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ABSTEACT: A mmor problem in designing expenments when the assumed madel 18 nonlinear, 15 the dependence of the desians
an the values of the unknown parameters 'We consider 1o thas arhicle designs Tor binery data and generabize the constant
mivrmation critenon suggested by Fisher (19221 The criterion calls for designs that achieve a specidfic proportion of the 1ofal
constant information. This lesds 1o designs where dependence of Fisher's information on the unknown pardimeters 4 very hitle,
thus leacing 1o constant vanances We show thar such designs exist for any single parameter model, extendimg Fisher's result
for the exponential model. We discuss the canstruction of such designs and investigate thesr perfarmance as messured hy the
achievement of constant informanon. When two parameters e needed to speaify the model, we thow that experiments can be
designed so thet the deterrinant of the information matm o8 independent of the parameters. Construction of designi and

examining thewr performance are also mvestigated for the wa parameter case
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Optima] design eriténa for linear models based on
Fisher's information matrix are used for non-linear
models as well. A problem mtroduced by non-lineanty of
the model is that the information matnx, and hence the
optimal design, depends on the unknown parameters.
Non-linear design problems are reviewed by Cochran
(1973) and by Ford. et al.(1989). Abdelbasit and Placket
(1981) reviewed the design problems when the response
variable is categorical. In this paper we deal with the case
where the response 1o 4 stimulus 1s binary (1.e responseno
response). Abdelbasit and Plackett (1982) considered this
problem when the stimulus 15 a mixture of two stimuh.
For a single stimulus, and assuming a logistic model,
Abdelbasit and Plackent (1983) derived D-optimal designs
under the restriction of symmetry. Their work was
genershzed by Minkin (1987) and Khan and
Yazidi( LO8R).

A number of methods are used to overcome the problem
of dependence of designs on the unknown parameters
Among these are:

A
o |

L. Inital estimates known: Here we use previous
knowledge or guess to specity mitial estimates for the
parameters. Abdelbasit and Plackett(1983) mvestigated
the robusiness of such designs 1o poor initial ¢stimates.
Sirter (1992) obtained designs that are robust to poor
initizl estimates. Cox(1988) studied the case of estimating
a small treatment difference and showed that the problem
caused by nonlinearity is not severe and that the usual
normal theory applies well 1f the data 15 not very
heterogencous,

2. Sequential designs: We start with initial estimates and
proceed sequentially in a multistage design, with each
stage providing imtial estimates for the next. Abdelbasit
and Placketl (1983) obtained analytical results for two
stage designs using an exponennal model, They also
investigated the efficiency of multistage designs.
Wu{1983) obtained a class of sequential designs for
estimating the percentiles of the quantal response curve.

3. Bayesian Methods: Assume a prior distribution for
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the unknown parameters and maximize the posterior
expected information, Chaloner and Lamitz (1989) derived
optimal Bayesian designs for the Togistic model.

4. Constant Information: Obtain designs that make the
information function, or the determinant of the
information matrix, constant. This is the subject matter of
this paper. It continues the work of Abdelbasit and
Plackett (1983).

Fisher (1922, 1966) considered the problem of
estimating the density of organisms by the dilution
method. Samples of liquid are taken and we observe
whether they contain erganisms (fertile) or not (sterile).
At each dilution # plates are examined and the probability
of a fertile plate 15
pixy=1-exp(-px): x >0, p=0 i Mg i
where B 15 the unknown parameter and x corresponds to
the dilution. The senes of dilutions used form a geometric
progression
Eog=dg gm0, a0 0i=0, 1,2, ..

o1 (1.2)
where @ and ¢ are constants, with a usually 2 (Cochran
1973). The information about log [}-at dilution x is

on(pxyt

fllogh)=
(logf) PR

(1.3}

The total information from 1 plates at each dilution is (see
Plackett 1981, pp 59-61).

I(log[h -.E n{Pea Y/ (exp(Pea H-1)

1=0

(14

Note that

I{logP) =B71(P).

Thus maximizing {{log B ) is equivalent to minimizing the
asymptotic coefficient of wvariation of the maximum
likelihood estimator of . Fisher (1966) argued (see also
Cochran 1973) that 1t is the magnitude of the variance
relative to the parameter, which should be minimized.
rather than the variance in isolation, He proposed the
minimization of the coefficient of vanation, which
explains takmg [(log B ) in (1.4) rather than /(P ). [{ log B)
in (1.3), is maximized at Px = 1.59. This has no practical
value, since the choice of x that maximizes [ (log B)
depends on the valaue of unknown parameter [ itself.
Fisher (1922) noticed that the total information £{ log B),

given by (1.4), is almost independent of B and has an
approximate value of (7 /6 log &), Thus experiments can
be designed in such a way that the information funetion 15
independent of the parameter B. Such a property 1s
desirable because the aymptotic dispersion matrix of the
estimators remams the same (Abdelbasit and Plackett
1983). In what follows, we generalize Fisher's results for
any single parameter (sections 3 and 4) and examine
possible peneralizations to the two parameter models
{section 5,

General Formulation,

The general problem may be formulated as follows
fAbdelbasit and Plackert 1983), The experimenter 1S
investigating the relationship between the level of a
stimulus and the rate of response to this stimulus. Of
particular interest in many cases 15 the stimulus level that
causes a prespecified response cg. 50% ar 90%. The total
number of subjects N available for testing are divided into
# groups. The n, subjects in group 7 are given stirmulus x
(usually on a tranformed scale) and the number that
respond B, is observed. It is assumed that each subject has
a threshold level of stimulus above which 1t responds with
probability one. The random variable of the population
thresholds is called the tolerance and has cumulative
distribution function F(x ,0). Thus R, R, ... R, are
mutually independent and R, has a binomal distnibution
with index ». and probability
plx)=F(x, 8) : i=1.2....k (2.1
where 8 15 a vector of unknown parameters and F{,8)
a specified distribution function,

The design problem is to choose &, {x, } and {n, | n
sorne optimal way, subjeet to the condition n =N 1is
fixed. Optimality eriteria are based on some measure of
the information about B provided by the experment. For
a single parameter, the usual criterion is to maximize
Fisher's information function. This is equivalent 1o the
minimization of the asymptotic variance of the maximum
likelihood estimator of the parameter, When more than
one parameter is needed to specify the model F (x B,
optimality cniteria call for the minimization of some real
valued functions of the dispersion matrix. A number of
optimality criteria were proposed (see Silvey 1980
chapter 2). The most miensively studied i1s D-optimality
which calls for maximizing the determinant of the
information matrix.

We deal here with the criterion of constant
information, suggested in section 1. In what follows we
use f, () to denote the function f () evaluated on a
discrete set of design points. We drop the subseript d
when 4 continuous version of /() is considered. Consider
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the model (2.1), where 0 15 a single parameter. Then

£ n(0F(x,0)60)

LABy=3 ) — g (2.2)
=1 Flx 0){1-F(x, 00}
where n, subjects are tested atx, (i=1,2,...,4& ). For

any function A(8) of 8, the information about A {8 ) 15
given by

. 10y
I (A(8)) —— (2.3)
(A(0)
where
dA(0)
A(B)=—"—, 2.4)
(9) 20 (2.4]

Our ohjective is to find {x, } and {n, } such that /,( A (8))
i5 as independent of B as possible for some choice of A().
Mow (2.3) can be written as

Eow ) .
LB -NY — G, 0y 110 ?

=1 JY

(2.5)

where

(GF(x,0)/80)
Fe, {1 -F{x,8))

Gz, = (2.8)

Expression (1.4)  for the dilution senes follows on taking
Flx, Py=1-expl-px), n.=m A{B)=log fand k- =,

Think of a random variabie X with probability function
m x ) where

E x=x,i=1,2,.., k
m (x}=P{X=x)=)'N (2.7)
0 elsewhere
then
. NE{G(X,0 ;
10y -ELOEAN (2.8)
{A(D)}

where £ denotes expectation.

The problem isto find &, {2, :i=1,2,.. .,k }and
the probability function m, {.) which make (2.8)
independent of © for some choice of A(.). The discrete
problem (2.8) does not have s peneral solution. The
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problem is simplified a bit if we replace the discrete
distribution m; (x} by a continuous distribution with
density mix). In this ¢case (2.8) becomes

o

1 -—— | 6, 0meode

(2.9)
(A0

Choices of m(.) and A(.) that make (2.9) independent of 8

are pussible (Plackett 1981, pp 59-61). In the following

sections we consider such designs and methods of

contruction of finite approximations to the resulting

continuous design measures,

A Single Scale Parameter

Suppose that

px) = F(Px) =F(px), P=0. (3.1
Then (2.5) gives

- & n| I - 2
IJMMFNZZ;aLﬂ&m04MT (3.2)
where
(O =(ANIFN{T-F()} (3.3)

dFir)
and fg=222
A "

i§ the pdf corresponding to the cdf Fit ),
Since pl x ) 15 known when x = (), anly positive values of

xare necessary, Thus (2.9) becomes

£

= x 2w(Pxym (x)dx,

HA(BY) =
(ABn* J,

(3.4)

Take

mix)=Alx (3.5)

where A4 15 a constant, A(B ) = log B and substitute ¢ = fix
to et

f{lugﬁ}=NAf ta(1)dt (3.6)
o

which is independent of B, Fisher's result on the dilution
method follows on taking F{x ) =1 -exp (-x }
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The funetion mix) i (3.5) 18 not a proper distribution.
In practice it can be used 1n one of two ways:

(1) When secking design points {x, } we can approximate
mi x ) by samples of equal size at points {x; } such that

il
mix)dx =constant;i=12,...,k-1

(3.7)

1I

To determme the constant we need to specify x,, k and x,.
Specification of the first and last design points { x, and x,)
can be based on the awvailable information on the
parameter B oas indicated below. Note, also, that the
discrete approximation {x,} form{ x ) and Km{ x } 1s the
same for any arbitrary constant K. Thus (3.5) is
approximated by the same k-points design irrespective of
the value of A.

(2} When the points {x, i

sample sizes are determined by

i) oare fixed,

m{xl}

f. = il i Pt e
Ik

Y mix)

J=1

where a proportion ¢, of the subjects is tested at x,.
Some knowledge of f may be available before the
experiment. Suppose it 1s known that

B.<P=By,

where B and [, are given values. For any de (0, 1) define
({6 ) by (Plackett 1981)

(3.8)

e ™
rw(tde =6 1w(1)dt (3.9)
b D

Let xyand x,, be such that

ﬁr“ﬁ (1 =€) and B,«FLZI{E? (3.10)
where € 15 small, and consider a design

Afy x.<xdx
m(x) = ’ " (3.11)

0 elsewhere
This ensures that
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(]

= =

tw(nydr < I{logP) = N4

] a

NA(1-2€) o )de

(3.12)

for all Pef P, P | Thus at least a proportion (1 - 2g) of
the constant total information is achieved. A f-point
approximation to (3.11) has samples of equal sizes at
points {x, } determined by (3.7}, e, log (x., /3, ) =
constant, The points form a peomelric progression,
Setting x; = x; . %, = &, the points are

{(3.13)

where 0=L lo
k-1

(2)

L

Recall that the discrete approximation of (3.11) given
by (3.13) 15 the same irespective of the value of 4. A
zensible choice of 4 13 the one that makes mix) a density
function,

Cuestions of mterest are:

(1. To what extent is 7, (log P ), from the & - pomt design
{egn. 3.2) independent of B?

()2, How many points are needed, for a & - pont design 1o
achieve this proportion of (1 - 2e), of the total
information?

These guestions are addressed 1n the following
example.

ExampLE | Take-1 z log B = 1, F() the logistic
distribution function and € = 0.05, From (3.9}, ¢ (0.05) =
0.6,7(095) =52andx, =022, x, =14.1335.

With samples of equal size at x, and A ( B ) =log B,
{3.2) becomes

k
1, (logPy=N(B*Y. wxik) (3.14)
=1
where
¢Xp|:Bxf]|
W =ti(x )= s
1 +exp(fx )

For A-pomt designs, obtained by (3:13), values of 1, ( log
B )/ N, given by (3.14) are calculated for log f = -1(0.2)1
and the mean, standard deviation and the coefficient of
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TABLE 1

I flog B) /N over lag p=-170.2) 1.

K Mean sD Coeflicient of
Varanon
2 00231 (0.02120 0.917
3 0, 1096 00313 0.286
4 0.1237 DT R 0.063
5 01326 (L4 0012
i 0.1379 00011 0,008
7 01417 00013 0,009
8 0. 1444 00015 0.010
4 1465 00016 0011
L0 014582 (17 0.012
L1 0.14946 Og) s 0:012
12 (1507 00019 0.013
13 Q1517 (0020 R
20 1556 00024 0.01%
30 1580 00026 0017
30 (1339 00029 0.018
LETY] 01613 NEER] 0.019

variation of f, ( log B )/ N are computed for different
values of k. The results are presented i Table 1. From the
lable we see that

(i) 7;( log B )/ Nincreases with &, but rather slowly from
six ponts onward,

(11} Minimuom variability iz achieved at & = & The
coefficient of vanation increases shghtly with k fork>6
but remains small.

From (3.6), we see that the total information about
logP for the logistic distnbution function 13 N4 log 2

-1

Chotce of 4 = Iogi] that makes (3.11} a density
x
t

pives

14,135

Hogl) /N -[c:gz_r"lug[ ] =0.1667 (3.15)

e

with € =0.05, 1 - 2e = 0.9 and
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{I—EE}&?@w,lfﬂu (3.16)
When the mterval [x, . x, ] 1s reasonably covered, we
expect the mean of [, ( log B ) to exceed 0.1500. Table 1
shows that more than 10 points are needed to cover this
range suitably

A single location parameter

Sumilar results as those of section 3 hold for a
location parameter where

pix)=Fix-u) 4.1
* -

L) = X nwlx, )/ (A ) (4.2)
i~

where wit) 15 defined by (3.3). The analogue of (3.4} 15

LY

H(AGR)) = ———— | W(x -p)m(x)dx (4.3)
(ACp))

Fake m(Xy=A, A(u)= pn, then

f{puy=NA Wi t)de i(4.4)

imdepedent of @

It follows from (3.6) and (4.4) that Fisher's resull
generalizes to any family with a single location or scale
parameter. [t 1s interesting to note the difference between
the two cases. In the case of location parameter y, designs
which make the asymptotic vanance of maximum
likelthood estimator(MLE) i, independent of p exist.
For a scale parameter [, designs which make the
asymptotic coefficient of variation of the MLE f3,
independent of B exist.

If it 15 known that

By S B SHy (4.5)
we can define #(8) for Be(0, 1) by
oY -
w(1)dt =6 w(f)dt (4.6)

and letx;= @, +r{e), xy=w, + 1 | - e}l where € is small.
Then take

A Xk

A x5 J:"
mix})=

(4.7)

0 elsewhere
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giving
. = TABLE 2
NA(1-2¢ windr < f(p) < NA wiedt
( ) " () " Tfu)fn Over p=-I(00.2) 1.
(4.8)

K Mean 5D Coefficient of
for we [ 4, , 4 | A &-point approximation to (4.7) has ¥anaban
samples of equal sizes at points equally spaced between 2 0.0200 00031 0.146
v, =x,and x = x,. The value of 4 in (4.8) can be taken
as{x. - & )", The stability of [, (i) and the proportion 3 0.0898 (.0046 0.051
of the total mfbn:nauun_ achieved from f-point designs are 4 0.0096 6,005 0.010
explored 1n the following example.

5 00986 0.0004 0,004

Examerr 2 Take -1 £ p < 1, F[.) the logistic ,
distribution function and € = 0.05. Then (4.6) gives -t 6 0.1023 0.0003 0.003
(0.05) =1(0.95) =294 « 3. With samples of equal sizes

: 7 0.1049 0004 0.003
atx;, (42) fmves
8 01068 00004 0,004
e 3 5
I(u)=N {Z wix, —p}.-".fc} (4.9) g9 3. 1083 00003 0,004
. L 0.1095 00005 0.004

L)/ Nis computed for p= -1(0.2}1, and different k-
poinis designs equally spaced between x = -4 and 4, The L 0.1104 0.0005 0.005
mean, standard deviation and the coefficient of vanation

i . iy 2 i 0. 5 :
for different values of & are tabulated in Table 2. The table l QI 9.0002 £.00
ghows that 13 701119 0.0006 0005
1. Minimum variability at &k = 6 and the coefficient of 14 0.1124 (L0006 0.005
ariation stays.small for & =6 -
TGRSR AR 15 (.1129 0.0006 0,005
20 1) shows a lot less vartability than Z, ( log B ). L6 01123 00006 0.005
Also from (4.4) with 4 = 8, we get 20 0.1146 0.0007 0.006
. ; 30 01163 0.0007 0,006
Fly=0:1258 and 097 ({py=0.1125N
a0 Q1176 . O00E 0,007
Thus when the interval [-4, 4] is reasonably covered we
expeet the mean of £ (u) ¢ N to exceed 01125, The table 100 0.1186 0.0L 0.007
sugrests thal about 15 poimnts are needed for suitable
coverage. This design criterion seems to require a lof
more destgn points than other design eriteria. = .
J i r e For a k-pomnt design {x,, %, .. . x|, the information

The Two Parameter Model matrix for. wand Jog Pis

Single parameter models are much less used than
. ; E n.w -E n{x -piw
those with twp parameters. The standard model used 15 et e i

1 logP) = B* ;
R —Z nJ[xr.—u}mf E nj[:.rl —j,i]‘wl

(5.2)

plx) = F(Blx-p)) (5.1)

S ; where n. subjects are tested at x and where
The parametrization F{ e + Px ) 18 equivalent to (5.1) with 4 |

o= -/ [Band the following resulls apply equally to

bath, R _-N{EP{I -p)) = —— m—mﬂl}?}z .
; 5 FBoe,~p {1 -F(Bx,-p)}

62
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Taking limits as & - =, the information matrix becomes

I(p. logP) = p°N

f mx)w(Plx - ))dx - f (= pdm(xIw(Blx - p))elx

~[GmmmEw B -pnar  [x-nlmeow (B -u)dx

(5.3)

Looking at the parameters individually we would like the
asymptotic variances of their maximum likelihood
estimators to be independent of the parameters, No choice
of m (x) will achieve that, Note that the requirement of
constant asymptotic variances means that the following
two integral equations should be simultaneously satisfied.

p? f " mi()(x-w (Bl —p))dx
— =k, (5.4)
det (s, logP)

ﬁf*f"“m{x}m{{}{x—u}m

detI(u,logP)

=% (5.5)

where &, . &, are constants.
We seek mfx) that satisfy (5.4) and (5.5
simultanepusly. No solution has been found, and we

believe that none exists.

Equations (5.4) and (5.5) imply that

f {2 —p ez eo( Plx - p)edx - K ] e Yoo Bix — ) edx

(2.6)

where K =%, / k.. Hence we have

mEM(x -pY -K a(Blr —uNdx=0 for all p.p
(5.7)

Now if {@(Plr-p))-re<p<om, —max<= >0} is
proportional to a density function of a complete
probability distribution, then m(x) must be zero except
perhaps at x = p+ /K. Hence when 4. ) 15 proportional

to a density of a complete probability distribution, no
design measure would make the asymptotic vanances of
fand log[iconstants.

Now consider the determinant of the information matrix
(5.3,

dﬂtftu.lﬂgﬁkﬂ‘ﬁzﬁ[ {xm{x}w{ﬁlix —uldx | (- mix)

=

P )
w{Pix --M“J}cfx-(f (x—pim(x)w(Pix y)}dx) }

(5.8)

Substitute r= B ( x - u ) and take m{x) = 4, hence

det/(p,logP) =N 4 :{f »{ﬂt_f}a’!f 1 ¢ 26

s 2
( f fm{r}.:f:] }

Thus the determinant of the nformation matmx is
mdependent of the parameters when the design measure
15 uniform.  Abdelbasit and Plackett (1983) suggested
calling such designs D-reliable. by analogy with -
optimal designs. Twao open questions that merit further
investigation, and are not addressed here, are

(2.9)

[1] Do D-reliable designs exist when the model has more
than two parameters?

[2] Can we find designs that make other functions of the
information matrix constant? In other words, by analogy
with D-reliability, do 4-reliable and /or £-reliable designs
exist for models with two or more parameters? We hape
to investigate these problems in future work.

Going back to D-reliable designs, let us now consider
A-point disciele versions of the D-reliable continuous
design obtamed above,

We can use arguments similar to those usged in
scetions 3 and 4 for single parameters. Call det 7( y, log
P )in (5.9) the wtal determinant. Define ¢ ( € ) by

i) e Vo ey h 2
( m{f}:ﬂ} 2 {0dt J —L :mmmJ
B ] ] =) L]

=edetd(p,log[h). (5.10)
Suppose 1t 15 known that
n,suspg BosPeB, {5.11)
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Detine
(€) e) TABLE3
r ~
£ ER T B S (3.12) ) . ) )
B I}L The determinant of the information mairix over a grid G
s i " Uniform design measure on [-1, 25, 3.25].
4 Fl K Mean 5D Coefficient of
i RRAE o i T T
e L H (5.13) Variation
0 elsewhere 4 00173 0.0320 108488
we get at least a proportion (1 -2e) of the total 3 0.0331 00338 1.0097
deterrminant det f(p, log B). A k-pomnt approximation to 6 0.0919 0.0550 0.5984
(5,13) has samples of equal sizes at points {x, | equally
spaced between x, = x,and x, =x, Apamwetake d = 7 0.1134 0.0480 0.4236
(%, - 2,7 n (5.9 for assessing the performance of 4-point )
8 0.1306 0.0412 0.3152

approximations. Issues of stability of the determinant and
the propartion of the total determinant achieved by k- 9 0.1474 0.0283 0.1922
point designs are again explored using an example,

10 01551 0.0209 0.1345
ExXAMPLE 3: Brown (1966) considers & probit model with )
: = A1 LE A7
0w 22,01 < o 2025 In our notation these £ A L 007
translate to 12 0.1602 0.0097 0.0608
Dep=2, 4<P<l10 (5.14) 13 163l 0.0042 0.0256
r " . 4 60 0016 0.0099
Take F(.) logistic, then (5.10) gives l Lt [}
L5 0. 1666 (00094 (1.0057
f e Fio 16 D168 0.00067 0.0040
[J m{:jd:) (J xlm{f}df) = edetf{p,logfh) )
ey ] & 17 0.1694 000067 00
(5.15)
18 01706 000071 00042
Eguation (3.15) holds for any distribution which 1s 19 01716 oGS 0.0044
symmetric about zero. These finite integrals cannot be 20 0.1725 0.0007% 0.0045
obtamed analytically for ¢ither the logit or probit models.
An alternative medel, which we mtroduce in the 30 01786 000104 0.0058
following section, is used. From the results given in i ~
section 6, we expect the results obtained using Uus model 20 4l 0.00127 0. 906
to be equivalent to those obtained using a probit or a logit 100 0.1877 0.00146 0.007%

model.

For a & - point design, with equal sample sizes, the

3 5 » T i : I 3 p = - & a 1 i -
For this model dEI‘T{“'!“Eﬁ} N'ATm/Band 1 (0.9) determinant of the mformation mamx in(5.2) 18

5.015. Thus (5.12) and (5.14}) give

[k !
x, - -1.25, x,-3.25 (5.16) Y noY apx-uio,
= 32 =1 iil
detr fulogh) = LE {7 >
E 2
Thus taking A1 =3.25 - (-1.25)=4.5in (5.9), we get ‘( E ”,{x,_H}W,]
i=1

: ; (5.17)
detf(p, logB) = NIm /8% (4.5 =0.191N8"

We thus expect det [, ( p, log B )}/ Mo exceed 0.172 for

and a propartion of 0.9 of that is 0.172 N'%, a reasonable coverage of the interval [-1.25, 3.25]. The
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determinant in (5.17) is computed for equally spaced
design between -1.25 and 3.25 over a grid U = B where U
= (0.2) 2 and B = 4(1)110. The means, standard
deviations and the coefficients of variation of N
det 1, (4, log B ) are presented in Table 3 for different
values of k. The table shows that

(1} Minimum wvanability 15 achieved with about 16
points. Increases in the coefficient of variation for k> 17
are very small. The determinant looks fairly stable with
12 pomnts ar more,

(2) About 19 points are needed for reasonable coverage
of the interval [-1.25, 3.25]. As noted before these designs
seem Lo supgesl many more pomnts than the number
suggested by other criteria.

An Alternative Model

Caleulations for Example 3 above were not passible
for standard models, because the weight functions w(/)
resulting from these models make integrals hard to
evaluate. We can specify a convenient weight function
wif) and find the corresponding moedel {Abdelbasit and
Plackett 1983). MNote that from (3.3)

w(r) = (ANVIFW{1 -F(n)}

let A(r) be an arbitrary density function. A general weight
function invalving & (¢) 1s

w(r) = wha*h  arn (6.1)

corresponding to the model

sy = (1) = 5in2{§h’(af}} (6.2)

where H (£ ) is the distribution function corresponding to
the density & ( 7 ) and a is any positive constanl, This
gives a general model, different forms of which may be
used by choosing different functions & (1).

Taking £ {t ) the normal density leads to

- L
5

i) = expl—a’t? (6.3}
and

s B b8
F{t) =sin {E—@(arj} (6.4)

where @ 15 the cumulative distribution function of the
standard normal. Since & is quite arbitrary, a sensible
choice for it is the one that normalizes w(f), e make

TABLE 4

Comparison of the probit, logit models and our model of
equation (6.6).

X Logit {6.6) Prohit
d 0.50000 0.50000 050000
0.2 0.57912 0.57924 0.57926
0.4 0.65437 0.63526 0.65542
0.4 0.72261 072526 0.72574
& 078187 078715 078814
1.0 LE3143 083976 084134
1z 0.B7157 088279 A
1.4 0.90327 0.91670 091924
1.6 92774 054247 094520
1.3 0.94646 0496134 .96407
2.0 1496052 097451 0.97725
232 .97099 (0.98403 93610
2.4 97RTS 0.99016 099180
26 (.98447 099410 099534
28 0.983866 0.99657 [.99745
3.0 0.99713 0.99506 049865
35 0.99626 099959 0.29977
4.0 099831 0994993 0.99997
4.3 0.994924 0.995994 LG
510 000066 100000 100000

Tw(t)di=1, Thisgives a = and henee

T‘CVEE
w(t) = s exp( ~dr¥inh) (6.3)
.]._:2
F) = sin? {E cb[ i] } (6.6)
2 Vi

The model (6:6) 15 the one used for the caleulations in

Example 3 above,
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A question of interest is how does the model] given by
(6.6) compare with the standard models, specially the
probit and logit models. Notice that only the shape
parameters of the three curves are of interest, so we may
neglect the location parameters. We therefore compare
the functions

(i) Logit model p (x) = (1 + exp(-ax )}’
(i1) Probit model p (x)= @ (P x)

(i) Our model p (x) = sin’ E@m}}

Cox and Snell (1989) compared (i) and (11} with other
models by equating them at the 30% point. Finney (1978,
pp 362-4) compared the same models by standardizing
them so that they all have zero mean and unit varanee,
The probit and logit models are known to agree closely
except in the extreme tails.

We note that all three functions above have the same
value 1/2 at x = 0. We avoid imposing any constraints
and simply equate three term Taylor expansions of these
functions about zero. Setting one of the three parameters
o, B, ¥ equal to 1, the other two are obtained, Note
further that all three distributions are symmetric aboul
zero and the seeond dervative vanishes at zero for all
three functions (1), (11) and (1) above. Thus equating
three term Taylor expansions reduces to equating the
three densities at x = 0 and only positive values of rare
needed for the comparison. | Setting B =1, we pot
12 =21ﬁ ./r\E and v =2
a. B, _:ir";r:llf ¥, the values of the three functions above were
calculated for different values of x. The results are shown
it Table 4, The table shows that our model 15 very close
to the probit and farly close to the logit. Actually the
curve for our model lies entirely between the curves for
the probit and logit, with logit the lower and probit the
higher of the curves.

7. With these values of
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