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ABRSTRACT: An unportant problem i staustical ecology (s how 1o determine the size of an ammal population, The best
knewn techmgue is the eapture-recapture technique. A random samgle of individeals is capueed, tagged in some way and
released back into the population. After allowing ture for the marked and unmarked individuals to mix sufficiently, a second
random sample {5 taken and the marked ones dre observed. Using measure change techniques, we estimate recursively
canditional distributions of various quantities.

Key Words: Capture Recapture, measure change, unnermalized conditional distnbunions, parameter estimation, Gaussian noise,

Hndden Markov Maodels (Elliott e af, 1995 have
been used extensively in such areas as Engineening,
Computer Science, Communications, Medical Imaging
etc. In this paper we are using measure change techmgues
to estimate the hidden number of individuals 1n an animal
population using partial information provided by the so-
called capture-recapture technique.

A random sample of mdividuals are captured, wagged
or marked in some way, and then released back into the
population,  After allowing time for the marked and
unmarked individuals to mix sufficiently, a sccond simple
random sample is taken and the marked ones are
observed,

At epoch [ wrile N, for the population size, m for
the number of marked and released ndividuals,
il = Ef | for the total number of captured and marked
individuals up to time &, M, for the sample size, n, for
the number of gvailable marked individuals for sampling

and y, for the number of captured (or recaptured)
marked individuals.
Recursive estimation and Maximum  Posteror

estimators are discussed.
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The model proposcd 1 Seetion 2 (se¢ suloregressive

equation 1 below) leads to recursions for the
unnermalized conditional probability distribution of the
hidden number of individual which involves integrations.
However the model proposed in Section 3 (o himite state
Markov chain) leads 1o hOnite dimensional lters
invalving only finite summations.
Finally the case where tags could be lost between samples
1s discussed and a Martingale 'nosse’ present in Markoy
chains 1s replaced by a Gaussian noise as suggested by
(Krichagina et af, 1385},

A First Model
All random wvariables are defined initially on a
probability space (L, F, P). All the filtrations defined

here will be assumed to be complete.

Write Gk ZG{NJ. R Vo M, [<k), and ¥, =0y, f<kh
We assume here that

1. The population size N follow the dynamics:
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If the number of captured and marked individuals 7, is

Ny=Npy W% () kept constant (2) takes the form:
N, has distribution 7, and v, 1s a sequence of independent Elk
random variables with densities ¢, p (D)= T B F =
2. The ng are random variables with conditional 3. The observed random variable y; is assumed to have
binonal distributions with parameters a conditional binomial distribution:
P, -p{rik,yl...,,yk,ﬁ} and 7i,. For example
M& moym g\ My
PO MG, Ny M) = ey By s
b Ja'r'* le
Bm | 5
aa " - Define A,= 1. For !z 1 and for suitable density functions
Iy t =
Om, +0%m,  Om,+0m, N
e = (2)
m, A,
) T N_oAY N 2 ¥ ny M
5 .E.tﬂmﬁ :nk-lﬂp Lo J,I-S{ R M' py (L py { n“] (I -?’)h
k ﬁ! .F.-E'L_ k-1 J‘?‘: (br[j'b'l,]l 27 F Ny

and A, =[[f_ . :‘Ll.

0 <8 < 1is a parameter assumed to be known or 1115 to

be estimated, The powers of 8 express our belief that as

time goes by early marked individuals are becoming less LemMa 2.1: The process A, is a G-martingale

and less available for recapture due to various causes

including deaths, ermgration, etc.
ProoF: E[AJG, 1=A, E[AJG, ], so wemust show
that E[AJG, ,1=1.

[ N 1 (s N e )
E :'IL (.r k- £ - 1-—= 1= E e J
Vgl S Gv) M N, % N, Pe P 1G s
N N -n Sl t i=My
5 d E[S{ il *}Pl i“_pk} N 13[[ 1) y [l_ﬂ]y |Gy N o MG,
2™ (bk(vk} Nt NJ:
1 [_SKN;--]]IJJL-{'N&:I My K. +n Mj [ *1{1 ]
= Eg = 'I = ] &k |G |
ZM*”;" l tbj;':""k} i { e ng m - l..'
[s(N M ] I g K -M |
:L-E\‘S{ k']}q‘rt( k}pk t(l _pk} 3 ;-E"[ EJ}' [ 1 _H_Ik)?x let- I‘
EH* ¢]k|:"y't} L% Jhl'rj: ."\'k

3“"2 JUN sV vy)
G,
B v,
SN N, =5 (N _v)
b,(v)

d}k{u}du—flpt{u}du =1
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RECURSIVE ESTIMATION IN CAPTURE-RECAPTURE METHODS

A new probability mesure ¢ ¢an be defined by setting
d@/dP|. =A,. The pomnt here is that:

LEMMA 2.2: Under the new probability mesure O N, n,
and 3, are three sequences of indepéndent random
variables which are independent of each other, Further,
M, has density |, n, has distribution hin [rik,%) and v, has
distribution hin Mf"j. ;

PROOF: For any mtegrable real-valued functions f, g and
frand using a version of Baves’ theorem (sce Elliotl ef al,
1995) we can write:

Em‘wk}g{”k]hb}i}‘iiigtq]
E(AG,. ]
=E[AAN Dz(n Jh(y YA G, ]
(¥, V)

E VN gln phiy DG, 1=

That is, under O the three processes are independent
sequences of random wvariables with the desmed
distributions.

Using this fact we derive a recursive equation for the
unnormalized conditional distribution of N, given y,. For
any measurable test function feonsider:

G =1
E AN, 1T,

ELANIIY,]= 3
Egiﬁk l.]’r*]

(3)

The denominator of (3) being & normalizing factor we
focus only on the expectation under Q in the numerator.
Write

E AN YA, T2 f fi2)g (2)dz. ()

= B[N Palnhly)— 1 E = M 1py
djk{uk:l 2.!1.
) l n*‘|| Py my \pcM ) .
i) [hu*}ﬁ[ N—_':Jll [ 1 _I;J |Gk-1'hk"”t'M1’I|Gk-1
SOV VL) . p—
=LV gln hiy) — B L By
(i]j-{v*} 2"'
ier h(m)[ i) ,..[ | —-"”] i M*] L[ EJ _m[ i ..EJM_M'
|_..n 1] NJ: Nl’ i ; 1'“! .|"rr*_ h."k I
J.[‘Mi_]}wj{ﬁl.:l 1 ", —Ai+h
=EIfN gl G ) ——————p; (1-p) "
e bylv,) 2k t
= M, .M 3
|E hfﬂl}[ : ]_MlecJ'
=0 m . ] |
SOV, W) -
;Egihuak}]E[ﬂNl_‘]g{nk} e e — =P A8,
Pylvy) 2" :

B EQ [;I{-Fk}] E{_}[g{” *HEMNJ‘ A —v*]

SNV DN, sV ) %

G-y

@, 0v)

-EQ[ﬁ{Fk}]EQ[g{HQ]fﬁNt_. TN WISIN L JWN sV vy

= E, [y JIE ;lg(n ] | Raehr () du

= B [h{y DIE ,lg(n DI AN )]
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In view of Lernma 2.2 the left hand side of (4) is;

=E[ANA, LA

IY.J
[ 2N

oo Wi
ol

)

U
¢x[ —

s(1)

LI-'I*{Z}

i Ay AT 1
gl —p* a'z—[ : ] e 1

.'I,‘ O\ My,
f f fl:z:l i 1 i] ’
£ x

Pl -p) ( ]a*k w)dzdu

Comparing this last expression with the right hand side of
(4} we have:

THEOREM 2.3: The unnormalized conditional probability
density funetion of the hidden Markov model given by (1)
follows the recursions:

(5)

. ﬁi'{i -pt)jﬁfc-h

(Note: we take 0" = |,

REMARK 2.4: The normalized conditional density of N, is
g,(z)

[a,0d

geven by . Themtal

(normalized) probability density of
M, prior to sampling, 157, (1), so:

go(2)=Ty(2)

(6)
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and further estimates follow from (&),

[[ the distmbution of &, is a delta function concentrated at
some number A, (9) becomes;
z—A ]
{4}

B o2

(A}

(7

PARAMETRIC ESTIMATION: Our model is function of the
parameter p,, the proportion of the accessible marked
individuals at epoch k. Suppose p, has dynamics given by
{23 We also assume that 8 will take values in some
measurable space (€, B, v). We now derive a recursive
joint conditional unnormalized distribution for &, and 6.
We keep working under the probability measure (.

THEQREM 2.5 Write

qt{z,ﬂjdzdﬁ:EQ[I{Ntedz,ﬂedEm;’irk]_ Then:

b AT M L]
qk{:,ﬁ} _EM"E ( lJ ( 1 _i) F*{E’_}J[ 1 P*EG}] [ .J:J
1=0 Zz ! \ I

o)

Flu)

(8)

o (. B)du

Proor: Let £ g be ntegrable test functions.
Egmwk}g{ﬂm;’yk]—'ffﬂzngi'—'}qt{:.v)dza"r'[v}- (%)
Using the independence assumption under € the left hand

side of (12) 15

-—EL,[,ft,vI}g{mh;!,l;'|:r'*]

¢t[ z-.-"-"*_IJ
M N
i]r il L

AF
=IE ﬁ[z)gqv} 1- B
Z f SNz
: W AL,

v p el 'P,‘ivl} N dxd .-'{vJ[
L

e
-EH'Efffﬂzjgfv} 1——] R LR

&)
- F*‘[V} {1 _Pt{'f:'} L ; ]C}'L_II:TI.?Jd.ﬂ'HdTI:: :I



RECURSIVE ESTIMATION IN CAPTURE-RECAPTURE METHODS

Companng this last expression wath the right hand side of
(9) gives (8). If at ime 0, O has density & (8 ) then:

Eﬁ{z!‘ﬂ} _EH*Z. ( 'f)h[ 1- i]M*-y.

B L

¢ [ I_H)
-t ﬁj—f k s(u)
Pi{.ajl[ 1 _PL{B]] h":a.} T {-:']_._ n:utu}du

I

ke

and further updates are given by Theorem 2.5

If no dynamics enter the population size and N, has
density ¢, (.} independently of N,, / < £, the recursion in
Theorem 2.3 simplifies to:

" SN My,
2::01=0,(g, (.82 [‘) (I 'lJ

¢=0 E-J

Al 7
pt{ﬁ}’[ ! -pE{BJ] [ "_*) (10)

I

Maxivus POSTERIOR ESTIMATORS: Quantity (6) (or 7} 15
a function of the unknown population size and could he
maximized with respect toz yielding a eritical value

,*J',_which 15 the Maximum Posterior estimate of & at

epoch 1 given y, Similar maximizations at later times
will provide Maximum posterior Estimators (MAP) for
the population size at these times.

PATHWISE ESTIMATION: We now derive 3 recursive
equation, which does not invelve any integraton, for the
unnormalized density of the whole path up to epoch k.
Write

t:
qulzpnz )z de =E [Nz €dz). (2, 6dz )N, TY ],

THEOREM 2.6:

i i1 ¥ Py MeE) A
e
¢ e .
q}*[ k =1 |
i EJ.-.' ‘gl:zt-|j"l
Pell-py” —

g @ Bigy) (1)

Again we have:
Golz) = Tyl2)

. R
¢J ( 1 ﬂ)
Ay 1 8250

sz,

a

g,(z;z,)=2" EI [ i]Ml -FI[ ﬁ_' ] Pf[ : _F':)

1:0 i

th[zﬂ]l

and further estimates follow from (11).

However no integration 1s needed in subscquent
recursions.

MaxiMUM POSTERIOR ESTIMATORS: Expression (11) 15 a
function of the path (z, . . . , ) and could be maximized

yiclding a crtical path (ND,..,P},C}. Since no integration s
involved here one could substitute, at a ime & say, the

sequence of entical values NV, N, and then maximize

M1
g x{".'? D'"’"'"?t- (+2,) with respect to the variable z, to obtain
an estimate for vV, ,

A Second Model

Suppose that on a probability space (€, £, Q) are miven
three sequences of independent random variables N, n,
and yv. Forke M, N, is unitormly distibuted over some
finiteset § = {5, ....5}= N-{0},n hasa binomial

. ; 17
distribution with parameters [ﬁg! J and ¥, has a
2

binomial distribution with parameters [M t,i:l whire M,
i 2 T

EM- [0} 15 given.
We wish to define a new probability measure P such
that v, has a binomial distribution with parameters

{ "o )
| A t,—*], M, is a Markov chamn with state space S and
{ Nk.

stochastic matrix C=f¢ yt “PING. =5 [N =5 ],n, arerandom
variables with conditional distributions with parameters

{Pt-ﬁe}'

Define the (3-prediciable sequences

L
=Y KN, =8 de,
/=l

forf=1,...,L.In vector nodation this is

w AN, )=C TIN,_)

where N )= (N, =80 N, _ =820

Now write A =1,

B A, m LR 1 | Moy : FNE LT
A =2"';|' "'_D:'J[l -, ) -’( _"J [ 1 ——'I) |l]:[ {I—-F&!} idlel :
' Jairi. r., i=]

and !1* z H}Lf.

I=0
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The process A, i1sa G-martingale and a new probability

q
-
dQ ™

measure P can be defined by setting

LEMMaA 3.1; Under the probability measure Pthe above
processes obey the desired dynamics, 1.e. &, 15 a Markov
chain with state space 5 and stochastic matrix C, y, and
iy, are random variables with conditional binomial

G o ' / Ay .
distributions with parameters IIMk,—*:I and (p.A)
ey
respectively. A
Proor: We give prool only for the first statement

regarding N

PIN,=3 )G, 1 =EH(N,=5)IG, ]
B UV, =5)AG, )
EolAG, 1
FEQUIN =5 )M 0G ]

by #,on,
=E,[I(N,=5)2" "p,"(1-p,) [

PR L1 Aoy LS oM
=Leg 2 E N =5 ey (1 py) (—*] [1 —*J G,
= ¥
B i
w; . M
I D g B o mom
-2 _ZZ{ *][il [1 1] J
Linceazn m .TI,-'I 5| 2“:
f Ay 1

' "
gellop,)
I_ll 2' 1]

*

=0 =PV, s N, )

Working under the probability measure (), we derive
recursive equations for the unnormalized conditional
probability distribution of N, Wrile

PIN =s,|¥,] =ELI(N,=s )| Y,]
BN =5 )AL,
EGIA T,

and ¢, =E JINV, = )AL 1T,].

THEOREM 3.2

Ifattime 0, g, =n=(n,...

and further updates are given by (12),

MAP estimators of &V, , ..., N, are provided by:

% Ty F }
3-.'|=.:;rrgmax{q1 G sy 3

rrrrr

-

I

Vo [, i
N =argmax{q, g, -9y -

RECURSIVE PARAMETER ESTIMATION: The previous model
15 & function of the parameters pand C=¢,. Let g
pfB)and C=C(0,)=¢ (8;)and 8=(0,, 0,). Suppose
0 belongs to some measurable space (8, f.y).

Working again under the probability measure O wrile

4:’{53dﬂ =E (N, =s M(BedA, |V ]
THEOREM 3.3:

A

H

1=
5

2

k] P:{E}j
#

@ =243 —]{
n=h ..'i'l,
L

C(p 0TS e (0)g, (0)

£=1

If 6, has density & (.) and 0, has density g (.):

(2)(+-

=i 15
¢ (1-p, (80" "h(8)e(8,)) ¢ (0)m,
J=1

k|

g, (®=2"%

a=0

n H

J(

&

l] P:(B]_}I

72
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A Tags Loss Model

In this section we propose a mode! where the marks
or tags are not permancnt. In this situation the marking is
done using double tagging where each individual is
marked with two tags. For ssmplicity we assume that the
two tags on each individual are nondistinguishable and
that individuals can retain or lose their tags
independently,

We start agamn with a probability space (£, F. () on
which are given two sequences of independent random
variables N, and y,. For k e N, N, is uniformly distributed
over some fmite set = {s,, ..., 5.} = N- {0}, and y, has

a trinomial distribution with parameters filM »—| where
3

M, e M- {0} is given.

Atany cpoch { each individual in the population 15 10 any
of three states, namely unmarked, marked with only one
tag, or marked with two tags which states we shall eall 0,
1, 2 respectively, We suppose that each individual
behaves like an independent time homogenous Markoy
chain with transition matnx {p,{.

At each time { the population size N, is distributed or
partitiened mto three proups & (23 &, (1), and &, (= N,
- NA2) - N (1) among the three states and we would like
ta define the set of all such partitions as the states of a
three dimensional Markaov cham (N (0), N (1), & (2
Recall that at cach cpoch [, 0 < N, (2), N, (1) < 7.

ot adtips i~ T LY 00N (10N (2)) = (7 i)
(N (00 O, (20D = ()]

Write and for any real numbers x, x; x; define the function

2 s 2 i3 7
Fl:xﬂ’xi‘xl’jﬂ’-‘fl’jz:l _[ E p]’{?xn'] [Ep.l'lxnl] [zpuxr]
=0 4+ -0

1 LT

Then p (fo i1 f=. Jond1J2) 15 the coefficient of x;"‘x,'xz' n
Fixx, %z, foJ1 2

We wish to define a new probability measure P such
that j, has a conditional trinomial distribution with

A

i

N(D) N1 N2
¥, "N, N

& i TE

paTAmeteTs . N 1sa Markov chain

73

with state space S and stochastic matrix C = {¢,}. The
Markov chain (¥ (D), N (1}, & (2)) is the same under
both probability measures.

L
%= KV, =s)c i1, L.
i1

Define agam the G-predictable sequences. Now write

A =1,

A= 3“‘[

and

1IN, =8

MDY vty N (2 13 &
{ :s) [ 1 }]m Lo

N0 ).l'.»{':'] [
N

T
N, I I I=1

L
A=II%,

1=0

The
probability measure P can be defined by

Elm =A,. Tt can be checked that under P the above

dg

processes have the desired distributions, Working under
the probability measure O, we derive recursive equations
for the unnormalized conditional joint probability
distribution of N, and ( N.(0), N,(1), N,(2)), Wrile

process A, 1s a G-martingale and a new
setiing

PIN =5 ANJORNJLINN2Y) =054, ¥
=EHN =5 MUV (0N (1), N (20) = (. £, 1)1 7
BN =5 MV (OON (1N (20 =(0,t EDIA Y]
E [AY,]

and

908 dh) = EQLIN =5, N (2) = iy, N(1) =i, N,(0)
=% =1 =L

It can be shown that ¢ (5, £, {5} 15 given by the following
TECUTSI0NS:

THEOREM 4.1:

f

. e e > ‘th.'i'ﬁ{ EJMU{ '
¥ s,

&
i i

el
52,

=1

els iy ip) = 3HJ{

iy 1
; jzbpf,l_..l_,:.,“,:H,I_,I_,rhlme?t_,{s)xfpjz}
R '
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The expected value of N, given the observations } is
given by;

A
i=1

-:Ef‘, PR AL 1,1}
E,.Efanqkua )

E[N|F,] =

Another way of looking at the problem is by considering
only the subpopulation of tagged individuals m the
definition of the Markov chain (N, (0), N, (1), (¥, (2) ). In
this case the state space is the set of all the partitions of
the totality of tagged individuals into three groups: the
one with two tags, the ones with one tag and the ones who
lost both tags, Hence we write the total number of tagged
mdividuals as A, =# =NJ(2)-N (1)+N,(0). Note that,
when sampling, we cannot observe directly members
belonging to the group of individuals whe lost their two
tags as they become undistiguishable from the unmarked

and under P 11 15 {(conditional) multinomial with
N{[}I} N;l} *-’(2] "-’{u}]
N NN,

parameters (Ml. ~——,
'Ni &

Here N, (u) 1s the number of unmarked individuals in the
population, Again note that N, (1) 15 not N (0). Given
wl1) % (2), the unobserved component y(0), under the
probability measure (0, 15 binomial with parameters

(M -y (1) - pi(2),

Write
PIN, =5, (N0}, N (1) N (2)) = (i, 7., i)Y ,]

=EU(N =s JIUN OLN LN 20 = (i, d L)) 1Y)

E LN =8 MY (00N 1)LV (2)) =000 LAY,

ones in the sample. E A Y]
Now we assume that under Q the observation process
. : , . ( 1
is multinomial with parameters (M ,—)
¥ R ( 4, and
98 ol 31, = B LN =5 TN (0N (1),N (20 =(i 1A,

A0k
= E LN, =8 ) (N (00N J(1).N(20) =i 5)) 4 [T]P

& i

(4
(
o

o

4 £

.!

.'.'n

rin Awd L
(s

e

)y,m:l( g et ID] M=yt 2y L0
5

Ay Y

|,l&|.

N

Efuv., =3 )€ JUN (00N (1), N (20 =i, 4, 1,))

4=

2

R

=]
ﬁ '—i

m

i p[‘a-'p"g}'“an’p"}}

-y (@) 31)

A |F
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RECURSIVE ESTIMATION IN CAPTURE-RECAPTURE METHODS

Using the defimition of ¢ we have:

THEOREM 4.2:
-'.:I" ; 149,02 ¥l
g8, 00 0,,0,) =2 e ( ]
3I

[ gy -:DJ
L ] pr o M —=oh P e
5

&, =0

T

Gaussian Noise Approximation

An approximate but simpler form of the recursion
in Theorem 4.2 15 o use a suggestion proposed by [2]
where the martingale increment “noise™ present in the
representation of a Markov chain 15 replaced by
(raussian nose. To this effect, let's identify, as 1t is
explained in [ 1], the three states 0, 1, 2 with the standard
unit (column) vectors e, e; & of R . Write
X; L‘{eE,EE,e3} lor the state of the # - thindividual at
time, k,1<n <#A. Then each individual behaves like
a Markov chain on (R, F, P) with transition matrix P,

]Zn'l

Define X, = . Then

X,=PX, M, (15)

where M, 15 a martingale mcrement. The suggestion
made in [2] 15 1o replace the martingale increment M, in
(13) by #n ndependent Gaussian random vanable G, of
mean 0 and covariance matrix E[M M, | whose density
15 denoted by &, .

That 1s, the sygmal process x,, taking values in #', has
dynamics

(16)

We assume that under @ the observation process 1%
i ) | .
multinomial with parameters [M - —),x . has density ¢,
4

and &, uniformly distributed over the set(s, ..., 5,).
Under the ‘real world® probability measure P, N, 1sa
Markov chain with transition matrix C, x, has dynamics
(16) and y, has conditional probability distribution given

] e

t

K]

)
i

pl'l'n_q.li}{.'e.,',..l_-.?qi-I{‘E}"-}Iﬂ’jl’j?}

75

]

M.-'J"_.J:z:l','r'tl[:' m MJ: —_}'E[’Z} yk{ I}

A =11 4‘“"[
I=0

P20 13, (1w (0) 4y (M LN

M, x, |
T e T T

PE2L YD (0), 3 ) N s,
. [ xi)‘b"{:}( o
5 5 s

! i i

=52, = 000, 3, LN ()

)h[h[ o S e _rﬂ)lq' Fel2hrl 1, 10)

P 15 defined in terms of O using th G-martingale

.tI.I[U}].r,{D][ xﬂ:]}])ﬁﬂ][ x,{zjjhm
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Nest theorem is the analog of Theorem 4.2
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THECREM 5.1: The unnermalized joint conditional
probability :iismbmion of N, and x,E E (N, =s)
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