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ABSTRACT: The paper addresses the excitation of instability waves in planc Poiseuille flow by means of o concentrated source
al the wall . The aim of this paper is to investigate the relation between the source amplitude and the excited wave amplitude
for various flow and source parameters. The source 1s modeled by a time harmeonic Drisc function and the generated disturbange
t5 investigated. By applying Founer transform on the resulting lineanized Navier-Stokes equation in the streamwise direction,
the problem is resolved using inverse Fourier transform and the residue theorem, The theoretzeal farmulation explans some
observations by previous expeniments on similar cases of excitations. Moreover, the calculations demonstrate that the
disturbance amplitude increases as the excitation frequency decreases for a fixed Reynolds number, while, on the other hand,
It increases as Reynolds number deereases for a fixed frequency

Beyond a certain critical Reynolds number the Plane Poiseuille flow is unstable. Convectively unstable frequency

components can be excited by a disturbance located at the wall or inside the mean flow. For example Nishioka,
Lida, and Ichikama (1975) excited linearly unstable waves in plane Poisewlle flow by means of a vibrating ribbon placed
very near to the wall (0.15, 0.3, and 0.85 mm from the lower wall). Their measurements of the growth rates, the mode
shapes of the excited disturbances, zlong with the critical Reynolds number showed salisfactory agreement with the
calculation of Tto (1974) which were based on the linear stability theory. Although Nishioka et al. (1975) measured the
amplitude of the disturbance they, however, did not nvestigate the relation hetween the amplitude of the excitation
source and that of the excited wave. The prediction of the initia] disturbance amplitude as compared with that of the
excited source amplitude is quite helpful for researchers investigating the excitation of instability waves in plane
Poiseuille flows. This is especially important when the nonlinear effect of the excited waves are to he investigated or
even avolded. A complete understanding of such a relation and its relevance to flow and source parameters is still lacking
for such flow. While the classical stability theory can determine the unstable frequency ranges as well as the phase speed
and the growth rates of unstable waves, it comes short of determining the disturbance amplitude.

On the ather hand, the relation between source and disturbance amplitudes was mvestigated for other types of waves
n Poiseuille flow. Expenimental observations showed that turbulent spots in plane Poiseuille flow can generate growing
waves at Reynolds numbers much less than the critical one predicted by the linear theory. Henningson and Alfredsson
(1987) investigated such wave packets using a hot-film anemometer. To simulate such a phenomenon Windall (1984)
modeled the region of disturbance by a steady traveling delta-function. Li and Windall (1989) extended this work further
by representing the turbulent spot as a distribution of ncreased Reynolds stress. The resulting lincanized Naveir-Stokes
equations were solved using Fourier Transformation n the plane parallel to the channel walls and a higher-order finite
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Figure 1. Problem Configuration,

difference scheme across the flow. Hydon and Pedley (1993)and Gogus (1988) theoretically mvestigated the excitation
of Poiseuille flow by oscillating the channel walls. Nonetheless, their aim was to examine the dispersion and the mixing
of the flow rather than to excite instability waves in it.

For boundary layer flows Gaster (1965) considered the temporal and spatial imitial value problem, i.c. the excitation
of instability waves by a localized source. He found that a spatially growing wave is excited downstream from the source;
which far downstream corresponds to an eigenmode of the homogeneous instability problem. Tam (1978) provided an
almost analytical solution of the problem for the excitation of a two-dimensional free shear layer by an eternal sound
field. More recently Michalke and Al-Maaitah (1992) investigated the receptivity of boundary-layer tlows over a local
velocity profile to a time-harmonic Dirac source. Their caleulations demonstrated that velocity profiles inside and close
to separation are much more receptive than those away from separation.

In the present paper, the excitation of instability waves in plane Poiseuille flow by means of a two-dimensional
concentrated source at the wall is considered. The aim of this paper is to investigate the relation between the source
amplitude and the excited wave amplitude for various flow parameters. Section 2 lays out the problem formulation and
in section 3 the solution procedure 1s outlined. Results for various Reynolds numbers and frequencies are presented and
discussed in section 4 and some conclusions are then drawn in section 5.

Problem Formulation

Consider a fully developed laminar Poiseuille flow between two parallel plates as shown in figure 1. The parallel
non-dimensional mesn flow is given by

Uy)=(1 -y (2.1)

where the non-dimensional velocity U is normalized by the maximum physical velocity at the center U_". Moreover, the
lengths (x and ¥) are normalized by half of the channel width b’

When this mean flow is excited by a two-dimensional, harmonic, concentrated source (Dirac source) located at a
distanice x, from a reference point, a small disturbance is generated. Here we are not interested in the temporal initial
value problem (the switch-on problem), and as such we neglect the transient effects after the excitation. (Se¢ Hurre and
Monkewitz, 1990). Consequently, our concern is with a two-dimensional disturbance which has non-dimensional velocity
components u,(x,y,1) and v,(x.y,t) in the x and y directions respectively, Furthermore, the non-dimensional pressure of
the disturbance is denoted by p,(x.y,1). The two-dimensional instability waves have higher growth rates than the three
dimensional ones. The excitation of three dimensional instability waves by a two-dimensional source requires a nonlinear
subharmonic analysis which 15 beyond the scope of this paper. Henee we are only interested here in the excitation of the
two-dimensional instability waves, The velocity, the length, and time quantities are normalized as explained earlier. For
the pressure, the reference density p” is the constant mean flow density. The total flow is then composed of both the mean
flow and the disturbance. Substituting the total flow quantities in the Naveir -Stokes (N-5) equations, noting that the
mean flow satisfies the N-S equations, and then linearizing for small disturbance the following disturbance equation
results;

Bu,/ax, +av,/ay, = 0 (2.2)
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du,fat + U du,/x + v, dUAdy + 8p,/ax - { Su/ox? + 8%u,/ay" 1 /R = 0 (2.3)
ov,/at + U av,/ox + op,/dy - { &°v,/0x* + v /By' /R =0 (2.4)

where R = U, h/v" and v is the kinematic viscosity of the mean flow. At the lower wall the boundaty conditions for
equations (2.2) - (2.4) are

u(x, -1, )=0 {2.5)
vo(x, =L t) =y, 8(x - x,) e (2.6)
where 8(x - x,) 15 the Dirac function and v, is the amplitude of the excitation source.
The other boundary conditions can be the no-slop and no- penetration condition at the upper wall (v = 1). However, since
the excited disturbance under consideration is the instabilily wave béyond the location of the excitation source, then the
properties of these waves can be used to define altenative boundary conditions. Consequently, for the purpose of reducing

the numentcal caleulation, it is convenient to define the boundary conditions at the centerline of the flow (i.c. at y=0).
For even modes the boundary conditions at the centerline are:

Uy (%, 0, 1) = &v,/0y| 0y =0 (2.7)
On the other hand, for odd maodes of instability wave

vl 0, t) = oufay]..;=0 (2.8)
The use of separate boundary conditions for each mode of instability is valid since we are interested in the unstable

modes that are excited by sources of different frequencies. Therefore, the use of conditions (2.7) and (2.8) instead of the
no-slip and no- penetration conditions at the upper wall 15 justified.

Solution Procedure
If 1t were not for the inhomogeneous boundary condition (2.6), equations (2.2)~(2.4) can be reduced to the
conventional stability equations which define the shape of the disturbance and its growth rate but nat 1ts amplitude.
However, the inhomogeneous term in (2.6) makes the problem similar to a receptivity problem from which the amplitude

of the disturbance can be found:
To resolve this problem the e ™ term 1s factored out from all disterbance flow quantities by defining

(. v po) = [uy(x), vilxy) pilmay)] e

Hence equation (2.2)-(2.4) become:;

du,/dx +dv, /8y = 0 (3.1}
-twy, + U du/éx + v, dUidy + 9p,/ox - { u,/8x7 + u/dy* /R =0 (3.2)
-1wu, + U gv,/dx + dp, /By - {¢*v,/ox* + @v,/ay’ /R =10 (3.3)
The boundary conditions (2.5) and (2.6) becomes
u (x,-1)=0 (3.4)
vi(x.-1)=v, & x-x,) (3.5)

At the center line y = 0, and for even modes, condition (2.7) becomes

u (x, 0) = ov/ay| 40 =0 (3.6)
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For odd modes condition (2.8) results in
vi(x, 0)= cdufoyln, =0 (3.7)

To be able to apply the Foureir transformation of the distnibution with respect to x, it is assumed that all disturbance
quantities decay sufficiently rapidly in x. [ f an exponentially growing instability wave 1s generated by the source then
v, =0 as x-*-=, but a growing mstability wave can exist as x—+=_ In this case we can construct a disturbance field which
decays for | x | —+=, if a surtably chosen solution of the homogeneous problem 1s superposed. The homogencous part of

the solution has later to be subtracted. Then even in the unstable case the combined disturbance can be assumed to decay
for | x | =+ =, By this assumption a Fourier transformation is then applicable. Consequently we define

[uly.k), vy ply.k)] = [ [u(xy), vi(xy), pixy)] e “dx (3.8)
The source velocity at the wall 1s thus transformed to be
V. =v,.J" 8(x-x,) e"*dx (3.9)

Equations (3.1)-(3.3) then become the conventional stability equations

tk u+dy/du=0 (3.10)
ik U -w)vdUidy + I k p-{dwdy’ -k u] /R=0 (3.11)
ik U - w) v dUldy + dp/dy ~[d*v/dy’ -k* v] R=10 (3.12)
The other boundary conditions then become
U(-1,k) =0 (3.13)
For even modes
u(0,k) = dv/dyly, = 0 (3.14)
And for odd modes
v(0,k) = du'dyly,, =0 (3.15)

Since this is an inhomogeneous problem, the amplitude of v 1s uniquely defined. That is we can write
viv.k)=¢, viv.k) (3.16)

where ¢, 15 the amplitude of v and v, 1s the normalized mode shape of v.
From (3.5) and (3.9)

W-1K) =V, (K) = ¢, v,(1.k) (3.17)
50
&= V. () / v,(-1.%)

Substituting equation (3.17) mto (3.16), v, can then be found by performing the inverse Founer transformation of v(y.k)
as follows

v, (xy) = W(2m) -~ V. vily.k) e"* v (-1.k) dk (3.18)
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Figure 2. Paths of integration in complex k-plane,
from (3.9) equation (3.18) becomes
v (Ly) = v 2m) L7 vi(nk) e v (-1 k) dk (3.19)

The evaluation of this Fourier integral is conveniently performed in the complex k-plane, The regular unstable
eigenvalues have the property that they move into the upper —k plane for complex frequency w = wr + wi, 1If Wi=0is
sufficiently large. This is important for the semi-receptivity problem since only the regular eigenvalues that cross the
real k axis as wi goes to zero lead to a causal solution of the receptivity problem and to excited instability waves, as
shown in Michalke and AL-Maaitah (1992) and in agreement with the Briggs method [ Bniggs, 1964]. Hence to perform
the only condition required, the integrand must be bounded and analytical for all values of k except at certain poles. Then
the residue theorem can be applied as explained with the help of Figure 2. When (x-x,) >0 the integrand 15 bounded only
in the upper half plane where ki is positive, Hence from the residue theorem the integration over the paths /, and /, is

[I4+14L]=12 Res"Hix-x} (3.20)
where Res”1s the residual from the inlégrand due to any poles of positive ki, and H(x-x,)} is the Heaviside function, and
Hix-x)={0 i x <%} and H{x-x, )= {1 if x >x_}

Here the Heaviside funciton means that equation (3.20) is valid for x > x, Similarly for { x- x, ) < 0, the integrand is
bounded only on the lower half plane, So performing the integration over /, and /; yields

[Lf +1L]=-12nRes H(x-x,) (3.21)
Here again (Res) is the residual of the integration resulting from the mtegrand poles in the lower half-plane. Although
the reader might think that the present analysis 1s valid only upstream of the excitation source, this elusion can be

removed as follows. Noting that H(x- x,) = 1- H(x- x, ) and combining equation (3.20) and (3.21) we obtamn

Zmwiv=11
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=[T4-T4+12mRes" | H{x-x,)-12 7 Res[H(x-x,)-1] (3.22)

Examining the bracket multiplied by the (Res) term indicates that the complete solution contains an unstable part of the
homogeneous problem (-Res) and an unstable part of the inhomogeneous problem, H{x-x,) Res. The former is only
necessary to insure convergence of the Fourler mtegrals for x—=, as was mentioned earlier [see discussion before
equation (3.9)]. Consequently, this term has to be subtracted from (3.22). One can also argue physically as follows:
The term {-H{x,-x)Res} which is equal to {[H(x-x)-1]Res} represents an instability wave which exist only upstream of
the source, Since all unstable waves can only propagate downstream (ar> 0 for @i > 0) this contribution is physically
unrealistic and has to be removed by a suitable solution of the homogeneous equation. As such. the remaining unstable
part of the complete solution, which is all that is of interest here, 15 given by

Vinee = 1H(x-x,) v, Res (3.23)

which indicates that the unstable part exists only down stream of the source position, as was already stated by Gaster
(1965} and Hurre and Monkewitz (1990). Consequently performing the integration for the lower k-plane when x-x,< 0
does not restrict the results to be valid only downstream from the excitation source. In fact the integration of equation
(3.19) is on the real k-axis and has contributions from upper k-plane { where x-x, 1s assumed to be positive) and from
the lower k-plane (where x-x, is assumed to be negative).

The poles of the mtegrand in (3.22) occur when v, (-1,k) = 0. This happens when k is equal to the eigenvalue of the
homogeneous problem e , Spatially amplified disturbances possess a negative imaginary part ki which lie i the lower
half-plane of k.

The residue term in equation (3.21), Res(k=a), can be determined if we assume a linear zero of v, (-1,k) in the
neighborhood of e, 1.¢.,

v, (LK) = v, (-La)+av, (-1,k) ok .o (k-a) + ...
Since v, (-1,e) =0 then from (3.19) we find
Res(k=t) = v, (v.&) €@ == /] 3v, (-1, k) TK| o] (3,24)

which is proportional to the eigenfucntion of the homogeneous instability problem. On the other hand, the term Res® 1n
equation (3.20) results from poles that exist when k equals the eigenvalue of the damped instability wave since they lie
in the upper half-plane of k. Consequently, Res* decays exponentially with x and can be neglected when (x- x,) 1s large
enough. Moreover, if the radius r goes to infinity then 1/ ; and I/, decay exponentially. This can be noted by mspecting
the domains of k and (x- x,) on which the integral is defined. Furthermore, 1/, becomes the integral (3.19) as r goes to
infinity. Consequently, from equation (3.22) the Fourier integral (3.19) is composed of the unstable exponentially
growing contribution due to excitation, with the factor [H(x-x,) —1]. The decay of Res" term with x might explain the
observations reported by Nishioka ef @/.(1975). They noted that *some distance from the nbbon was required for the
disturbance to establish a switch for did not change downstream™, This can be attributed to the fact that the excitation
source also excites decaying modes of instability as indicated by cquation (3.10) and (3.21). These mudes then danp out
as they travel leaving only the unstable mode in the flow. As explained earlier the term multiplied by H(x-x,} 1s part of
the solution of the in-homogeneous problem, while the term multiphied by (-1) 15 a solution of the homogeneous problem
which is independent of the excitation. This latter term is only necessary to ensure boundeness of the Fourier ntegral
ag X—+oo_ Hence we have to subtract this term and can neglect the near-field influence of Res®, 1 /; and I 4 in order to
obtain the dominant unstable part v, excited by the source, of the inhomogeneous solution. Hence from (3.23)

Vi () vi=H(x-x) A v, (y,a) = (3.25)
With the excited amplitude
A =if{av, (-1.k) K| .} (3.26)
And as such we define A, =| A |. It should be noted that the amplitude A of the disturbance depends on the normalization

of the eigenfunction. Physically this means that the measured amplitude depends on the location at which the measuring
instrument is placed since the disturbance varies with y. For equation (3.26) v, is normalized such that its maximum value
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at y = 0 15 unity. This means that A, 1s the amplitude of ¥ component of the disturbance at v = 0. Another way of
normalization can be by making the maximum value of ul(y,a) to be unity. Hence w define

A=Ay | ugd v, (0u) | (3.27)

where the u_,, is the maximum value of u(y.a). Furthermore, an other form of the amplitude, which takes into account
the growth rate of the disturbance, 15 A defined as the amplitude of the disturbance as it travels a distance of one

wavelength down stream of the source. Hence define

A\-i = FL,_-L' nmilmr {3.28]

where a1 and ar are the real and imaginary parts of &, respectively. It is clear from equation (3.24) that the disturbance
amplitude is proportional to that of the source amplitude that is expected from the present linear theory.

Thus for a given excitation source frequency, the amplitude of the disturbance can be found by calculating dv, (-1,k)/
k| .o - The value of v (v,e) is caleulated from equations (3.10)-(3.12) and the homogeneous boundary conditions using
a high order finite difference method, Consequently, the excited instability wave given by equation (3.24) is completely

computed.

Mumerical Results

For certain R and w, the eigenvalue o and the eigenfucntion v(y,et) can be found by solving the stability equations
(3:10)-(3.12) using the homogeneous boundary conditions (3.13)-(3.15) and for a homogeneous form of (3.17). In solving
these equations a finite difference method 1s utihized using the variable step-size finite-difference code PASAV3, ( see
Pereyra 1976). To utilize the code equations (3.10)-(3.12) are re-written as a system of four first-order complex
differential equations (or 8 real ones). Coupled with & Newton-Raphson procedure, the eignevalue problem is solved
using 101 points across the y domain { from -1 to 0). This method is quite efficient and was previously used to solve the
stability problems of compressible and incompressible boundary layer flows, (e.g. Al-Maaitah ¢ al, 1990), The calculated
eigenvalue and eigenfucntions totally agree with the caleulation of Ito (1974). To verify the accuracy of the present code,
its results were also compared with the temporal calculation of Thomas (1953). In doing so we fixed & to be real and
searched for complex w. The calculated eigenvalues agree up to 5 digits. Since the present paper is concerned with spatial
propagation of the disturbance, the temporal analysis was performed only for the sake of comparison. The absolute values
of the eigenfunctions for spatial modes are shown in figure 3. Here the eigenfunctions are normalized such that v(0)=1.
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Figure 3. Eigenfunctions of the disturbance normalized such that v(0) is unity, Here R=4000, o =0.013 and a=0.79 - { 0.031.
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Figure 5. The variation of the growth rates, A, and A with w for R = 80000,

In order to calculate the amplitude A, of the excited instability wave according to (3.25), the derivative of v, with respect
to k 15 caleulated using central differences as

av, (-1.k) 8kl . (k-e)=dv, (-l + A k) -v, (-Le- Ak} (2 A K) (4.1

It was checked that the complex value was independent of the phase of Ak for sufficiently small values of Ak. In the
present results A k= (1+1)x 10 Hence A, is calculated from equation (3.25) and (3.26). Consequently A, and A, are
calculated from equations (3.27) and (3.28).

Although the present theory is valid for all unstable modes, we present results for even modes since odd modes are
stable for plane Poiseuille flow. When R= 7000, Figure 4 shows the variation of the growth rate with the non-dimensional
frequency w. the figure also demonstrates the vaniation of the amplitude of the disturbance v component at y=0 (A,), and
the amplitude of the v component at y=0 as the disturbance travels one wave length down-stream from the source (A;).
It 1s evident that both A, and A, decrease as w increases for a fixed R. Around the lower branch of stability A approaches
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A, for obviuos reasons where the disturbance amplitude is nearly 1,25 Vs. On the other hand, A, and A are less than
unity around the upper branch, Since the Reynolds number in the results presented in Figure 4 is around the critical one,
the growth rates are small, consequently the values of A; are close to those of A, . When R is as large as 80000, then A,
and A, are higher than unity for the whole band of unstable frequencies as shown in Figure 5. In fact A and A; are more
than 2 around the lower branch of stability. Furthermore, A, is significantly greater than A, for this Reynolds number
due to the relatively large growth rates. Nonetheless, both A, and A, continue to decrease as w increases,

While A, and A ; represent the magnitude of the v component of the disturbance, A, represents the maximum
amplitude of the u component of the disturbance, The relation between A, and A, can be determined from conventional
linear instability theory. Figure 6 illustrates the variation of A, / A, with w when R = 14000, Around the lower branch
of instability A, / A, decreases shightly and then levels off as @ increases. It is worth noticing that A, / A, 1snot very
sensitive to w and A, 15 nearly three imes A, .

4 - ——— 0.4
—A) Ay |
“"\\.\_\_ 1
3 2T N -==04 | 003
i
" \x:_‘_'_'___ ] ) |
~ 0.02
2 ;’I & -0
A, /A, y i
1 [
7 —0
0 =i --0.01
.06 0.Ca 2.1 212 014 016 318 L0
3]
Figure 6. The variation of the growth rates and A, /A, with @ for B = 14000,
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Figure 7. The variation of the growth rates and A, /A, with B when @ = 0,131,
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Figure 9. The vanaton of the growth rates, A, and A; with R when w = 0.186.

The previously discussed results were mvestigating the influence of w, which 1s a parameter of the excitation source.
Next the influence of the Reynolds number, a flow parameter, is investigated. Figure 7 shows the vanation of A, [ A,
with R for w=0.131 demonstrating that this ratio has slow variation with R and its value is around 3. Figure 8 illustrates
the variation of A, , A, and the growth rate with R for @ =0.131. It appears that while A, decreases monotonically with
R, A, increases slightly around the lower branch of stability and then decreases slightly around the lower branch of
stability and then decreases continuously as R increases. In comparison with its variation with the frequency the
disturbance amplitude is not as sensitive to changes in R as its sensitivity to changes in w. When w =(.1 86 the variation
of A, , A, and the growth rate with R is demonstrated in Figure 9. The same behavior of A, and A; with R can be noted.
Although figures & and 9 show that A, , A, decrease as R increases for fixed frequency, this is not the case when the
maximum values of A, and A, are considered over the entire range of unstable frequency. By mvestigating Figures 10.a-
10.d (which show the variation of A, and A, with @ for R=9000, 16000, 25000, and 40000) and recalling Figures 3 and
4. it is obvious that the maximum disturbance amplitude over the unstable frequency band increases as R increases. On
the contrary, figures 11.a-11.b, along with figures § and 9, demonstrate that the maximum disturbance amplitude decrease
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Figure 10, The varation of the growth rates, A, and A, with  for various Reynolds numbers; a- R = 9000, b- R = 16000, c- R =
25000, d- B = 40000.

as the frequency increases. An interesting case 1s demonstrated in Figure | 1.b where @ is as low as 0.061 for high
Reynolds numbers. Due to the large growth rates A, has a local maximal after which 1t decreases as R increases.
Although for mtermediate ranges of Reynolds number A, is a strictly decreasing function, the results for the conditions
of Figure 11.b show that A, has a local minimum after which it increases as R mcreas.

Conclusions

Even though, no experimental results are available to compare with, the present theory explains the observation of
Nishioka et al. (1975) regarding the change of the disturbance behavior n the neighborhood of the excitation source, The
results show that the disturbance amplitude 15 more sensitive to excitation source parameters than to flow parameters.
Although the disturbance amplitude decreases as R increases for a fixed frequency, the maximum amplitude over the
results demonstrate that the flow 1s more receptive to wall excitation when flow and source parameters correspond to
a disturbance parameters which are close to the lower branch of instability, The maximum amplitude of the v component
of the disturbance velocity is around twice the amplitude of the source while that of the u component is around 7 times
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the excitation source amplitude. Hence it can be concluded that unlike the case of Blasius flow, the described procedure
of excitation can produce a distribution in plane Poiseuille flow with higher amplitudes in comparison.
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Figure 11. The variation of the growth rates, A, and A, with R for various t; a- 0 = 0.28, b- w = 0.061,
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