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 الاستجابات الهرمونية والفيزيولوجية والتركيبية للأسماك ويرقاتها للضغوط البيئية مع التركيز على
 .العديدةآثار تعرضها للبترول الخام ومشتقاته 

 عبدالعزيز بن يحيى الكندي وآن براون وكولن وارنج

اجعة الاستجابات الهرمونية والفيزيولوجية للأسماك التي تتعرض لأنواع عديدة من الضغوط والعوامل            تم مر : خلاصة
الفيزيائية والكيميائية مع التركيز على أثر البترول الخام ومشتقاته في هذا الصدد، وقد تم تشخيص كيميائية                      

ذه الحيوانات لهذه المشتقات البترولية، كما تم   الهيدروكربونات البترولية وقدرتها على تسميم الأسماك ووسائل تعرض ه        
استقصاء أثر البترول الخام ومشتقاته على عوامل هرمونية عديدة في الدم كالتغيرات في تركيز الأدرينالين                     
والنورأدرينالين والكورتيزولات والثيرويدات وهذه هرمونات مهمة في ابراز أثر الضغوط المحيطة عامة على الأسماك 

كما تم استقصاء أثر مشتقات البترول على سكر الدم والوظائف الأيونية والأسموزية وأكسجين             . ية منها خاصة  والكيمائ
الدم ونسبة الخلايا الحمراء والهيموجلوبين بالإضافة إلى التغيرات التركيبية الناتجة عن تعرض الأسماك لأنواع عديدة               

 .من البترول الخام ومشتقاتها المختلفة
 

ABSTRACT: Various endocrine and physiological responses of fish exposed to forceful 
physical and chemical stimuli are reviewed with emphasis on the effects of crude oils and 
their hydrocarbon constituents. The chemistry and toxicity of petroleum hydrocarbons are 
examined and methods for experimental exposure of fish to crude oil and petroleum 
hydrocarbons are considered. A variety of blood-borne parameters recognized as reliable 
tools in determining the relative severity of stress in fish are reviewed. The effects of stress 
and petroleum hydrocarbons on endocrine responses including changes in plasma 
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catecholamines, corticosteroids, and thyroid hormones are reviewed. The physiological 
responses: changes in plasma glucose, osmotic and ionic regulation, blood oxygen, 
hematocrit and hemoglobin concentration are explored, and histopathological effects of crude 
oil on fish are reviewed. Recent studies of the effects of petroleum hydrocarbons on fish 
larvae are considered and the increased sensitivity of the early life stages of fish are 
highlighted. 
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1. Introduction 

1.1  The Fish Stress Response 

Developing  an  accurate  knowledge  of   the  stress   responses  in  fish  is a  crucial  element  for better 
understanding of the problems related to the well-being and survival of fish when exposed to forceful 

physical and chemical stimuli. A variety of blood-borne parameters have been recognized as reliable tools in 
determining the relative severity of stress in fish (Mazeaud and Mazeaud, 1981; Barton, 1988; Brown et al 1990; 
Waring et al 1992; Pickering, 1993a,b; AlKindi et al 1996). These physiological indicators have been measured in 
a range of fish species to evaluate the trauma inflicted on fish by various stressors (Mazeaud et al 1977; Giesy et 
al 1988; Folmar, 1993; Pickering, 1993a,b). Identifying stress responses can be achieved by determining the 
changes in plasma catecholamines (Mazeaud et al 1977; Mazeaud and Mazeaud, 1981; Barton, 1988; Tang and 
Boutilier, 1988; Gingerich and Drottar, 1989; Aota et al 1990) and plasma corticosteroids (Donaldson, 1981; 
Sumpter et al 1986; Thomas and Rice, 1987; Pickering and Pottinger, 1989; Whitehead and Brown 1989; Waring 
et al 1992; Foo and Lam, 1993; Mazur and Iwama, 1993; AlKindi et al 1996).  These primary (endocrine) 
responses to stress are more immediate than the induced secondary (metabolic) responses (Barton and Toth, 1980; 
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Mazeaud and Mazeaud, 1981). The stress responses of fish have been reviewed recently by Wendelaar Bonga 
(1997). This review will highlight aspects of the fish stress response applicable in understanding the effects of 
petroleum hydrocarbons and then review the literature describing histopathological effects of hydrocarbons in 
fish.  

1.2 Petroleum Hydrocarbons 

Crude oils and their water-soluble fractions are a major source of pollution in the marine environment. 
Studies have estimated that the quantity of crude oils and their constituent hydrocarbons, which enter the marine 
environment, is in the range 2 to 20 million tons per annum (Solangi, 1980; Neff, 1990). The main sources of 
petroleum hydrocarbon pollution are oil spills, oil-tanker washings and offshore production which generates 
produced waters (Dey et al 1983; Neff, 1990; Steinhauer et al 1994; Syvertsen, 1996). Massive volumes of crude 
oil have been released into the marine environment as a result of large oil spills. For example, the Exxon Valdez 
spill released 258,000 barrels (Maki, 1991), Ixtoc I 475,000 metric tons (Jernelov and Linden, 1981), the Iraqi-
Iranian War is estimated to have resulted in the release of 6 million barrels, the Gulf War, 7-11 million barrels 
(Alam, 1993) and the Braer oil spill, 85,000 tons (Ritchie and O'Sullivan, 1994). 

Various changes occur when oil is spilled at sea. These encompass bacterial degradation,          
photooxidation, evaporation, emulsification, dissolution, dilution by spreading, clustering to form tar-balls and 
formation of the water-soluble fraction (WSF) and water-accommodated fraction (WAF) (Dey et al 1983; Neff, 
1990; Ehrhardt et al 1992). Ultimately, much of the spilled oil penetrates into the bottom sediment. It appears 
that the attraction between hydrocarbons and sediment is greater than the separation forces and the loss of 
hydrocarbons is significantly reduced after attachment to sediment (Moore and Dwyer, 1974; Hyland and 
Schneider, 1976; Neff, 1990; I.C.E.S. 1991; Steinhauer et al 1994). Petroleum residues may thus persist in 
sediment of beaches for 20 years after an oil spill (Vandermeulen and Singh, 1994). 

Crude oils are complex mixtures containing literally thousands of organic and a few inorganic compounds. 
Most crude oils contain the same major classes of compounds but the amounts of each compound are different 
(Neff, 1990). Aromatic hydrocarbons based on the benzene ring may constitute 20% of the total hydrocarbon 
content of crude oil. Crude oils usually have higher concentrations of monocyclic aromatic hydrocarbons such as 
benzene and toluene than dicyclic aromatics such as naphthalenes or polycyclic aromatic hydrocarbons 
(Anderson et al 1974). The abundance of aromatic hydrocarbons in crude oil is usually inversely related to their 
molecular weight; one-ring (benzene) to the three-ring (phenanthrene) compounds comprise at least 90% of the 
total aromatic hydrocarbons present in petroleum  (Neff, 1979, 1985, 1990). 

Aromatic hydrocarbons with methyl substitutions of one or more rings are more toxic than less substituted 
compounds, but tend to be less water-soluble, and thus less abundant in the WSF of crude oil (Anderson et al 
1974; Neff, 1990). 

There are at least two pathways by which petroleum hydrocarbons can be taken into fish, firstly via the 
gills (Evans, 1987) and secondly via the gut with food or with the seawater drunk for volume regulation (Lee et 
al 1972; Stegeman, 1977). The rate of hydrocarbon uptake will be affected by exposure concentration, the 
molecular weight of the hydrocarbons and the amount of lipid in the fish, which depends on the species, age, 
season and reproductive state as well as feeding rate and oxygen uptake (Neff et al 1976; Falk-Petersen et al 
1982; Rice, 1985). Retention of hydrocarbons in the animal tissues will depend upon the partitioning of 
hydrocarbons between the exposure water and the tissue lipids (Neely et al 1974). Binding of hydrocarbons to 
tissue lipids is probably by lipophilic interaction (Stone, 1975). Thus, hydrocarbons remain exchangeable and 
when the animals are returned to hydrocarbon-free seawater, the lipid/water partition coefficients for the 
hydrocarbons will permit their gradual release from the tissues to the water (Neff et al 1976). The longer tissue 
retention time and the more toxic effects have been indicated for aromatic hydrocarbons with more than one ring 
and methyl-substitutions (i.e. naphthalene, methylnaphthalenes and higher molecular weight PAHs) (Anderson 
et al 1974; Morrow, 1974; Morrow et al 1975; Neff et al 1976; Falk-Petersen et al 1982; Neff, 1990) are 
probably due to their lipophilic interaction with animal tissue. Tetramethyl-benzene and 1- and 2-
methylnaphthalene were absorbed in the highest concentrations by English sole exposed to crude oil in sediment 
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(McCain et al 1978). Lipophilic interaction of hydrocarbons with lipids could lead to the accumulation of 
aromatic hydrocarbons in the structural lipids of membranes and disturb the membrane function (Payne et al 
1978; McKeown and March, 1978; Solangi, 1980; Zbanyszek and Smith, 1984). 

1.3  Exposure of Fish to Petroleum Hydrocarbons 

During an oil spill, transient high levels of petroleum hydrocarbons in the seawater phase are followed by a 
decline as natural processes such as evaporation, photooxidation and biodegradation occur. The acute toxic 
effects of an oil spill are most likely caused by soluble low molecular weight aromatic hydrocarbons such as 
benzenes, toluene and naphthalene. Acute toxicity has been reported to be inversely related to the molecular 
weight of aromatic hydrocarbons (McAuliffe, 1977; Neff, 1990), but chronic effects are always attributed to four 
and five-ring polycyclic aromatic hydrocarbons (Neff, 1990). Compared to monocyclic aromatics, naphthalene 
appeared to be accumulated to a greater extent by fish (FalkPetersen et al 1982) and retained for longer periods 
of time following exposure, thus making naphthalenes probably the most acutely toxic aromatic hydrocarbon 
(Morrow, 1974; Morrow et al 1975; Neff et al 1976; FalkPetersen et al 1983, Falk-Petersen and Kjorsvik, 1987; 
Neff, 1990).  

In oil-polluted marine waters, concentrations of total hydrocarbons are usually substantially less than 1 
ppm (Malins and Hodgins 1981; Neff 1990). Acute short-term laboratory studies (1-96h) have investigated the 
effects of high concentrations of petroleum hydrocarbons, generally above those ordinarily encountered after 
most major oil spills (Mazmanidi and Kovaleva, 1975; Thomas et al 1980; Kiceniuk and Khan, 1987; Davison et 
al 1992; AlKindi et al 1996) while chronic studies, lasting for several months have used lower exposure 
concentrations of petroleum hydrocarbons, generally in the sublethal ppb range (Mazmanidi and Kovaleva, 
1975; Hawkes, 1977; Payne et al 1978; Whipple et al 1978; Khan et al 1981; Woodward et al 1981; Fletcher et 
al 1982; Khan, 1987; Davison et al 1993; Stephens et al 2000).  

The heavy fractions (i.e. polycyclic aromatic hydrocarbons and n-alkanes) of crude oil persist in sediment 
for long periods of time and benthic fish will be particularly exposed to these hydrocarbons (Steinhauer et al 
1994).  

1.4  Experimental Exposure Methods 

There are several routes through which fish may be exposed to crude oils and their products. Experimental 
approaches have included exposure of fish to a dietary intake of petroleum hydrocarbons via contaminated food 
(Gruger et al 1977; Leatherland and Sonstegard, 1978; Carls and Rice, 1987). Sediment contaminated with crude 
oil has been employed for chronic exposure of fish to petroleum hydrocarbons for up to several months in some 
cases (McCain et al 1978; Fletcher et al 1981, 1982; Khan, 1991a; Truscott et al 1992; Tahir et al 1993; Khan et 
al 1994). 

Fish exposed to the water-accommodated fraction (WAF) of crude oils and their constituents have been the 
subject of several investigations (Anderson et al 1974; McKeown and March, 1977, 1978, Prasad, 1987, 1988, 
1991), but the most widely used experimental approach has involved exposure of fish to the water-soluble 
fraction of crude oils or their products (Thomas and Rice, 1975, 1987; Hawkes, 1977; Smith and Cameron, 1979; 
Korolev et al 1980; Solangi, 1980; Thomas et al 1980; Engelhardt et al 1981; Eurell and Haensly, 1981; Solangi 
and Overstreet, 1982; Khan and Kiceniuk, 1984, 1988; Tilseth et al 1984; Zbanyszek and Smith, 1984; Moles et 
al 1985; Hellou et al 1986; Carls and Rice, 1987; Hellou and Payne, 1987; Kiceniuk and Khan, 1987; Rice et al 
1987; Khan, 1990; Ehrhardt et al 1992; Davison et al 1992, 1993). Generally, the preparation of the WSF of 
crude oil is achieved by low energy mechanical mixing of crude oil with water followed by a period of 
separation of oil from the water phase (Anderson et al 1974; Shaw, 1977). The difference between water-
accommodated and water-soluble fractions is mainly dependent on their preparation. A high energy vigorous 
mixing of oil with water may form an emulsion that will not separate and which will yield a water-
accommodated fraction rather than a water-soluble fraction of crude oil, but with low energy gentle mixing, 
emulsions are less likely to form and the WSF of crude oil will not contain the water-accommodated fraction. 
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Several studies have employed the water-soluble fraction of crude oil that has been prepared by a variety of 
flow-through systems (Hellou et al 1986; Kiceniuk and Khan, 1987; Khan and Kiceniuk, 1988; Khan, 1990) or 
prepared in a contained system to supply a static test system (Anderson et al 1974; Rice et al 1976; Gruger et al 
1977; Tamra and Karinen, 1977; Moles et al 1979; Solangi and Overstreet, 1982; Thomas and Rice, 1987). The 
preparation of a WSF using a flow-through system is usually accomplished by dropping or spraying water onto a 
layer of crude oil on top of a water layer, and water, containing the WSF of crude oil, is then drawn from the 
bottom of the water layer (Moles and Rice, 1983). The advantage of a flow-through system is that it can achieve 
a constant concentration of petroleum hydrocarbons in the prepared WSF. Another advantage of this system is 
that spraying provides some form of aeration, which maintains a constant supply of oxygenated water containing 
the WSF of crude oil (Moles and Rice, 1983; Moles et al 1985). However, after an oil spill, the immediate 
transient high concentrations of petroleum hydrocarbons will probably decline, subsequently so that a flow-
through system of producing a WSF of crude oil with constant hydrocarbon levels does not mimic an oil spill. 
Nevertheless, oil in water was detectable one month after the Braer oil incident, particularly in areas near the 
wreck (Ritchie and O'Sullivan, 1994). 

For a static testing system of the effects of the WSF of crude oil, low energy mixing of crude oil with water 
is achieved by gently mixing, followed by a period of total separation of the oil phase from the water phase 
which will be used in the static test system (Anderson et al 1974; Gruger et al 1977; Moles et al 1979; Thomas 
and Rice, 1987; AlKindi et al 1996). The main advantage of this approach is the ease of producing the WSF of 
crude oil. However, changes in the composition of the WSF during the experimental exposures are unavoidable. 
Furthermore, it is usually impractical to produce large volumes of the WSF of crude oil by this method. 

2. Endocrine Responses to Stress and Their Induction in Fish Exposed to Petroleum    
Hydrocarbons 

2.1 Plasma Catecholamines 

The chromaffin tissue of the head kidney, the homologue of the adrenal medulla of higher vertebrates, 
synthesizes, stores and secretes three hormones: adrenaline, noradrenaline and dopamine (Mazeaud and 
Mazeaud, 1981; Randall and Perry, 1992). The three hormones exist in different proportions depending on the 
species (Mazeaud et al 1977; Mazeaud and Mazeaud, 1981; Folmar, 1993; Pickering, 1993b). The relative 
amounts of circulating adrenaline and noradrenaline, the main catecholamines involved in fish responses to 
stress, vary from one species to another (Mazeaud et al 1977; Mazeaud and Mazeaud, 1981; Gingerich and 
Drottar, 1989; Hathaway and Epple, 1989). 
 Catecholamine synthesis involves hydroxylation of a precursor molecule (tyrosine) into L-dopa then 
deamination of L-dopa to form dopamine.  Noradrenaline is produced by further hydroxylation of dopamine and 
adrenaline is then produced by methylation of noradrenaline (Jonsson and Nilsson, 1983). 
 Catecholamines are stored within granules in chromaffin cells. The chromaffin cells are innervated by 
preganglionic cholinergic fibres of the sympathetic nervous system which stimulate catecholamine release into 
circulation (Nilsson et al 1976). A rapid and dramatic increase in circulating catecholamines can occur in 
response to a variety of physical stressors such as forced swimming and handling (Mazeaud et al 1977; Hughes 
et al 1988; Vijayan and Moon, 1994) and forceful exercise (Butler et al 1986; Primmett et al 1986; Tang and 
Boutilier, 1988; Wood et al 1990). These responses are likely to be a reflection of the oxygen status of the fish. 
Plasma catecholamines are elevated in response to hypoxia (Mazeaud et al 1977; Ristori and Laurent, 1989; 
Aota et al 1990; Perry et al 1991; Perry et al 1993), and this may explain the similar rise caused by chemical 
stressors such as anaesthetics (Gingerich and Drottar, 1989; Hathaway and Epple, 1989; Iwama et al 1989). 

While the above stressors are known to cause various physiological changes, few studies have investigated 
the effects of petroleum hydrocarbons on endocrine pathways responsive to stress. However, AlKindi et al 
(1996) found that WSF-exposed flounders had elevated plasma noradrenaline concentrations while plasma 
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adrenaline concentrations were unaffected. This was most likely a response to the profound decline in the blood 
oxygen content of these flounder (AlKindi et al 1996). 

When released in response to stressful conditions, catecholamines enhance the survival of fish by exerting 
a variety of beneficial effects such as mobilizing energy reserves and increasing oxygen carrying capacity. 
Catecholamines stimulate glycogenolysis and gluconeogenesis, and consequently increase blood sugar providing 
an animal with a readily available energy source to deal with stressful conditions (Mazeaud and Mazeaud, 1981; 
Morata et al 1982; Ristori and Laurent, 1985; Suarez and Mommsen, 1987; Sheridan and Mur, 1988; Wright et 
al 1989; Pickering 1990; Wood et al 1990; Wendelaar Bonga, 1997). Adrenaline stimulates glycogenolysis by 
increasing levels of intracellular cyclic AMP, which then activates glycogen phosphorylase and causes the 
breakdown of glycogen to glucose (Morata et al 1982; Van Raaij et al 1995). There is also evidence to suggest 
the involvement of catecholamines in the mobilization of free fatty acids (Waring et al 1996b) though results are 
inconsistent (see review by Wendelaar Bonga, 1997)  

Catecholamines have a stimulatory action on cardiovascular function (Randall and Perry, 1992; Perry and 
Bernier, 1999), increasing heart rate (Wahlqvist and Nilsson, 1977; Satchell, 1991) stroke volume (Wood and 
Shelton, 1980; Mazeaud and Mazeaud, 1981; Pennec, 1987), blood pressure (Wahlqvist and Nilsson, 1977; 
Wood and Shelton, 1980) and branchial blood flow (Capra and Satchell, 1977; Butler and Metcalfe, 1983; Stagg 
and Shuttleworth, 1984). Elevated branchial blood flow has been suggested to increase gaseous exchange at the 
branchial surface (Booth, 1979), although this adaptive response needs to be balanced against a non-adaptive 
increase in water permeability of the gills (Bennett and Rankin, 1987).  

Catecholamines have been reported to have a beneficial effect on the oxygen carrying capacity of fish by 
causing various physiological responses. Catecholamines stimulate a rapid release of red blood cells from the 
spleen into the bloodstream (Kita and Itazawa, 1989; Perry and Kinkead, 1989). Furthermore, catecholamines 
have been reported to affect red blood cell pH of some species of fish (Nikinmaa, 1986; Primmett et al 1986) and 
cause red blood cell swelling (Nikinmaa, 1983; Nikinmaa et al 1984; Ling and Wells, 1985; Fuchs and Albers, 
1988; Wood, 1991; Perry and Thomas, 1993). Under conditions of forceful exercise, anaerobic metabolism of 
the white muscle will cause metabolic acidosis that results in the decrease of plasma pH which will reduce red 
blood cell pH causing a decrease in oxygen carrying capacity of the hemoglobin by means of the Root effect. 
Catecholamines can counteract this effect, particularly in salmonid fish, by stimulating H+ excretion from red 
blood cells, hence restoring intracellular pH which results in maintenance of the oxygen carrying capacity of the 
cells.  Simultaneously, Na+ and Cl- move into the cells, causing osmotic swelling, which ultimately decreases the 
organic phosphate concentration of the red blood cells, and consequently, again increases the affinity of 
hemoglobin for oxygen (Paajaste and Nikinmaa, 1991; Wood, 1991; Perry and Thomas, 1993). In contrast to the 
salmonids it seems that fish with high hypoxia tolerance (eg carp, tench, eels) do not rely on this mechanism  
(see review by Jensen et al 1993). In addition, in the rainbow trout, Oncorhynchus mykiss, adrenaline may 
directly affect the oxygen affinity of at least one of the hemoglobin components of red blood cells (Falcioni et al 
1991). In contrast to the salmonids it seems that fish with high hypoxia tolerance (eg carp, tench, eels) do not 
rely on this mechanism   

2.2 Plasma Cortisol 

Cortisol is the major corticosteroid hormone secreted by the interrenal tissue found in the ‘head kidneys’ of 
fish (Chester Jones et al 1969; Donaldson, 1981; Fryer, 1975; Idler and Truscott, 1972; Matty, 1985; Nichols and 
Weisbart, 1984). During stress, a corticotrophin releasing factor (CRF) released from the hypothalamus 
stimulates the anterior pituitary, pars distalis, to secrete adrenocorticotrophic hormone, ACTH (Fryer and Peter, 
1977). Subsequently, ACTH stimulates the synthesis and release of cortisol from the interrenal tissue.  
 Cortisol has been recognized as a reliable indicator of stress in fish (Mazeaud et al 1977; Barton and Toth, 
1980; Donaldson, 1981; Barton, 1988; Waring et al 1992; Waring et al 1996a: McDonald et al 1993; Pickering, 
1993b). Cortisol is released in fish in response to a wide variety of stress stimuli.  Cortisol has been reported to 
increase in response to physical stressors such as handling (Sumpter et al 1986; Thomas and Robertson, 1991; 
Melotti et al 1992; Waring et al 1992; Barry et al 1993; Foo and Lam, 1993), physical disturbance and exercise 
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(Zelnik and Goldspink, 1981; Barton et al 1986; Flos et al 1988; White and Fletcher, 1989; McDonald et al 
1993) and capture or confinement (Davis and Parker, 1986; Sumpter et al 1986; Davis and Parker, 1990; Melotti 
et al 1992).  Elevation of plasma cortisol has also been reported in response to environmental chemical stressors 
such as acid (Brown et al 1984; Barton et al 1985; Jones et al 1987; Edwards et al 1987; Goss and Wood, 1988; 
Whitehead and Brown, 1989; Brown et al 1989), aluminum (Goss and Wood, 1988; Whitehead and Brown, 
1989; Brown and Whitehead, 1995; Waring et al 1996a), and many other pollutants (Swift, 1981; Gluth and 
Hanke, 1984) and prolonged exposure to anaesthesia (Strange and Schreck, 1978).  However, exposure of 
rainbow trout and chinook salmon to brief anaesthesia did not change the plasma cortisol (Strange and Schreck, 
1978; Iwama et al 1989). 

Cortisol has been widely used to assess the state of health in fish exposed to stress (Mazeaud and Mazeaud, 
1981; Pickering, 1993b). Changes in the concentration of plasma cortisol, however, depend upon the nature of 
the stress stimuli, the duration of the stress, the magnitude and severity of the stress (Barton and Toth, 1980; 
Pickering et al 1982; Davis and Parker, 1983; Gluth and Hanke, 1984) and the species under investigation (Davis 
and Parker, 1983, 1986; Waring et al 1992). Nevertheless, since increased concentrations of plasma cortisol 
constitute part of the generalized stress response (Mazeaud et al 1977), a release of cortisol in fish exposed to 
petroleum hydrocarbons might be expected.  So far only a few studies have examined plasma cortisol in fish 
exposed to petroleum hydrocarbons. Generally, exposure of fish to crude oils and their derivatives caused 
elevated plasma cortisol concentrations (DiMichele and Taylor, 1978; Thomas et al 1980; Lopez et al 1981; 
Thomas and Rice 1987). The WSF of crude oil increased plasma cortisol in juvenile coho salmon after 48 h 
exposure (Thomas and Rice, 1987), and the WSF of fuel oil caused a 50-fold increase in the circulating cortisol 
concentration of stripped mullet after 1 h followed by a recovery to resting levels 6 h after oil addition (Thomas 
et al 1980). Exposure to individual petroleum hydrocarbons and other oil products similarly increased plasma 
cortisol; fish exposed to naphthalene exhibited an increase in serum cortisol (DiMichele and Taylor, 1978). 
Exposure of rainbow trout to crude oil caused an initial elevation of plasma cortisol (Engelhardt et al 1981). An 
elevated concentration of plasma cortisol in wild eels, caught at field sites, persisted for at least 8 months after an 
oil spill (Lopez et al 1981). The WSF of Omani crude oil caused a significant elevation in plasma cortisol 
concentrations in exposed flounders, Pleuronectes flesus (AlKindi et al 1996). 

Increased cortisol secretion in response to acute stress presumably enhances survival.  An adaptive role of 
cortisol has been suggested to be linked to mobilization of energy reserves through its catabolic functions 
(Mazeaud et al 1977; Barton et al 1985; Jones et al 1987; Goss and Wood, 1988; Brown et al 1989; Whitehead 
and Brown, 1989; Pickering, 1990; Thomas and Robertson, 1991; Waring et al 1992; Barry et al 1993; Bollard 
et al 1993). Cortisol administration to fish has been commonly reported to cause hyperglycemia (Leach and 
Taylor, 1980; Davis et al 1985; Barton et al 1987; Van der Boon et al 1991; Vijayan et al 1991).  Similarly, 
administration of cortisol to hypophysectomised eels resulted in a dramatic increase in plasma glucose (Chan and 
Woo, 1978a). In contrast to these observations, however, cortisol treatment caused hypoglycemia in American 
eels (Foster and Moon, 1986) and administration of cortisol to rainbow trout to achieve plasma concentrations 
similar to those occurring during stress did not induce hyperglycemia (Andersen et al 1991). 

The hyperglycaemic effects of administered cortisol have been suggested to result from the inhibitory 
effects of the hormone on glucose oxidation and utilization in peripheral tissues (Gill and Khanna, 1975; Van der 
Boon et al 1991). This may be accompanied by stimulated gluconeogenesis. Cortisol can directly provide the 
free amino acids for gluconeogenesis via stimulation of protein catabolism (Lidman et al 1979; Marshall Adams 
et al 1985) with elevation of circulating amino acids in some species (Chan and Woo, 1978a), but not apparently 
in Fundulus heteroclitus (Leach and Taylor, 1982), or may act indirectly by inhibiting protein synthesis 
(reviewed by Van der Boon et al 1991). In gluconeogenesis, free amino acids act as precursors for glucose 
synthesis and the regulation of this process in the liver is suggested to be mediated by cortisol (Lidman et al 
1979; Murat et al 1981). The gluconeogenic action of cortisol was supported in studies by Vijayan et al (1994) 
when a corticosteroid antagonist inhibited the increased alanine gluconeogenesis in cortisol-treated fish.  

Contradictory results have also been reported concerning the effects of cortisol on liver glycogen. 
Administration of cortisol caused an increase in liver glycogen content (Chan and Woo, 1978a; Lidman et al 
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1979; Leach and Taylor, 1982). On the other hand, decreased glycogen content in the liver in response to 
elevated cortisol has been reported (Barton et al 1986; Foster and Moon, 1986; Vijayan and Leatherland, 1989; 
Soengas et al 1992).   

Increased blood fatty acid concentrations in parallel with an elevation in plasma cortisol have been reported 
(Dave et al 1979; White and Fletcher, 1989; Waring et al 1992) and a role of cortisol in lipid-mobilization has 
been proposed (Lidman et al 1979; Sheridan, 1987). Changes in blood glucose and free fatty acid compositions 
are probably significant actions by which cortisol increases the availability of energy and the readiness of fish to 
survive stress.  However, there are significant species differences in the mechanisms involved in achieving this 
and the mode of action of catecholamines and cortisol in individual species (see Wendelaar Bonga, 1997).  

Cortisol appears to have beneficial effects on ionoregulatory balance in both freshwater and seawater fish 
(Parwez and Goswami, 1985; Laurent and Perry, 1990; Madsen, 1990; Barton and Iwama, 1991; Bisbal and 
Specker, 1991). The mechanism by which cortisol influences ion balance and its interaction with other hormones 
has been the subject of many  investigations (McCormick 1995). Cortisol stimulation of salt uptake is thought to 
be via increased gill Na+-K+-ATPase activity (Pickford et al 1970; Forrest et al 1973; Dange, 1986; Langhorne 
and Simpson, 1986; Madsen, 1990; Bisbal and Specker, 1991).  However, in some experiments cortisol had no 
apparent effect on this enzyme (Langdon et al 1984; Redding et al 1984). Linked to the elevated Na+-K+-
ATPase, cortisol has been shown to cause chloride cell proliferation (Perry and Wood, 1985; Laurent and Perry, 
1990; Madsen, 1990) and increase the area of the chloride cell, which is in contact with the external media and 
therefore concerned with ion transport (Laurent and Perry, 1990). Cortisol could thus play a role in the reduction 
of ionic imbalance in stressed fish. 

2.3 Plasma Thyroid Hormones 

Thyroxine (T4) is synthesized in the thyroid follicles by iodination of tyrosine (Matty, 1985).  The thyroid 
gland primarily secretes L-thyroxine in response to thyroid stimulating hormone (TSH) released from the 
pituitary (Eales and Brown, 1993).  TSH release from the pituitary is regulated by a hypothalamic hormone, 
thyrotrophin releasing hormone (TRH) and thyrotrophin release inhibiting factor (TIF) and /or negative feedback 
inhibition by T4 (Leatherland, 1982; Matty, 1985; Eales, 1990; Eales and Brown, 1993).   

Over 99% of T4 binds to plasma proteins called thyroglobulins (Eales, 1990; Rousset and Mornex, 1991).  
Free T4 enters cells of peripheral tissue (brain, liver, gill, kidney, heart and muscle) and is then deiodinated to 
form triidothyronine, (T3) by L-thyroxine 5’monodeiodinase (MDI), the enzyme responsible for peripheral 
conversion of T4 to T3 (Eales, 1990; Leatherland et al 1990; Byamungu et al 1992; MacLatchy and Eales, 1990, 
1992; Eales et al 1993a,b).  Eales and Brown (1993) suggest that in teleosts the ‘peripheral model’ of plasma T3 
regulation by MDI activity predominates over the ‘central model’ via the hypothalamic-hypophyseal-thyroidal 
axis. Thus, for example, exogenous T4 or TSH will raise plasma T3 concentrations despite massive increases in 
plasma T4. Similar trends also occur in nature during parr-smolt transformation (Eales and Brown, 1993). A 
physiologically viable model is that the thyroidally-secreted T4 is a relatively inactive prohormone converted 
peripherally via MDI and that the hypothalamic-hypophyseal-thyroidal axis merely ensures adequate T4 
secretion (Eales, 1985, 1990; Eales and Brown, 1993). Thus all T3 in teleosts may be generated peripherally and 
T3 represents the active thyroid hormone at the level of target cells (Plisetskaya et al 1983; Eales, 1990; Eales 
and Brown, 1993). 

Stressors such as physical disturbances and environmental toxicants including petroleum hydrocarbons 
have been reported to affect thyroid function but responses have been inconsistent (Osborn and Simpson, 1972; 
Brown et al 1978; Leatherland and Sonstegard, 1978; Pickering et al 1982; Plisetskaya et al 1983; Brown et al 
1984; Leatherland, 1985; Brown et al 1989; Whitehead and Brown, 1989; Brown et al 1990; Sinha et al 1991; 
AlKindi et al 1996; Johnston et al 1996; Waring et al 1996a; Waring and Brown, 1997). Reduced plasma T4 
concentrations were observed in flounder exposed to the WSF of crude oil but plasma T3 concentrations were 
unaffected (AlKindi et al 1996). Stress has been reported to alter the T3:T4 ratio (Osborn and Simpson, 1972; 
Brown et al 1978). If thyroid hormones have biological significance in stressed fish, then potential physiological 
benefits lie in their potential roles in regulating osmoregulation, growth and metabolism. 
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Thyroid hormones have been suggested to have significant hypo-osmoregulatory effects on fish adapted to 
seawater. T4 treatment reduced the elevation of plasma Na+ in fish transferred from freshwater to seawater, 
whereas treatment with thiourea (a thyroid hormone antagonist) resulted in a significant increase in plasma Na+ 
concentrations in fish transferred to seawater (Knoeppel et al 1982; Leatherland, 1985). Subsequent studies 
suggested that conversion of T4 to T3 was essential for the osmoregulatory action of thyroid hormones (LeLoup 
and Lebel, 1993). Potential iono and osmo-regulatory effects of thyroid hormones reflect their possible effects on 
gill Na+-K+-ATPase activity. Gill Na+-K+-ATPase activity increased concomitantly with an elevation in plasma 
T4 (Dickhoff et al 1977; Folmar and Dickhoff, 1979; Sullivan et al 1983; Boeuf and Prunet, 1985). However, in 
other experiments administration of thyroid hormones did not affect the gill Na+-K+-ATPase activity (Dickhoff 
et al 1977; Saunders et al 1985; Dange, 1986) and T3 treatment decreased gill Na+-K+-ATPase activity of 
freshwater rainbow trout (Omeljaniuk and Eales, 1986). Part of the explanation for such differences may reflect 
the interaction of thyroid hormones with other hormones, such as cortisol and growth hormone, in determining 
Na+-K+-ATPase activity (Dange, 1986; see review by McCormick, 1995). T4 administration did not increase 
Na+-K+-ATPase activity in seawater-acclimated tilapia by itself but did act synergistically when administered 
with cortisol (Dange, 1986). However, there was no apparent synergistic action of T4 with cortisol in increasing 
chloride cell number or gill Na+-K+-ATPase activity in rainbow trout (Madsen, 1990). 

Thyroid hormones affect various aspects of metabolism. Effects of thyroid hormones on carbohydrate and 
lipid metabolism have been reported (Leatherland, 1982; Plisetskaya et al 1983) and thyroid hormones may play 
a role in a stress-related mobilization of glucose in fish. Thyroxine treatment caused hyperglycemic effects in 
some cases (Chan and Woo, 1978b). However, other studies observed hypoglycemic responses to thyroid 
treatment (Murat and Serfaty, 1970). Closely related significant elevations of plasma T4 and glucose induced by 
disturbance stress were reported (Himick and Eales, 1990).  It has also been shown that injection of glucose 
caused elevation of both plasma glucose and T4 (Himick and Eales, 1990).  

Treatment of fish with low doses of thyroid hormones has been reported to stimulate protein synthesis 
whereas, treatment with high doses of thyroid hormones appeared to cause catabolic effects (Medda and Ray, 
1979; Matty et al 1982). The outcome of the various metabolic impacts of thyroid hormones in determining the 
growth of fish has varied in studies so far. Thyroid hormone administration has been reported to accelerate fish 
growth (Higgs et al 1979; Saunders et al 1985; Woo et al 1991) and, in support of this concept, elevated 
concentrations of plasma T3 were found in periods of rapid growth (McKenzie et al 1993).  However, in other 
studies thyroid supplementation did not affect growth (Leatherland et al 1987; Gannam and Lovell, 1991; 
Soengas et al 1992). The apparent inconsistencies in these experiments may partially reflect the interaction of 
thyroid hormones with other hormones such as growth hormone and cortisol. Thyroid hormones treatment was 
found to promote the anabolic effects of growth hormone (e.g. lower liver glycogen and higher serum 
cholesterol) in rainbow trout (Fagerlund et al 1980; Farbridge and Leatherland, 1988). On the other hand, growth 
hormone treatment significantly elevated the plasma T3 concentration of rainbow trout (Farbridge and 
Leatherland, 1988; MacLatchy and Eales, 1990) indicating an increased peripheral conversion of T4 to T3.  

Thyroid hormones may play a significant role in fish behaviour. For example, increased concentrations of 
plasma thyroxine were associated with migration of juvenile yellow American eels (Castonguay and Dutil, 
1990). The level of motor activity of migrant Atlantic salmon was also suggested to be determined by thyroidal 
status (Youngson and Webb, 1993). Sublethal exposure of coho salmon to arsenic decreased thyroxine 
concentrations which coincide with decreased migration of smolts (Nichols et al 1984). 

2.4 Endocrine Interactions During Stress 

Stress-induced increases in plasma cortisol in rainbow trout were closely correlated with elevations in 
growth hormone (Pickering et al 1991). Stress was also reported to increase plasma growth hormone in 
immature rainbow trout (Takahashi et al 1991). This stimulation of both cortisol and growth hormone release is 
important as cortisol has been found to facilitate the actions of other hormones, for example, growth hormone 
and thyroid hormones (Dange, 1986; Madsen, 1990). Thus, growth hormone stimulation of gill Na+-K+-ATPase 
activity and chloride cell number was enhanced by cortisol treatment (Madsen, 1990).  
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Chronic stress in fish is often associated with a suppression of growth (reviewed by Wendelaar Bonga, 
1997). For toxic stress the distinction of direct toxic effects and those resulting from the integrated hormonal 
stress responses may be difficult to determine. The influence of hormonal factors is further complicated by the 
multiplicity of endocrine systems affecting growth. Pickering (1993a) reviewed the integrated hormonal control 
of growth (gonadal steroids, the thyroid axis, the HPI axis, growth hormone and catecholamines) in relation to 
stress-induced growth suppression.  

It has become clear in recent years that the aspects of the two components of the primary endocrine 
responses to stress (hypothalamic-pituitary-interrenal (HPI) axis and the hypothalamic-sympathetic-chromaffin 
cell axis) are in reality components of an integrated response to stress and these two components influence one 
another. Activation of the HPI axis, ACTH treatment and increased plasma cortisol resulting from cortisol 
implants have each been found to result in increased chromaffin stores of catecholamines and their release into 
circulation (Reid et al 1996). This implies that chronically stressed fish may be more able to generate a 
catecholamine response to stress. Furthermore, elevated plasma cortisol concentrations have been reported to 
elevate the internal population of adrenoreceptors (Reid et al 1992) potentially enhancing physiological 
responses to the circulating catecholamines.  

3.   Physiological Responses to Stress in Fish 

3.1 Carbohydrate Metabolism and Plasma Glucose 

Many teleost fish rely primarily on protein and lipid sources for energy and they are considered to possess 
poor enzyme system for utilization of carbohydrates (Cowey and Sargent, 1979; Walton and Cowey, 1982). In 
these species, amino acids such as arginine and lysine have been shown to be more effective than glucose in 
stimulating insulin release (Higuera and Cardenas, 1986; Petersen et al 1987; Suarez and Mommsen, 1987). 
However, carbohydrate metabolism increases in states of high energy demand such as stress.  In stress, blood 
glucose is elevated as a result of both glycogenolysis and gluconeogenesis (Suarez and Mommsen, 1987; 
WendelaarBonga, 1997). 
 Stress has been described as an energy drain with energy that might be utilized in growth being diverted to 
catabolic utilization (Barton and Schreck, 1987; Pickering, 1990; McDonald et al 1993). Mobilization of readily 
available energy in the form of glucose is suggested to enhance the survival of fish (Barton and Iwama, 1991; 
Pickering, 1993b).  It is perhaps not surprising, therefore, that elevation of plasma glucose has been recognized 
as part of a generalized stress response in fish (Mazeaud et al 1977). Increased plasma glucose has been widely 
reported in fish exposed to physical stressors such as handling and confinement (Mazeaud et al 1977; Davis and 
Parker, 1990; Melotti et al 1992; Waring et al 1992; Barry et al 1993; Foo and Lam, 1993), exercised fish 
(Zelnik and Goldspink, 1981; Barton et al 1986; Flos et al 1988; White and Fletcher, 1989; Waring et al 1992; 
McDonald et al 1993) and fish exposed to pollutants (Gluth and Hanke, 1984; Edwards et al 1987; Jones et al 
1987; Goss and Wood, 1988; Whitehead and Brown, 1989; AlKindi et al 1996).   

Petroleum hydrocarbons have been reported to increase plasma glucose in various fish species (DiMichele 
and Taylor, 1978; Thomas et al 1980; Zbanyszek and Smith, 1984; Aabel and Jarvi, 1990; AlKindi et al 1996), 
with dose-related responses in mullets exposed to the WSF of fuel oil (Thomas et al 1980). However, rainbow 
trout exposed to bunker C oil showed an unusual decrease in blood glucose concentrations which was attributed 
to a malfunction of glucose reabsorption by the renal tubules (McKeown and March, 1977, 1978). 

3.2 Osmotic and Ionic Regulation 

The regulation of the internal body fluid composition is essential for normal cellular functions in all 
organisms.  In both seawater and freshwater there is a large osmotic gradient between the extracellular fluid of 
an aquatic organism and its environment (Eddy, 1981; Giesy et al 1988). Maintaining a relatively constant 
internal environment, independent of the external environment, is achieved via the combined actions of the gills, 
gut and kidneys (Eddy, 1981; McCormick, 1995; Fuentes and Eddy, 1997). The ionic and osmotic 
concentrations of the body fluid of marine teleost fish are approximately one third those of seawater. The 
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continuous outward osmotic movement of water is counteracted by drinking seawater, while the continuous 
influx of salts (sodium and chloride) is balanced by active efflux of salt via branchial chloride cells (Eddy, 
1981). In contrast, the body fluids of freshwater fish are more concentrated than the surrounding environment 
and consequently there will be an influx of water and an outward salt diffusion. Freshwater fish excrete this 
excess water by production of copious volumes of hypotonic urine and salt losses are compensated for by active 
uptake via the gills (Eddy, 1981; McDonald and Rogano, 1986). Although highly simplified, this description of 
the ionic and osmotic-regulatory processes in both marine and freshwater fish may provide the basis for 
discussion of the osmoregulatory imbalances in stressed fish.   

Disturbed plasma osmolarity and electrolyte concentrations have been recognised as a significant effect of 
stress in fish (Mazeaud et al 1977; Thomas et al 1980; Engelhardt et al 1981; Haux et al 1985; Robertson et al 
1987; Goss and Wood, 1988; Brown et al 1990; Waring et al 1992; Barry et al 1993; Wendelaar Bonga, 1997). 
Failure to maintain ionic and osmotic balance within certain limits may cause the death of stressed fish 
(Stegeman and Sabo, 1976; McDonald, 1983). Altered plasma osmotic and ionic concentrations have been 
reported in response to physical stressors such as handling and transport (Barton et al 1985; Robertson et al 
1987; Davis and Parker, 1990; Waring et al 1992; Barry et al 1993; Waring et al 1996b), and pollutant stress 
(Swift 1981; Stagg and Shuttleworth, 1982; Gluth and Hanke, 1984; Edwards et al 1987; Jones et al 1987; Goss 
and Wood, 1988; Allen, 1994) including exposure to petroleum hydrocarbons.  

Petroleum hydrocarbons have been reported to have profound effects on plasma Na+, K+ and Cl- 
concentrations with increases in fish exposed to crude oil in seawater, while concentrations of these ions 
decreased in fish exposed to crude oil in freshwater (Morrow, 1974; Engelhardt et al 1981; Baklien et al 1986). 
However, decreased plasma chloride concentration in marine fish have also been reported (Payne et al 1978; 
Fletcher et al 1979; Kiceniuk et al 1980) while no change in plasma Cl- occurred in the Antarctic fish, 
Pagothenia borchgrevinki, exposed to the WSF of fuel oil (Davison et al 1992, 1993). Moreover, exposure to the 
WSF of crude oil had no effect on plasma Na+ and Cl-  concentrations of flounders (AlKindi et al 1996). 
Sediment containing aliphatic hydrocarbons had no effect on plasma Cl- concentrations of winter flounder 
Pleuronectes americanus (Payne et al 1995). Interestingly, Brauner et al (1999) found that WSF contaminated 
water had no effect on plasma Na+ and K+ concentrations in Hoplosternum littorale (a teleost from the Amazon), 
whereas crude oil exposure via the diet caused significant reductions in the plasma concentrations of these ions. 

Reported changes in concentrations of plasma divalent ions in response to petroleum hydrocarbons are also 
inconsistent.  Plasma Ca2+ concentrations were decreased in rainbow trout exposed to bunker C oil solution in 
seawater (McKeown and March, 1977), but flounders exposed to dispersed crude oil in seawater showed an 
elevation of plasma concentrations of both Ca2+ and Mg2+ (Baklien et al 1986) while no significant changes in 
plasma Ca2+ and Mg2+ were observed in marine cunners, Tautogolabrus adspersus, chronically exposed to 
weathered crude oil (Fletcher et al 1979). 

Changes in plasma osmolality of fish exposed to crude oil were generally in line with those to be expected 
from the change in monovalent ions in the particular group of experimental fish (McKeown and March, 1977, 
1978; Engelhardt et al 1981). Thus, osmolality was increased in seawater mullets acutely exposed to the WSF of 
fuel oil (Thomas et al 1980), however, there was no change in the plasma osmolarity of an Antarctic fish 
Pagothenia borchgrevinki in response to the WSF of fuel oil (Davison et al 1993) or in flounders exposed to the 
WSF of crude oil (AlKindi et al 1996). 

Ionic and osmotic disturbances in fish exposed to petroleum hydrocarbons suggest  specific types of gill 
damage such as increased permeability to ions or a deceased activity of ion pumps/exchange mechanisms 
(McKeown and March, 1977, 1978; Wong and Engelhardt, 1982). In line with this concept, gill Na+-K+-ATPase 
activity was reduced in Pacific staghorn sculpin exposed to refinery wastewater (Boese et al 1982). 

3.3 Endocrine Systems and Ionic and Osmotic Regulation During Stress 

Catecholamines, released as part of the generalized stress response, have been reported to increase 
branchial water permeability and cause branchial vasodilation, and may, partially explain stress-related weight 
loss in seawater fish and a gain in weight by stressed freshwater fish (Mazeaud et al 1977). The branchial effects 
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of catecholamines would probably lead to disturbances in plasma ions with elevated plasma catecholamines in 
freshwater fish, leading to a decrease in the concentration of plasma ions and elevated catecholamines in 
seawater fish, increasing the concentration of plasma ions (Mazeaud et al 1977; Mazeaud and Mazeaud, 1981; 
Isaia, 1984; Wendelaar Bonga, 1997). However, injection of freshwater-adapted eels with adrenaline, 
noradrenaline or dopamine did not significantly change plasma osmolarity, Na+ or Cl- (Epple and Kahn, 1985).  

Cortisol is a major stress-related hormone and is reputed to directly affect osmoregulation. Since stress 
frequently causes changes in plasma osmolarity in fish, the role of cortisol is of interest.  Cortisol is suggested to 
stimulate ion movement by increasing gill Na+-K+-ATPase activity (Pickford et al 1970; Forrest et al 1973; 
Dange, 1986; Madsen, 1990; Bern and Madsen, 1992; McCormick, 1995).  In this connection, cortisol has been 
observed to increase the number of chloride cells (Perry and Wood, 1985; Laurent and Perry, 1990) and increase 
their apical area (Laurent and Perry, 1990). Thyroid hormones may also affect the osmoregulation of teleost fish 
via their effects on Na+-K+-ATPase activity, but this is still far from conclusive. 

3.4 Blood Oxygen  

The internal respiratory status of fish is determined by the combined processes of branchial gas transfer 
and blood gas transport. Ventilatory water flow and lamellar blood perfusion, together with the diffusive 
properties of the gill epithelium collectively, determine branchial gas transfer. Blood gas transport is affected by 
numerous factors including the blood oxygen carrying capacity and homodynamic variables such as cardiac 
output and regional blood flow distribution (Perry and Wood, 1989). 

During stress, plasma catecholamines may be elevated and the increase in catecholamines generally 
enhances the oxygen carrying capacity of fish. This is particularly evident during hypoxia (Mazeaud et al 1977; 
Ristori and Laurent, 1989; Aota et al 1990; Perry et al 1991, 1993) and hypercapnia (Perry et al 1989). For 
example, catecholamines stimulate a rapid release of red blood cells from the spleen into the bloodstream (Kita 
and Itazawa, 1989; Perry and Kinkead, 1989). Furthermore, catecholamines have been reported to increase red 
blood cell pH (Nikinmaa, 1986; Primmett et al 1986) and to increase the oxygen affinity of hemoglobin. 
Catecholamines may also enhance the oxygen carrying capacity via their homodynamic effects, stimulation of 
hyperventilation and by increasing branchial gaseous exchange.   

The respiratory status of fish has been an area of major interest in studying the effects of pollutants on fish 
(Patten, 1977; Johnstone and Hawkins, 1980; Gluth and Hanke, 1984; Malte, 1986; Malte and Weber, 1988; 
Davison et al 1993). Blood oxygen decreased in rainbow trout exposed to aluminum (Malte, 1986), acid (Malte 
and Weber, 1988) or copper (Wilson and Taylor, 1993). AlKindi et al (1996) found reduced blood oxygen 
content in WSF-exposed flounders. This hypoxia may have been the cause of the elevated plasma noradrenaline 
concentrations. 

The Antarctic fish, Pagothenia borchgrevinki, exposed to the WSF of fuel oil were much less tolerant of 
low levels of ambient oxygen than non-exposed fish (Davison et al 1993) and markedly elevated their rate of 
oxygen consumption during pollutant exposure (Davison et al 1992). Similarly, juvenile American shad exposed 
to the WSF of crude oil were less tolerant of lower levels of dissolved oxygen (Tagatz, 1961). Reduction in 
oxygen uptake has been reported as a serious symptom of petroleum toxicity in a variety of fish species 
(DeVries, 1977; Prasad, 1987; Davison et al 1993). Reduced oxygen uptake was observed in sculpin exposed to 
naphthalene (DeVries, 1977) and in carp exposed to crude oil (Prasad 1987). However, increased oxygen uptake 
was observed in cod exposed to a simulated oil slick (Johnstone and Hawkins, 1980). Brauner et al (1999) found 
elevated breathing frequency in the air breathing teleost Hoplosternum littorale exposed to crude oil.  

The respiratory effects of petroleum hydrocarbon may be related to their histopathological effects on gills, 
which are discussed later in this review. Interestingly, Gagnon and Holdway (1999) found altered gill metabolic 
enzymes in Atlantic salmon (Salmo salar) exposed to the water accommodated fraction of crude oil and 
dispersed crude oil. Also, some recent work has shown that crude oil exposure or exposure to its WSF reduces 
the growth rate of fish (Christiansen and George, 1995; Gundersen et al 1996). 
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3.5 Hematocrit and Blood Hemoglobin Concentration 

Changes in hematocrit (% packed erythrocytes) and blood hemoglobin concentrations have been widely 
reported as indicators of stress in fish (Fletcher, 1975; Thomas et al 1980; Engelhardt et al 1981; Haux et al 
1985; Goss and Wood, 1988; Aabel and Jarvi, 1990; Davison et al 1992, 1993). Physical stressors such as 
handling and transport and pollutant stressors have been reported to increase hematocrit and blood hemoglobin 
concentrations (Fletcher, 1975; Yamamoto et al 1980; Swift, 1981; Barton et al 1985; Jones et al 1987; Goss and 
Wood, 1988; AlKindi et al 1996), although some studies of stressed fish have reported decreased hematocrit and 
blood hemoglobin concentrations (Hattingh and Van Pletzen, 1974; Davis and Parker, 1990; Mazur and Iwama, 
1993) or no significant change in these parameters (Haux et al 1985). 

Crude oils and their products have been reported to affect blood hemoglobin concentration and hematocrit.  
Hematocrit initially increased after exposure of flounder to a 50% dilution of the WSF of Omani crude oil 
(AlKindi et al 1996), dab and English sole to oil-contaminated sediment (McCain et al 1978; Tahir et al 1993), 
Pacific staghorn sculpin to petroleum refinery wastewater (Boese et al 1982) and Antarctic fish (Pagothenia 
borchgrevinki) to fuel oil (Davison et al 1992, 1993). Similarly, hemoglobin concentrations were increased in 
rainbow trout exposed to the WSF of a mixture of aromatic hydrocarbons (Zbanyszek and Smith, 1984), and in 
Atlantic salmon exposed to an oil slick, and in English sole exposed to oil-contaminated sediment (McCain et al 
1978). However, hematocrit was decreased in sculpin exposed to petroleum hydrocarbons (DeVries, 1977). 
Hematocrit and blood hemoglobin concentrations were also dramatically reduced (by ~50%) in flounder exposed 
to a 50% solution of the WSF of crude oil (resulting in exposure to approximately 6ppm aromatic hydrocarbons) 
(AlKindi et al 1996).  

Adding Further confusion to the discussion of the haematological effects of petroleum hydrocarbons, there 
have been several studies in which no significant changes in either hematocrit and/or hemoglobin concentrations 
were found. The hematocrit of cunners, Tautogolabrus adspersus (Payne et al 1978; Kiceniuk et al 1980) and 
Atlantic salmon (Aabel and Jarvi, 1990) and the hematocrit and hemoglobin of longhorn sculpin (Khan, 1991a) 
were unaffected after chronic exposure to crude oil. Hematocrits and blood hemoglobin concentrations were also 
unchanged in Hoplosternum littorale exposed to the WSF of crude oil (Brauner et al 1999) and hematocrit was 
not affected in winter flounder exposed to sediment contaminated with oil-base mud (Payne et al 1995). The 
apparent contradictions in haematological effects of petroleum hydrocarbons are likely to reflect a combination 
of differences in the level of petroleum hydrocarbons to which the fish have been exposed, any resultant gill 
damage, the length of time of exposure and species differences in sensitivity and catecholamine responses. In 
relation to the last of these factors, it is clear that fish possess a splenic reservoir of erythrocytes which when 
released (under catecholamine stimulation) significantly elevates hematocrit and blood hemoglobin 
concentrations (Yamamoto et al 1980; Kita and Itazawa, 1989; Yamamoto and Itazawa, 1989; Pearson and 
Stevens, 1991).  Reduction of splenic weight, an indication of the release of erythrocytes into general circulation 
by splenic contraction, has been recognized as a useful index of stress in fish.  Decreased splenic weight has 
been reported in fish exposed to crude oils and their derivatives (Payne et al 1978; Kiceniuk et al 1980).  
However, splenic weight was unchanged in other studies of fish exposed to petroleum hydrocarbons (Khan, 
1991a; Davison et al 1993; Payne et al 1995).  

4.  Histopathological Effects of Crude Oil and Petroleum Hydrocarbons on Fish 

Petroleum hydrocarbons have been reputed to cause a variety of histopathological effects in fish.  Malins 
(1982) reviewed the structural effects of petroleum hydrocarbons on marine fish and reported hepatocellular 
vacuolisation, increased liver rough endoplasmic reticulum (RER), gill damage (for example, epithelial lifting, 
chloride cell damage and fusion of the secondary lamellae), hyperplasia of the olfactory epithelium, degeneration 
of olfactory mucosal tissue and development abnormalities (for example, misfit of the lower jaw into the upper 
jaw, missing premaxillary bones and failure of the jaw to fully differentiate, absence of the branchiostegal 
membranes and reduced cephalization). 
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4.1 Gill Histopathology 

Copious mucous secretion from the gills with hyperplasia and hypertrophy of mucus-producing epithelial 
cells are widely reported histopathological effects of crude oils and their products (Hawkes, 1977; Solangi, 1980; 
Engelhardt et al 1981; Lopez et al 1981 Haensly et al 1982; Solangi and Overstreet 1982; Khan and Kiceniuk, 
1984, 1988; Khan, 1987; Prasad, 1988, 1991; Davison et al 1993). 

Aside from increased mucous secretion, petroleum hydrocarbons have been reputed to have several other 
pathological effects on the gills. These include separation of respiratory epithelium, lamellar curling and 
hyperplasia, fusion of adjacent secondary lamellae and hemorrhaging of gill filaments (Blanton and Robinson, 
1973; Hawkes, 1977; Solangi, 1980; Engelhardt et al 1981; Malins and Hodgins, 1981; Woodward et al 1981; 
Haensly et al 1982; Solangi and Overstreet, 1982; Khan and Kiceniuk, 1984; AlKindi, 1995). In some studies, 
gill damage and hemorrhaging from gill filaments could account for the decline in the number of circulating red 
blood cells (AlKindi et al 1996), but few studies have included both physiological and histological approaches. 
A further change in gill histology reported in some studies was a proliferation of chloride cells in fish exposed to 
crude oil and its various fractions (Solangi, 1980; Engelhardt et al 1981; Lopez, 1981). Such an event could 
result from endocrine responses which have already been discussed.  

Gills have been observed to be sensitive to crude oil or its WSF even at relatively low concentrations. Coho 
salmon and starry flounder exposed to about 100 ppb of the WSF of crude oil for five days developed gill lesions 
which included loss of surface cells or the first two or three layers of the mucous cells, exposing immature 
mucous cells (Hawkes, 1977).  In addition, increased levels of parasite infection were observed in the gills of 
these fish. The extent of parasitic infection of the gills of oil-treated sculpin and cod was about 17-fold greater 
than that of control fish (Khan, 1990) and chronic exposure of longhorn sculpin (Khan, 1991a) and flounder 
(Khan, 1991b) to oil-contaminated sediment increased parasite infection. An increased number of monogenoid 
parasites in the gills of cod exposed to the WSF of crude oil (approximately 30-80 ppb) occurred alongside other 
changes in gill morphology such as epithelial hyperplasia at the interlamellar bases and an increased number of 
mucus-secreting cells (Khan and Kiceniuk, 1988).  Such events could reflect the well-known 
immunosuppressive action of an activated corticosteroid response (see Wendelaar Bonga, 1997). At higher 
concentrations, 70% of the exposed fish showed lesions such as epithelial hyperplasia and lamellar curling.  
Similarly, lamellar curling and swelling (edema) with ruptured afferent and efferent blood vessels, increased 
necrotic debris and extensive deterioration of the gill structure were all observed in rainbow trout exposed to 
bunker C oil mixed in seawater (McKeown and March, 1977, 1978) or the WSF of crude oil (Prasad 1988; Khan 
and Kiceniuk, 1988). However, Payne et al (1995) reported no gill histopathological changes in winter flounder 
exposed to sediment contaminated with oil-base mud, apart from a very mild hyperplasia of the gill tips in fish 
exposed to the lowest hydrocarbon level. 

Chronic exposure to oil-shale water caused a graded increase in the diffusion distance of the gills of 
rainbow trout, which was proportional to the pollutant concentration.  Increased diffusion distance was attributed 
to swelling of the lamellae and epithelial cell hypertrophy (Johnson, 1983).  Increased branchial diffusion 
distance has also been attributed to elevated mucous secretion in the Antarctic fish, Pagothenia borchgrevinki, 
exposed to the WSF fuel oil (Davison et al 1993). 

Fish living in the vicinity of drilling platforms which may be exposed to high levels of petroleum 
hydrocarbons were reported to show hyperplasia of gill epithelium (Grizzle, 1986). Once into production, coastal 
and marine platforms in many areas of the world currently discharge the waste ‘produced water’, contaminated 
with ppm levels of hydrocarbons, into the marine environment. Here it will be heavily diluted and subject to 
rapid degradation, but effects on fish living in the vicinity of the platforms is of interest. In a recent study, turbot 
juveniles were exposed for up to 6 weeks to dilutions of a North Sea oil platform ‘produced water’ using 
dilutions to mimic the likely concentration close to the discharge point to the likely concentration at several 
kilometers from discharge (Stephens et al 2000). In turbot exposed to 1% or 0.1% produced water (likely to 
occur close to the discharge point) for 6 weeks ~50% gill lamellae were fused at their tips which appeared to 
develop after a curling and sticking at their tips. As a result, respiratory and/or ionoregulatory processes were 
likely to be disturbed in these fish. The higher concentration of produced water (1%) resulted in a similar 
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proportion of fused lamellae within 3 weeks. Lower concentrations, however, did not cause a significant 
development of fusion.    

4.2 Liver Histopathology 

Increased cellular vacuolization, RER proliferation and glycogen depletion have been widely reported in 
the liver of fish exposed to petroleum hydrocarbons (Hawkes 1977; DiMichelle and Taylor, 1978; McCain et al 
1978; Sabo et al 1978; Whipple et al 1978; Solangi, 1980; Solangi, and Overstreet, 1982; Kiceniuk and Khan, 
1983; Khan and Kiceniuk, 1984). According to Sindermann (1982), increased vacuolization in liver cells reflects 
an increased hepatic lipid content in fish exposed to petroleum hydrocarbons. However, Eurell and Haensly 
(1981) suggested that vacuole formation was not directly related to lipid accumulation; after 14-21 days of 
exposing Atlantic croaker, Micropogon undualatus to 5% WSF of crude oil, liver lipids were lower in exposed 
fish than in controls, although at 10% WSF, lipid content was increased. Since vacuolization in liver cells was a 
consistent response, it did not appear to be closely related to an increased lipid content. Also, exposure of sculpin 
to naphthalene did not appear to cause histological damage in the liver (DeVries, 1977). Marty et al (1999) 
found evidence of increased incidence of hepatic necrosis in Pacific herring (Clupea pallasi) sampled from oiled 
sites in Alaska and suggested that this may have resulted from a crude-oil associated increase in viral disease 
prevalence. 

Vacuolization and increased RER have been observed not only in the liver but also in a variety of other 
organs. The intestine of petroleum-exposed chinook salmon revealed a presence of irregular cellular inclusions 
in the columnar cells of the intestinal mucosa, increased vesicle density in the cytoplasm near the luminal surface 
of the columnar cells and cytoplasmic changes of the basal cells of the mucosa. Moreover, membrane bound 
vesicles containing fine granular material filled the luminal half of the intestine columnar cells and increased 
RER, as in the liver, has also been observed (Hawkes et al 1980; Haensly et al 1982). 

4.3 Kidney Histopathology 

There have been relatively few histopathological studies of fish exposed to the WSF of crude oil (Solangi, 
1980; Haensly et al 1982). In two studies shrinkage of renal tubules and epithelial separation from basement 
membranes suggested loss of functional renal tubules in fish exposed to the WSF of crude oil (Solangi, 1980), 
while dilation of the Bowman’s space and hypertrophy of the glomeruli were observed in kidneys of the plaice 
(Pleuronectes platessa) collected from oil spill areas (Haensly et al 1982). 

5.  Effects of Petroleum Hydrocarbons on Fish Larvae 

 The early life stages of marine fish appear to be more sensitive to hydrocarbons than adult fish (Stene and 
Lonning, 1984; Carls and Rice, 1988; Marchini et al 1992). The greatest embryonic sensitivity to pollutants 
such as the WSF of crude oil may be very early in the development of an embryo when damage to a few 
precursor cells could potentially result in extensive damage as the embryo develops (Moore and Dwyer, 1974; 
Rosenthal and Alderdice, 1976; Carls and Rice, 1988).  However, studies often indicate that fish eggs are, in 
fact ,more resistant to dissolved petroleum hydrocarbons than larvae (see Carls and Rice, 1988). These 
variations in resistance to hydrocarbons may reflect differences in the bioaccumulation of hydrocarbons by eggs 
and larvae: embryonic tissues may accumulate substantially less hydrocarbons (which may tend to partition in 
the yolk) than accumulation by larval tissues (Carls and Rice, 1988). 

 Moore and Dwyer (1974) estimated that fish larvae may be ten times more sensitive to soluble aromatic 
hydrocarbons (ranging from 0.1 ppm to 1.0 ppm) than adult fish. This high sensitivity has been suggested to 
reflect a possible reduction in detoxifying capacity, their high surface area in contact with the environment and 
their limited mobility (Rice, 1985). 

Petroleum hydrocarbons have been reported to affect the survival of fish larvae (Linden, 1976; Kuhnhold 
et al 1978; Falk-Petersen et al 1985; Tilseth et al 1984; Carls, 1987; Edsall, 1991; Marchini et al 1992; 
AlKindi et al 1996). Exposure to weathered crude oil caused high mortality in larvae of the Baltic herring 
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(Linden, 1976). Similarly, petroleum hydrocarbons such as polycyclic aromatic hydrocarbons (i.e. naphthalene 
and 1,3-dimethylnaphthalene) and cyclic alkanes were found to be toxic to rainbow trout alevins (Edsall, 1991) 
and exposure of cod larvae or Pacific herring larvae to the WSF of crude oil affected survival (Falk-Petersen et 
al 1983; Carls, 1987). Exposure to benzene derivatives also reduced the survival of larval and juvenile fathead 
minnow with larvae being more sensitive than juveniles (Marchini et al 1992). 

Crude oils and their hydrocarbon derivatives have been reported to cause morphological and 
developmental abnormalities in fish larvae (Lindcn, 1976; Lonning, 1977; Smith and Cameron, 1977, 1979; 
Cameron and Smith, 1980). Exposure of Pacific herring larvae to crude oil caused enlargement of the 
pericardial cavity, failure in development of branchiostegal membranes and erosion of pectoral fins (Smith and 
Cameron, 1977), and abnormal mouth development (Smith and Cameron, 1977, 1979). Exposure to crude oil 
caused cellular disruption manifested in intercellular membrane breakdown, irregular and non-membrane 
bound intracellular spaces in brain and muscle tissues and swollen mitochondria ‘some with damaged cristae’ 
in Pacific herring larvae (Cameron and Smith, 1980). Exposure of three marine species of larvae to crude oil 
and aromatic hydrocarbons caused abnormally bent notochords, poor differentiation of the head region and 
protruding eye lenses (Lonning, 1977). An ultrastructural study of plaice larvae exposed to crude oil showed 
irregular and degenerating muscle tissue (Falk-Petersen and Kjorsvik, 1987). These morphological 
abnormalities can exert dramatic impacts on larval fitness. A completely normal mouth and normal swimming 
are essential for feeding while well developed fins are important for swimming and avoidance of predators 
(Smith and Cameron, 1977). 

Exposure of fish larvae to petroleum hydrocarbons has been reported to affect their swimming ability 
(Linden, 1975; Smith and Cameron, 1977; Tilseth et al 1984; Carls, 1987). Rice (1985) described the pattern of 
behaviour of larvae exposed to high levels of the WSF of crude oil as a brief burst in activity followed by deep 
narcosis and, ultimately, death. This pattern of rapidly reduced swimming ability was confirmed in turbot 
larvae exposed to 25% to 50% of the WSF of crude oil, although there was good survival (over a 6h 
experimental period) in 25% and 33% WSF (AlKindi, 1995; Stephens et al 1997). Reduced swimming ability 
is a widely reported effect of oil hydrocarbons on fish larvae (Linden, 1975; Smith and Cameron, 1977; Tilseth 
et al 1984; Carls, 1987). Reduction in swimming ability and deep narcosis of larvae will seriously cripple their 
ability to feed and to avoid predators. Baltic herring larvae exposed to crude oil showed abnormal swimming 
behaviour characterized by vigorous swimming up to the surface followed by a slow sinking to the bottom 
(Linden, 1975).  

Petroleum hydrocarbons have also been reported to affect the metabolism of fish larvae (Eldridge et al 
1977; Serigstad and Adoff, 1985). Depressed oxygen uptake may cause impaired growth and development 
(Eldridge et al 1977; Kuhnhold et al 1978; Serigstad and Addof, 1985; Tilseth et al 1984; Carls, 1987; 
Marchini et al 1992). Moles et al (1981) found that the growth rate of coho salmon fry was inversely related to 
increasing concentrations of naphthalene and toluene. Direct exposure to crude oil caused a reduction in the 
length of larvae of the Baltic herring (Linden, 1976), Pacific herring (Smith and Cameron, 1977; Carls, 1987) 
and cod (Tilseth et al 1984). Ingestion of crude oil in the diet also resulted in a reduced body length of Pacific 
herring larvae (Carls, 1987). Exposure to benzene derivatives also reduced the growth of fathead minnow 
larvae (Marchini et al 1992) and post-yolk sac larvae of Pacific herring exposed to benzene showed decreased 
growth even though they ingested more food than unexposed larvae (Eldridge et al 1977). However, exposure 
to the WSF of crude oil caused a rapid reduction in feeding of Pacific herring larvae (Carls, 1987). Oil-induced 
reduction in growth may represent the result of a diversion of energy to the well-established detoxification 
processes (Eldridge et al 1977; Kuhnhold et al 1978) as well as effects on feeding and oxygen uptake (see 
above). 

Very few studies have investigated the resultant endocrine stress responses of larvae exposed to petroleum 
hydrocarbons. A concentration and time-related increase of whole body T4 and T3 content of turbot larvae 
exposed to the WSF of crude oil was reported (Stephens et al 1997). Increased whole body cortisol content (a 
measure of de novo synthesis and release of cortisol) has also been observed in fish larvae exposed to 
petroleum hydrocarbons (Ramsay, 1991; AlKindi, 1995; Stephens et al 1997).  
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6. Conclusions and Future Research 

Endocrine responses of fish exposed to petroleum and related hydrocarbons are not well established. 
Cortisol has been investigated more than any other stress-related hormone but so far responses are not well 
established (AlKindi et al 1996).  There is a need for further dose-related studies on the effects of petroleum 
hydrocarbons on plasma cortisol and other hormones. There is also a need to establish the ability of fish to adapt 
to chronic exposure to petroleum hydrocarbons. Chronic exposures may ‘down-regulate’ the corticosteroid 
response, which has been observed in response to other chronic stressors (Wendelaar Bonga, 1997).    

Crude oil and their products have been reported to affect osmotic and ionic balances of a wide variety of 
fish species but the responses have not been entirely consistent. Analysis of the iono- and osmo-regulatory 
processes are required to more clearly determine the impact of petroleum hydrocarbons.  

Morphological alterations caused by exposure of fish to individual petroleum hydrocarbons and to model 
hydrocarbon mixtures or to whole crude oil have been observed by investigators both in laboratory and field 
studies, but investigators often report the structural effects of toxicants without investigating potential functional 
abnormalities. There are relatively few integrated studies of morphological and physiological events.   

The evaluation of the hypothalamic neurosecretory hormones during petroleum-induced stress should be 
explored in future studies. We can obtain a more complete picture by examining not only the peripheral aspects 
but also the central control as well. Investigations at a molecular level are needed to understand the full 
mechanism of stress.  

Finally, most of the research on the effects of stress and pollutants on fish has been carried out in cold 
waters of the northern latitudinal regions of the World, and therefore, there is a need to carry out similar studies 
in the warm waters. This is especially vital in areas like the Arabian Gulf, which is probably one of the largest oil 
trafficking and highly polluted regions in the world. 
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