Secience and Technology, 4{1999) 45-53
£ 1999 Sultan Qaboos University

Applying Halstead’s Metric to Oberon
Language

Fawaz Ahmad Masoud

Department of Computer Science, College of Science, Sultan Qaboos University, P.O.Box 36,
Al-Khod 123, Muscat, Sultanate of Oman. Email: fawaz@squ.edu.om.

Ospsl & Jo dedls yulie Gads
syt ol i3

Ll bl L = ool i o ot s Ll om) - Lgllantoaly Lpngs oy il il gy ish 280 £ AoMs
T adgs R gyl oloom g by e LSV i] Bl e il ol 3k o ol Lgm gl Ly
Do Rpaeall ada bl oy LAl ohe Latll pal U a3 il e e 118 mlaplaas pally e d] Gy Judasll e g il 13y
Vi Jal fu Loala Lok ol o€ pabiy phadi oy o aondl Aglae o 2] iU gralinall 3 flan ol A1 Jan Sl pie o2 o
el e Tty (a3 45 4803 Al
ABSTRACT: Oberen is a small, simpie and difficult programming language. The guiding principle of Oberon was 4 quote from
Albert Einstein: "Make it as simple as possible, but not simpler”, Oberon language 1s based on few fundamental concepts that
are easy o understand and use. 1t supports two programming paradigms: the procedural paradigm, and the object-oriented
paradigm. This paper provides the zpplication of Halstead's software science theory to Oberon programs, Applying Halstead's
metric to the Oberon language has provided the analysis and measurements for module and within module maintenance
complexity of programs wnitten in-Oberon. This type of analysis provides a manager or programmer with enough information
about the maintenance complexity of the Oberon programs. So they can be aware of how much effort they need to maintain
a certain Oberon program. The maintenance complexity of the programs written in Oberon ar any other language 15 based on
counting the number of operators and operands within the statements of the tested program, The counting process is
accomplished by a program written in C language. Results arc obtained, analvzed, and discussed in detail.

beron is a general-purpose programming language, the successor of Pascal and Modula-2, developed by Niklaus

Wirth in 1985-1988. The Oberon was purposely designed 1o serve as an implementation tool for the Oberon
Operating System. Reiser, et al (1992) stated that the Oberon language 15, however, not tied 1o the Oberon operating
system. An Oberon program, like any other computer program, consists of stalements in which a statement may have
many different forms. Ideally, the Oberon source program is made up of operators and operands. Counting the number
of operators and operands with a frequency measure of each one provides an idea of how large the program is7 It gives
also an indication of the most important or heavily used operands. This type of analysis provides a manager or
programmer with good indication about the maintenance complexity of the Oberon programs, so they can be aware of
how much effort they need to maintain a certain Oberon program. The next seetion provides an overview of the theory
of software science. Section 3 provides the related software science equations to this study. The application of the theory
15 then discussed m section 4, particularly when the theory is applied to Oberon. This section also discusses the problems,
which occur during the process of counting the operators and operands. Finally, the results are obtained, analyzed, and
discussed 1n detail in section 5.

Overview of the Software Science

Halstead (1972} is the first to suggest the use of the lexical analysis in the theory of software science. The basic idea
of Halstead's theory is that a program in a language can be thought of as being composed of operands and operators. In
a given program, we can count the number of unique or distinct operators, the number of unique or distinct operands,
the total usage of all operators, and the total usage of all operands. Halstead drew an analogy with thermodynamics,
where one can determine a number of physical properties of a pure substance simply from knowledge of its pressure and
volume. That means we can infer properties and characteristics from knowledge of their operators, operands and their

45

FAWAZ AHMAD MASOUD
usage frequencies of programs. Program operators can be divided into three groups:

1. Fundamental operators such as; +, -, /. %, =, =, =, <>, AND,
OR, .NE.,.etc.

_td

key words operators such as; IF, THEN, DO, GOTO, END, WHILE, ...etc.

3. Specific operators such as: names of procedures, functions, subroutines and entry points and tasks activation,
[

The software science theory has attracted enormous interest since its first appearance. One reason for this interest
may be the apparent success of many early experiments with this theory. For example, it has been claimed that software
science theory can accurately predict programming time and the mean number of bugs in a piece of software. The
number of bugs gives an indication of maintenance required for the software. Fitzsimmons and Love (1978) have
provided an interesting review of these early results.

Early experiments with software science theory were applied to programs written in CDC Assembly language and
Fortran. The high correlation between predicted and observed values prompted further study, and a special issue of IEEE
Transactions on Software Engineermg was devoted to the subject (Yeh, 1979). However, Woodward, (1984) reported
difficulties in applying the science theory to ALGOL 68 programs. It is probably true to say that software science theory
represents the wrong level of detail for most measurement applications. This paper will add more evidence to the
continuing debate by reporting the results of applying the theory to Oberon programs,

Software Science Theory

Software science theory 15 concerned with algonithms and their implementations as computer programs. As an
experimental science, 1t deals only with those properties of algorithms that can be measured either directly or indirectly,
statically or dynamically, and with relationships among those properties that remain invanant{unchanged) under
translation from one language to another.

Halstead, (1977) argued that algonthms and therr implementations in programming languages consist of operators
and operands and of nothing else. Woodward, (1984) provides a simple view of algorithms and their implementation in
programming languages. This view can be easily venfied by considering a simple digital computer whose istruction
format consists of only two parts; an operator code (instruction) and one or more operand addresses. Computer programs
must be translated (compiled) to the level of computer instructions before being executed. That means; every part of the
program would be either an operator or an operand. A higher-level language view of operands and operators would be
as follows:

e Operands are the variables, subprogram calls, genenic mstantiation etc., and constants of the program,
Operators are the symbols and statements that affect the values or ordering of the operands.

The software science theory provides the following variables defimtions:

n; the number of distinct operators in the specified program.
n, the number of distinct operands in the specified program.
N, the total number of occurrence of operators.
M, the total number of occurrence of operands.

From the above vanables Halstead, (1977) defined many measures for computer programs such as, the vocabulary size
n and the program length N that can be obtamned using the following equations:

L] n=n1+n1
- NzN:'i'N:

Then Halstead, (1972) argued that the formula:

e N*=(n; *Log; n;) + (n;*Log;n;,)

46

APPLYING HALSTEAD'S METRIC TO OBERON LANGUAGE

would provide a reasonable estimate of the program length N for what he called a pure program. In fact he proved this
estimate to fall wathin 10% of the real length N (only for pure programs). Further more; Halstead, (1977) identified six
classes of impunty which might cause the estimated length N™ to deviate from the observed length N, The six impurities
are given below:

1. Complementary operations: the successive application of complementary operators with one canceling the effect
of the other as when saying (not (not (true))).

2. Ambiguous operands: the use of an operand for more than one purpose.

3. synonymous operands: the use of more than one identifier for the same object.

4. common sub-expressions: the use of the same sub-expression mare than once,

5. Unwarranted assignment; the assignment of 2 name to a sub-expression, which is used only once,
6. unfactored expression: the use of an expression, which can be put mere succinctly.

A number of definitions and procedures were devised to measure quantities for programs and algorithms, Some of
these definitions are given below:

it

program volume (V) = N*Log, n.

2. program level (L) = V¥V, where V* 15 the potential volume
(the volume of the mimimal size implementation of a program).
3. language level (LL)=L* V* = ((L)*)*V.
4. programmer's effort(l) = V/IL=(V) > /V*,
5. program’s intelligence content(l) = L™ *V, where L is an estimated program level;

The following discussion seemed to be adequate to mention here as we are discussing Halstead's own formulas:

L. The volume V of an algonthm program should decrease as the language implementation grows from low level
languages such as Assembly to higher level lanpuapes such as FORTRAN, COBOL, ALGOL, Pascal, C, Oberon etc,
This is because n and N decrease since low level languages require a great amount of detail to say the same thing than
do i high level languages.

2., The potential volume of the most compact algorithm (V*) which corresponds to a single procedure call (with
appropriate passed parameters) can be determimed

From: V* = N* * Log;n™ = (N% + N *Log(n"+ n®;), where 0, and n*; are the numbers of unique operators
and operands, N*| and N*; are the estimates of the total numbers of occurrence of operators and operands. It is, in some
circumstances, difficult to determine V* directly. For this reason, the following formula can provide an estimate L* for
the program level:

LA =2% ny/(ny* N

Many researchers have used this estimated level L™ in place of the previously defined quantity L, In particular, the
language level has frequently been caleulated using L in place of L. In this paper, LL" will be used to denote this
estimated value of language level: In other words:

LL~ = (fLA]?}*V

The equation E = Viys quantifies the programming effort, which is defined as the mental activity required to reduce
and translate a preconceived algorithm to an actual implementation 1n a language i which the implementer is fluent and
knowledgeable. Halstead tried to give a quantity to this measure by using primitive metrics 30 he came up with the above
equation of effort i which he related the program volume and the program level, This relation sounds reasonable enough
because as the program volume increases the more effort it needs to be implemented and debugged, but this is only valid
for the kind of effort defined previously. However, there are kind of efforts that cannot be measured by the effort
equation. These are things such as the mental effort by the programmer to produce an algorithm for the first ime. The
main concern of this paper is to discuss existing software science theory as it 15, and not to enhance it. Therefore, the
discussion will continue only its use of effort as defined by Halstead. Finally, the equation: 1=L"*V
Defines the intelligence level of a program. This equation relates the program level to the program volume. From the
above relation, it seems that the intelligence increases as both or either of the volume and/or the level increases,

APPLYING SOFTWARE SCIENCE THEORY TO THE OBERON LANGUAGE: It 15 known that Halstead's formulae are strongly
based on counting the number of operators and number of operands in a given program or algorithm. Knowing the

47

FAWAZ AHMAD MASOUD

importance of such counts Halstead gave a fair defimtion of what constitutes operators and operands. In fact, he gave
some suggested counting rules for some languages such as Fortran, CDC Assembly, etc. Nevertheless, when applying
the above simple definition of problems and operands to Oberon programs, many problems arise. These problems are
some constructs of Oberon which give ambiguous counting results. The ambiguous language constructs are given below:

PROCEDURE DEFINITION AND CALLS: A procedure in Oberon is a group of statements that have a name and may be
invoked from other locations in a program. Formally, the syntax of a procedure in Oberon 1s given by :
ProcedureDeclaration=
ProcedureHeading";"ProcedureBody identifiers
ProcedureHeading=
"PROCEDURE"ident.["*"|[FormalParameters]
ProcedureBody= DelarationSequence
["BEGIN" StatementSequence]
"END".
Example:

PROCEDURE SqRoot{a,b.c:REALVAR rlr2a1:2:REALY;

VAR det:REAL,

BEGIN

b:=b/2;det:=b"b-a"¢;

[F det == 0 THEN (* real roots *)

rl:=(ABS({b)+sqrt{det))a;

IF b>=0 THEN rl:=-r] END;
r2:=c/{a®rl); 11:=0; 12:=0

ELSE
rli=-b/a:r2=r1;1l:=sgrt(-det);12:=-il

END

END SqRoot;

When counting a procedure name at the tme of its definition 1t should be counted as an operand according to the
operands simple definition since "PROCEDURE" 15 an Oberon keyword (operator) whose action falls upon the procedure
name. So, the procedure name is an operand of "PROCEDURE", but when a procedure 1s called from the program it 1s
called by just writing its name and its actual parameters, Formally, the syntax of the procedure call in an Oberon language
1s given by

ProcedureCall= designator| ActualParameters].
Example of procedure calls include:

ReadInt(i)
WriteInt(j*2+1,6)
INC{w][k].count)

It is clear that counting the procedure name as an operand at its definition and as an operator at its call causes an
ambiguty.

Oberon Module

An Oberon module 15 a collection of declarations of constants, types, variables, and procedures, and a sequence of
statemnents for the purpose of assigning imitial values to the vanables. A module typically constitutes a text that can be
compiled as a unit. Like procedures, modules have a type and they store values of the same type as they are defined in.
This property can qualify modules to be in the same level of vanables (storing values) and variables are always counted
as operands, Further, modules could have parameters and they can change the values of their parameters. Another
ambiguity is that, module names have the same ambiguity count as procedures at the time of their definition. Oberon
modules observe the syntax:

48

APPLYING HALSTEAD’S METRIC TO OBERON LANGUAGE

module = "MODULE" identifiers "."
[ImportList]
DeclarationSequence
["BEGIN"StatementSequence]
"END" identifiers".".

Example:

Module IFS;

VAR
al,blcl:REAL;
a2.b2.c2:REAL;
PROCEDURE Draw
...l *Procedure body*)
END Draw;

BEGIN

..\ ¥Statement sequence®)
ENDIFS.

The module names are considered as operands of the operator keywaord "Module".

The solution to the above ambiguity 1s counting the module name according to the way 1t occurs in the program, that is:

[

module names are counted as operands at the time of their definition.

2. maodule names are counted as operands when they are used as ordinary variables.
3. moedule names are counted as operators when they have a parameter

list and used as procedure calls.

Declaration of Variables and Constants

Every identifier occurring in an Oberon program must be introduced by a declaration, unless it is a predefined
identifier. For example, variable declarations in Oberon observe the following syntax:
VariableDeclaration = identlist":"type.

Examples of variable declarations include:

1,J, ki INTEGER

iy REAL

0. q: BOOLEAN

5 SET

E: Function

a ARRAY OF 50 OF REAL

W AREBAY OF 15 OF
RECORD ch:CHAR;

count:INTEGER

END

t: Tree

The above language construct has no change made against the values of the given variables. So, some researchers
do not count the declaration sections while others do count declarations on the basis that they are there in the program

and the primary rule for counting is to count the items of the program.

In this paper, we support counting constant declarations since the constant section in Oberon is defined as follows:
CONST [constant-name := value];

49

FAWAZ AHMAD MASQOUD
Example;
CONST x=5; y = 100;

The above definition looks like an ordinary assignment statement with both constant value and name as operands
and the equal sign as the operator, Therefore, this is a good support for counting the constant declarations. The suggested
count for the above example 1s as follows:

1. declaration section is counted with variables considered as operands and predefined types as operators,
2. constant declarations (names and their values) are counted as operands of the operator "=".

Other Language Constructs

Each language has its own reserved words (keywords). These keywords are classified for the purpose of counting
mnto two parts:

1. simple keywords: which are counted as single operators.
2. compound keywords, which consist of more than one keyword.

The compound keywords include:

WHILE...DO
REPEAT...UNTIL
BEGIN...END
CASE...END
RECORD...END
WITH..END
LOQP .. END
RETURN

EXIT

IF.. THEN
IF...THEN...ELSE

Some components of the above compound keywords are optional. For example,

IF...THEN,ELSE
and
[F..THEN
Therefore, a problem arises here with the optional component when exists and when does not exist. To solve this
problem, we have the following suggestions:

|. the above compound keywords are counted as one occurrence,

2, if the compound keyword has an optional component it is counted as two different keyword occurrences when
the optional part 15 omitted and when it exists, For example, IF...THEN is one keyword and IF...THEN..ELSE
is another,

With this point we conclude the discussion of designing a counting scheme for Oberon. The complete design 1s written
in the appendix (1),

Amnalysis and Discussion of the Results

The counting scheme discussed in section 4 (see appendix 1) was used together with a counting tool program that
was specially designed for this purpose to apply the theory to selected programs From Videka, (1989-1991). The results
obtamned from the above raw data are presented in Table (1) below which shows for every module the number of unique
operators (n,) and unique operands (n,) and total occurrences of operators (N,) and operands (N,). The quantinies wath
an asterisk are corresponding counts for calls of the procedures, which are included in the selected programs.

50

APPLYING HALSTEAD’S METRIC TO OBERON LANGUAGE

TABLE 1
Module i n, N, N, n* n,* N* N,*
M1 11 36 76 54 4 4 3 4
M2 8 40 G4 47 4 4 5 4
M3 T 36 55 41 4 & 7 6
M4] 5 ¥ 54 39 4 0 h] 4
M3 L0 40 63 43 2 2 2 2
Mo Lo 51 | 55 4 3 5 3
M7 8 47 &7 44 4 4 5 4
MBE 9 42 68 42 3 2 3 2
MY] 27 41 29 4 2 4 2
M10 18 B3 141 1048 0] i 0
M11 10 37 52 R & 7 10 T
MI12 14 70 106 K2 2 2 2 2
M13 L 29 61 il 0 0 i i}
Mi4 8 72 104 73 0 0 i i}

Then Table (2) shows the derived software science quantities using the same counting scheme, specifically the
observed and estimated program length (N and N), observed and estimated program level (L and L), observed and
estimated language level (LL and L L) for the selected modules,

TABLE 2

Module N N L ED LL LL*

M1 130 155.0 03739 1212 L6007 7.352
M2 111 164.2 04355 2128 JE149 19.45
M3 96 142.6 8292 2508 2482 2271
M4 93 127.5 05455 2051 1.021 14,44
ME 106 170.6 01337 1861 0742 14.36
M6 146 223.6 2304 AB55 4037 20.65
M7 16 197.6 04025 2398 7532 26,73
ME 110 176.8 1E6] 2222 1497 21.36
Mo 0 102.6 04354 2666 AGR0D 17.47
M1 249 481.7 0.0000 RETS 0.000 g.835
M1 o0 156.6 (12584 947 5487 13.13
M12 1R 3343 00eaT 1219 0370 12.37
MI13 92 120.7 0.0000 AT 0.000 11.80
M14 177 3246 0.0000 2466 0000 47.16

Results of Table (2) are used to calculate the Pearson correlation coefficient between observed and estimated values
for program length, program level, and language level. The Pearson Correlation Coefficient is a measure of hinear
association between 2 vanables. Values of the correlation coefficient (r) range from -1 to +1. The absolute value of the
correlation coefficient indicates the strength of the linear relationship between the variables, with larger absolute values
indicating stronger relationships, The sign of the coefficient indicates the direction of the relationship. The Pearson
Correlation Coefficient i3 calculated from two variables (X and Y), usually with interval or ratio level data. Each vaniable
15 assigned a score based on 1ts distance from the mean and these scores are then cross-multiplied for each subject, and
then summed.

The results of these calculations are summarized in Table (3) below. It should be noted that, since language level
LL 15 caleulated using L and estimated language level LL” is caleulated using L, the correlation between L and L 15
not independent of that between LL and L L*. Hamer et al, (1981) have wamed of pitfalls in using the Pearson
correlation cocfficient to confirm a relation between two variables. However, it has become the {de-facto) standard
practice in work on software science theory and so the results have been given here without detailed comment.

51

FAWAZ AHMAD MASOUD

TABLE 3
Lanpuage
correlation of N and N* 0.9782
correlation of Loand L 002922
correlation of LL and L L™ 00,0998
minimum LL 00,0000
maximurm LL 054870
mean LL 00,88
minimum L L* 06,96
maximum L L 47.16
mean L L™ 1841

Halstead (1977) published the list of language levels shown in table (4), which appears to confirm the intuitive
ordering from high to low level languages. The results of the expenments reported here depart radically from what might
have been anticipated, putting Oberon (with LL = (.88) equal to assembly language in Halstead's table of language level
irrespective of which counting scheme for Oberon is considered.

TABLE 4
Language Language Level
English 2.16
PL/ 1.53
Fartran 114
PILOT 492
Assembly (CDC) 88

Summary and Conclusion

The important results of this study are the following:

The counting scheme given by Halstead, (1977) needs further investigation,

The programs are pure and well structured or at least do not exploit the high Level nature of Oberon.
The theory of software science as it is does not apply to Oberon.

Undue significance is bemg attached to quantities with high standard deviation,

e

With regard to the first point, there are clearly many reasonable modifications one could make to the counting scheme
employed here, although 1t is doubtful whether this itself would change the situation much. Elshoff, I. L. (1978) has
performed an extensive set of experiments with PL/T programs. In fact he has used eight different counting stratepies to
determine the effect on the calculated software science properties, He discovered that, although some measures vary
considerably, depending on the counting scheme used, other measures, which include the language level, do not alter
significantly. In particular his results for L appear to be broadly in agreement with the language level of 1.53 for PL/I
quoted by Halstead. With regard to the second point we say that the tested modules are pure and they are very structured
so they do reflect Oberon's high level nature. With regard to the third and fourth points, the theory of software science
is doubtful and care should be taken when dealing with 1.

Refercnces

ELSHOFF, I. L. 1978 An investigation into the effects of counting method used on software science measurement. ACM Sigplan Notices, 13 No.2.

FITZSIMMONS, A, and LOVE, T. 1978, A review and evaluation of software science, ACM, computing surveps 10 No. 1.

HALSTEAD, M. H. 1972, Natural laws controlling algorithm structure, ACM Sigplan Notices, T N0, 2.

HALSTEAD M. M. 1977, Elements of Saftware Science, Elsevier-North Helland, Newvork,

HAMER, P.G. and FREWIN, G T2 1981. M. A. HALSTEAD's Software Science a Crtical Examination, ITT technical report no. STL 1314, STL
Lid. Harlow, Essex, LUK,

32

APPLYING HALSTEAD'S METRIC TO OBERON LANGUAGE

REISER, M. and WIRTH N. 1992, Programming in Oberon, Steps bevond Pascal and Modula, Wokingham: Addison-Wesley.

VIDEKL E. R. 1989-1991, Oberon-Minm) version | 2 for MSDOS

WOODWARD, M. B 1984, The application of Halstead's software science theory to ALGOLGE programs, Software Practice and Experience,
14, 263-274.

YEH, R: T. 197% In the memory of Maonce H. Halstead, Editorial in commemorative issue in honour of Dr. Maurice H. Halstead, [EEE
Transaction on Software Engineering, § Mo, 2.

Appendix 1 (The Software Science Counting Scheme for Oberon)

1. All program constructs should be considered for counting scheme such as: statement parts, program heading, and
declaration parts,

2. Comments should be 1gnored.

3. Vanables, constants, literals, file names, and the reserved word NIL are counted as operands. All operands are

counted as if they were global in scope. In other words. local vanables with the same name in different procedures

arecounted as multiple occurrences of the same operand.

4. The following entities are always counted as single operator (* is not differentiated between set and arithmetic use):
+-*/~& . | ()14} DivMod =*4=#< > <= >=: . ARRAY BEGIN CASE DO ELSE
ELSIF END EXIT IF IMEORT IN IS LOOP MODULE OF OR POINTER TO PROCEDURE

RECORD REPEAT RETURN THEN TYPE UNTIL VAR WHILE WITH

5. The following multiple entities are counted as single operator:

BEGIN..END CASES._END} WHILE..DO REPEAT..UNTIL [F.THEN IF. THEN..ELSE FOR. DO
WITH...DOSET OF FILE..OF RECORD. END ARRAY. OF

6. The following entities or pairs entities are counted as single operator subject to the accompanying conditions;
WAR 15 counted as an operator in identifiers list and is not counted as a section label.
= 15 counted as either a relational operator in expressions or a efinition operator in non-executable sections of the
program.

+ is counted as either a uninary + or binary + depending on its module. The binary + is not differentiated between
arithmetic and set usage.

- 15 counted as either a uninary - or binary - depending on its module, The binary - is not differentiated between
arithmetic and set usage.
1s counted as either a record component selector symbol or 4 program terminator depending on its module.
15 a definition operator in the VAR section and the parameter lists. It 1s a separation operator following CASE
or GOTO labels.

{ } 15 counted as either an argument list operator or expression operator depending on its module.

[] iscounted as either a subscript operator or a set operator depending on its module.

7. Procedure and module calls are counted as operators. The subprogram name following Module or PROCEDURE
is not counted, though it actually is the operand for the Module or PROCEDURE operator,

8. GOTO statement (1.e. GOTO and accompanying label) are counted the operator GOTO and the operand label.

9. Declaration of labels are not enumerated (all tokens after the label operator through the next semi-colon inclusive
a semi-colone) are 1gnored.

10. The following are syntactic devices and are not counted:

CONST TYPE VAR(for variable section).
11. The following are rules pertaining to Oberon:
VALUE is syntactic device and 1s riot counted,
Commas, () and = in VALUE section are counted as in the TYPE section.
OF in VALUE section is a syntactic device and is not counted.

Feceived | December 1997
Accepted 8 February 1999

53

