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ABSTRACT! In this paper we prove a number of results on Cauchy transforms of generalized type given by Borel measures
supported on the class of analytic funchons mapping the unit dise into the unit disk.

I et A= {z e C:|z|=1},I"=cAand let 8 ( equipped with the topology of umiform convergence on compact
subsets) denote the set of functions ¢@ that are analytic in A such that |¢§~|: :}I <1 and #(0)=0. Let M, N denote
the sets of complex-valued Borel measures on I and B respectively. Here, M 15 equivalent to the subset of N

; { i
consisting of all those measures supported on the set jx-z: .!.1'| =0

Forz e Aand a 20, let 4, denote the family of functions f for which there exists a measure p e N such that

] . .
———dulg) for a>0
f(2)= L{]_é{?} (1.1)

08Ty 9)+ 1 0) for @=0

The classes F, consisting of those functions g for which there exists 3 measure i £ M such that,

1
[ Lmdﬂ{ﬂ for >0

“rlog L dulx)+glo) T @70

1-xz

glz)= (1.2)

have been well studied (Hallenbeck er al, 1996; Hallenbeck and Samotij, 1993; Hruscev and Vinogradov, 1981:
Vinogradov, 1980). The classes F, are subsets of 4, when the measures um (1.1) are in M.

The class A, 1s a Banach space with respect to the norm

nf || || , for a>10
inf ||g|j+|f(0)] , for =0
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(1.3)
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where u varies over all measures in NV for which the measures pin (1.1) are in M.
Clearly, for fe F,,, | 1| #22 || f]],, - Itis also know form (Brannan er of, 1973) thatfor a 21, F, = 4,.

We will show in this paper that for 0 < o < [3,
Ascdg and || f1L, < 1S 1, (1.4)

This generalizes similar results for F, in (Hibschweiler and Nordgren, 1996).

We will also show that 4, = BMOA and that the norm |||, is equivalent to well known BMO norms.

Furthermore we will show that, forall = = 0, ||z" ||, £ k where the constant & 1s independent of n or .

The Classes A,

In this section we will establish for 0 < o < [ the relationship between A, and A as well as their respective
OIS,

THEOREM 1: If0 < o< B, then A, = 4, and ||f] =|f], .

Proof. Note that since 4, = F, for ¢ = | (Brannan e al, 1973), and for 0 < a < B, F, < Fyand
£ llz, II7 1|, (Hibschweiler and Nordgren, 1996), then all we have to prove is thecase 0 <a<f<l.

(1) Letfe A, where D <a <[}, then we can write

idy). (2.1)

R N

Since € F, ©f,; ,wecanwrle

1
(1-2)°

1 1 ,
(1=2) J‘, (1- fz}“’ﬂry(l) (2.2)

-

|

and

(2.3}

Now by replacing z in (2.2) by wi(z) and putting the result in (2.1) we get

.[ —[{1—1'{."/ {l}d# )

Suppose, without loss of generality that v is a positive measure and let

Z{l %,z)
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Then by (2.2}

J-g" (w Mudy)
R
converges locally uniformly to

160= [ [ g o)

n

Let 77, (w) = Z v, i) then,

Jg-@Had)= | o an ),

where ||[n, || = || || v || i || for all v. Hence by compactness, there exists a measure o, such that,
1
1) [ —ttaly). @9
# (1 - plz))
which shows that /' & A, Furthermore, ||| = v | || 1 |l Consequently,
ISl =llell = lalllvl forallu

however sinee W and v are arbitrary measures that give (2.1) and (2.2) then,

1/ 11, = infgl e[} infgf (|}

Hence by (2.3)
Lf e, SIS,

{11} Now let e 4, We want to show that e A, for any o> 0. By defimtion,

7(@)= [ 1o

: _;{Zjd,uWH /(0) 2:6)

Since Ir;-gIL € F,  F, (see Hibschweiler and MacGregor, 1989), then

fle)= |, Ir(l-f% dv{x)eg)+ £(0) 2.7)
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where the integral in (2.7) looks exactly like the one in (2.3) with « replacing P and hence using an argument similar
to the one in (1) we will get that

flz) J I (T(—dﬂ'(iff}+ 110) (2.8)

which shows that f € A4_. Furthermore || o || < || v|| || it ||, hence

171, = infflla i+ @)= |71, (2.9)

Characterization of A,

It 15 known (Garnett, 1980, p248) that a function ¢= BMO 1if and only if there exists functions ¢, and ¢, m L™
such that

g=¢ ""4_3;: +a

where both ||¢,]|. and ||¢:| are less than C |i¢)l, ; C 1sa constant and || ||, 1s the classical BMO norm (Garnett, 1980,
p248).

Consequently /€ BMOA if and only if three are analytic functions /| and f; such that

f=fth+ta (3.1)

where |[Ref ||, < Cand || Imf; ||, = €

If we define on BMOA the norm

| £ =inf{|Re f, ||, +|[Im fy L.} S = fi + f, + @} (3.2)
then by (Garnett, 1980, p248), the norms || f||" and || f|l. are equivalent.
Now we have the following propoesition which establishes a set equahty between 4, and BMOA.
THEOREM 2: 4, = BMOA

Proof: Suppose that ' = A, then accordmg to (1.1} and (1.2) there exists a measure ple N such that,

flz)= j log ;(—}“’,H( #)+ £(0) (3.3)

. ) 1
Assume without loss of generality, that p isa probability measure. Then f1s subordinate to logl—"-in f {ﬂ} and

consequently by (3.1), /' BMOA. The proof of the other inclusion follows from (3.1) and subordination,

THEOREM 3: The norms || ||, and ||. ||, are equivalent, namely there exists positive constant ¢, and ¢, such that

e | Flb£IS 1, s |lLFIk (3.4)
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Progf. Suppose /&€ BMOA, then f can be decomposed as in (3.1). Let d, denote |Re f] ||, and d; denote |[Im £, ||,
Then

Fra b
—Imif (2} € — 5
o i(z)] < 3 (3.5)
Py T
d I i E_ .EI‘
an o, m f1(2) <3 (3.6)
for all z € A. Consequently, by subordination
if,(z)= 24, log : - lng]— +if, (0) (3.7)
S T ) |
2d., 1 1
g o lo - log + £, 10 3.8
=2 losis el 1,0 63
torall z € A and where 6, w £ B. Therefare
_ 4
f 1la, *_i;(d, +d, ) (3.9)
and hence
s
”}rll,{‘:I = ;lfl = C'_-!L"r“n (3.10)

which gives the right inequality n (3.3)

Next, we show the left mequality. Let us wnie f asin (1.2) and assume without loss of generality that wis a
positive measure. Then

m f(z)| < e|| #| (3.11)

where ¢ > |, Thus

Im7(z)| < s], (3.12)

and since "Imf"m EHImfﬂ_ (3.13)
i 5 . 1

we have L < i f L < L f Ny =— 1 1, - (3.14)
"1

i
where ¢, = ﬁ:_ and the left inequality in (3.13) follows by (Garnett, 1980, p235) and this concludes the proof.
b

THEOREM 4: ||2" ||, <k forn 21

Proof: It is enough to show that ||z"||, <k forn 21, Since we showed that || . [ and

Il 4, are equivalent, let us approximate 2L - 1t is known from ([2], p240) that
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Iglf =sup [[ | VeF(-12F )% ()| dA (3.15)
¥
where p(z) = 13: %0 i a Mdbius transformation, Replace g in (3.15) by z" and || by rto get,
Zox

1= [[ Ve ] 0-r)iv () 1A
< ”n?rl""-‘(l —r?)|w'(z) | dd

A

ix l
< j' I wi e (=) () | drd 8
0 a

| Y
< 2/m’ ! r"(1—r)dr, because | |p'(2)|d8 < 2x
] 1]
- 2
Ezm;j {rzn.:_rzu}b_: 4?11 P (3.16)
i

iﬂhi‘ —1} 3

which gives us the desired result and completes the proof.

The following theorem is a direct consequence of Propesition 4.

=

THEOREM 5: 1If f{z):z{znz" isanalytioand if ) |4, [<e then fe 4, forall o = 0.

=0 n=1

Proof. Itis sufficient to prove that fe 4, since 4, < 4,. To show that /'€ 4, all we have to show is that the norm
| f(z)ll, is bounded.

o w

@), =z | <Y

A=0 LI il

a.ﬂ

|-

&Tﬂ < o0,

4

s 325

'tl} 3 n=0
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