

) 1s of length

|7

=:dist{x.x;),

2= "n:i' sdistixx)trpfor2 i< b,
| E}Il | = di"?!(}:ll'"}‘llla:l,
23 |n;| < disti{y. p)+r, for2 <iz b,

Let &' denote the last intermediate node on the path
T'z foralli, 2 = f = &,. In other words, &' 15 such that
(x'.x,) 1s the last edge of . Let also y' denote the

last intermediate node onthepath  ©, foralli,2<i <
.. Therefore, 3 is such that (3¢, ¥, ) 1s the last edge of

11:_:P . We construct the following &, + &, paths between
= <x; v and v= <y

i
3
T

1
T.==T

1
; T _}-'u}”{ Fu 'n:y >

]
" 1 1
TWi=<m -1y >||<x ',ﬂ},}H{x x> foralli2sisd,

s I I
s st T [|= T, ¥

Ty

4 1 =
fo % Ty ™ I>fl<m,,y [ LIWE 4 f-}’u}! foralli,2<i20,,
The path 7, is oMained by moving along the edges
of m transforming x, into x, followed by the cdges
of transforming y, into ¥, Therefore m, 15 of length

dist {x,.x) + dist (3, .02) which is equal to dis (1,v). The
path 7, 2 < i< 6 |, is obtamed by following the edges
of 7

Ed

|
of T,

except the last edge, followed by all the edges
and finally the last edge of 7, .

Since = is of minimum length and 7 is
of length at most r, plus the minimum length, therefore 7,
is of length at most dise(u,v)+r . A similar argument is
used to infer that the path 7,,., is of length disf{x,v) and
that each path 7y, 2 < £ < &,, 1is of length at most
dist{t, v+,

To show that the m, paths, | <i< & +8, are node-
disjoint we introduce the following notations, Let S, be
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the set of all the intermediate (1.¢. other than the source
and the destination) nodes along all the paths 7, 1 < i ¢
6,, which have v, as G ,-component, Notice that all these
nodes appear first (at the left) in m, foreach, 1 7 < 6,
Let 5, be the set of all the remaining intermediate nodes
along these paths. Similarly, let S, be the set of all the
intermediate nodes along all the paths m,,,,, 1 <7 < &,
which have x, as G -component. These nodes appear first
(at the left) in my,., for eachi, 1 < < 6.. Finally, let 5, bhe
the set of the remaining intermediate nodes along these
Tiaro paths.

None of the sets 5. 5, 5., and 5, has a node that
appears 1 1t more than once. This 15 justified by the fact
that the . paths are node-disjoint in 7, and the

n, paths are node-disjoint in G,. The set S, is disjoint
with each of §;, S, and 5, since all the nodes in §, have
¥, 85 F-component which is not the case for any node in
any of the sets 55, 5-, and 5, . Similarly, the set S, 1s
disjoint with each of &, and 5, since all the nodes in 5-
have x, as (5 -component which is not the case for any
node m any of the sets 5; and 5,.

f
b

1
SEI

and

It remains to show that S, and 5 , are disjont. Let

be the subset of nodes of S, that appear in =,
let 5§, denote the set 8, -S; . Define §, as
the subset of nodes of S, that appear in T, and

R 3 I 1 1 )
let S, denotetheset §,-§, 1 S, and §, are
disjoint since all the nodes of  §; have =x  as G-

component which 15 not the case for any node of
|

Sp. S, and 8. aredisjoint since each node of
1
o

5 has some intermediate node of TT.}]_ as
(,-component which i3 not true for any node
o R
n ‘Sn ; ‘S}.r
of .5‘;1 has some intermediate node of T

and  §, are disjoint since each node
as (-

component which 1s not true for any node in S; '

S‘; and S; are digjoint since each node of

S, has an intermediate node of T or y, as
(;,-component which is not true for any node in
S‘g . Thereforethe m, paths, | si <& ,+ &,,forma
maximum-size family of &,+6, node-disjoint paths
between u and v and each is of length at most
dist{aev)+max(r;,r:). Notice that 7 15 of nunimum length.

Case2: Ifx, #x,and ), =y, (thecasex,=x.andy, # y,
15 sirmilar)

Let '11:1l : ‘.W:. ...‘.Wf! be &, parallel paths between x, and

x,1n (7, These paths existsince x| #» x , G, is regular of
degree &, and (7, has CPP/r-MLI. Each of these paths is
of length at most dist(x,,x,)+r, and at least one of them
(say m,) isoflengthdist(x,x) Let y/ 1<5i<é
be the 8, distinct adjacent nodes toy, in G,. We
construct the following &,+8, paths between u and v
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m=< m, W Joralli,lsisé,

4-cube Q: . By Lemma 1, Q: is isomorphic to K, @
Q: . The node 0000 of @ f 15 mapped to the node
=i, 000= of K 2 Q: and 0120 to <, 120>, We apply

L

P [ AN b ko . .
Ty =XV, 2N,y 2liex, 0, v > Joralli, 1564 8, -

The paths =, 1 = § = &, ; are node-disjmint among each
other since the =, 1 s i< &, are node-disjoint in G,.
Each ol these paths is of length at most dist(ua)+r,,
Notice that mw; is of munimum length. The paths mw,,,,, for
all £, | < { < &, are node-disjoint among each other since
cach path has a different fixed G-component  y,  atits
intermediate nodes. Each m,,, path is of length
dist (u, v) + 2, Finally, every 7, path, | s < &, 15 node-
disjoint with every #. path, | <7 <6 | since all
intermediate nodes of © , have %, 4s & -component
which 15 not the case for any of the intermediate nodes of
Toayaj

Parallel Paths in the k-ary n-cube
We start by showing how to construct a complete
family of parallel paths between any two nodes of a

complete graph,

LEmya 2: The complete graph on & nodes K, has CPFP/-
ML

Proaf: Let 0. 1, ., k-1 be the knodes of K. Letxand y

be any two distinet nodes in K. Hence, 00 < x, v <k and
x ¢ 3. Consider the following A-1 paths between xand y;

T, =XV

A
Il

xiy, foralli, b i<k, f» r,and i« .

T'::._.- 15 of mmimum length equal 1o 1. Each '.'I:;I_P, <
F=fk 4+ xand i # pis of length 2 and has only one
intermediate node | which is different from the
intermediate node f of any other T, .. Therefore, K has

CPPA-MLI

The following theorem is a direet derivation from Lemma
1. Theorem 1, and Lemma 2.

THeorEM 2: The A-ary n-cube Q: has CPP/2-MLI.

ExampLE: Let us follow the method described 1n the

proof of Theorem 1 to construct step by step the parallel
paths between the two nodes 0000 and 0120 of the 3-ary

the construction of Case 2 of Theorem .

Step 1: Find the paralle]l paths between 000 and 12010

Q: . By Lemma I, Q: iz isomorphic to K,
& Q: . The node 000 15 mapped to <0, 00> and 120 15
mapped to <1, 20 We need to apply the construction of
Case 1 of Theprem 1,

Step 1.1: Find the parallel paths between nodes 0 and 1 in
H. These are given by Lemma 2 as follows (we use the
symbol =" in path descriptions to denote edges in the
path):

-1

021

Step 1.2; Find the parallel paths between 00 and 20 in
0, . Bu, Q; is isomarphic to K, K, (by Lemmal ).

The nade 00 is mapped to <0, 0> and 20 1s mapped to <2,
0= We need to apply the construction of Case 2 of

Thearem | using the parallel paths 0-2 and 0-1-2
between nodes 0 and 2 in K, (by Lemma 2). This resuits
in the following paths between 00 and 20:

(020
00~10-20
0001 -21-20
(00-02-22-20

Step 1.3: Combine the results of Step 1.1 and 1.2 using
the construction of Case | to obtain the following paths
between 000 and 12(:

O00=-100-120
000-200-220-120
00020120
000-010-110-120
000-001-021-121-120
000-002-022-122-120

Step 2: Use the above paths between 000 and 120 to
abitain  the parallel paths between 0000 and 0120
following the construction of Case 2 of Theorem 1. This
results in the following paths:

ODO0-0100-0120
G000-0200-0220-0120
G000-0020-0120
0000~-0010-0110-0120
0000-0001-0021-0121-0120
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0000-0002-0022-0122-0120
0000~1000~1100-1120-0120
0000-2000-2100-2120-0120

Finally, we present the parallel paths construction method
(illustrated in the above example) in the form of an the
following algonthm.

function PATHS (a,.8,; ..a g b bos o boam k)
(returns a set of n{k-1) parallel paths between a, a, ,
cagand b b L byin D) .
begin
ifn=1 then return {a,~_by} u | a,~i <b,, for O<i
<kandi+a,andi+ &}
Iw ifarr-l :br.-l Ihiﬂ
begin
S, =PATHS(a,, ... ay, b, ... by, n-1, k)
Let , be a minimum length path in 5,
S=a

foreachpathmin 5, do ;=5 v {<a, .71 _>}
foreachi, O ci<kandi=a  do

& =8 u {a, ..y = fa, .0 | <t

iy sebgb, by

retum 5,

S, =PATHS(A,q .. @gs boy .o By 11=1, )

Let 1, be a minimum length path in §,

8:= {8,480 5.8 || <B4, >
foreachi,0<i<kandi#ag_ andi=8H,, do
8= 8,0 e, oty =id, gty || <E, > ||

ib, 5.bg= by iy

8= 5, U {Sa,, 1> || 2, B0 BB B

for each path min 5, such that m = m, do
Sr=Syw a gnl=zle by b= by
B bbbk

{where b,; T
node in 7)
return 5;

15 the last intermediate
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Summary

In this paper, we have contributed to the study of the
topological properties of the k-ary n-cube by presenting a
simple algorithm (easy to implement) for constructing
node-disjoint (parallel) paths between arbitrary nodes of
the k-ary n-cube, In fact, we show how to construct
efficiently a complete set of paralle] paths (1.¢. as many
paths as the degree of the network) between any two
nodes of a k-ary n-cube. Furthermore, each of the
constructed paths is shown to be of length at most 2 plus
the minimum distance between the two nodes.
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