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ABSTRACT: A new family of lanthanide/boron-based complexes have been synthesized from the novel 

substituted poly(pyrazolylpyridyl)borate ligand containing phenyl substituents on the boron atom Ph2Bp
py 

(L). The 

complexes have been fully characterized by analytical and spectroscopic methods. The single crystal X-ray 

structure and mass spectroscopy reveal the isostructural dinuclear complexes: [Ln2(L)2(NO3)2(OH)2] where Ln = 

Eu, Gd or Tb. Upon excitation of the Ln(III) complexes in DCM, their luminescence spectra display narrow f–f 

transitions. It is found that the ligand can efficiently sensitize the Tb(III) complex because of the better triplet state 

energy match to the Tb(III)–
5
D0 excited states.  
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 مركبات البورون مع بايروزول بيريدين وفلزات اللانثاناتلالتركيب والخصائص الكيميائية 

   مايكل د. وورد و نوال الراسبي

مجموعتي فينول ملتصقة  يحتوي علىوالذي من ليجند البورون مع بايروزول بيريدين اللانثانات/بورون  ركباتمعائلة جديدة لتم تكوين  :صالملخ

Ph2Bp بذرة البورون
py 

(L) .  المعقد ثنائي الفلز:  ثبت التركيب البلوريأكما[Ln2(L)2(NO3)2(OH)2]  حيثLn = Eu, Gd or Tb .

ا لمركب التيربيوم ضوئي. وجدنا بأن الليجند يستطيع أن يتحسس f–fمركبات ف محاليلها على انتقالات  ضوئية بطبيعة الطيف الضوئي لل دلولقد 

 بفعالية وذلك لأقتراب مستويات الطاقة بينهما.

 

 .طيف ضوئي بلوري، تركيب(، IIIتيربيوم) ،(IIIبيوم)ييور ،ورونب: مفتاحيةالكلمات ال

1.  Introduction 

oron, the only non-metal of Group 13, displays a unique structural diversity in its combinations with transition 

metals [1]. The enormous diversity of boron chemistry ranges from polyboranes [2] to carboranes [3] to 

metallaboranes [4] and metal complexes of organoboron ligands [5]. In 1966, poly(pyrazolyl)borates were first 

reported by S. Trofimenko [6]. The poly(pyrazolyl)borate ligands have been proven to be extremely popular 

amongst coordination chemists for a wide range of applications because of their ease of synthesis, ease of 

functionalisation, and the steric protection which they afford to metal centres [7]. 

Over the years poly(pyrazolyl)borates such as bidentate Bp ligands have been compared to -diketonates 

(Chart 1) [5]. These 'first-generation' ligands are labile, rich in electron density and their coordination behavior is 

strongly dependent on the coordinating metal [8-11] In subsequent years, a new class of C
3
-substituted 

poly(pyrazolyl)borate ligands were developed in which additional coordinating groups have been attached to the 

pyrazolyl rings, completely changing the character of the simple first-generation ligands. Constituents such as 

pyridine [12]. 
 
(Bp

py
 in Chart 1), bipyridyl, [13] thioanisyl, [14] pyrazinyl, [15] and carboxamide [16] units have 

B 
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been appended to the pyrazolyl C
3
 positions of poly(pyrazolyl)borates, converting the ligands to polydentate 

chelates.   

The Ward group prepared new ligands by the attachment of a 2-pyridyl substituent to each pyrazolyl ring at 

the C
3
 position converting each 'arm' of the ligand to a tridentate chelate [17-18]. Substitution of 

poly(pyrazolyl)borates is also confined largely to the boron atom [5]. The potentially reactive B–H bonds in Bp
py

, 

may be replaced with either alkyl or aryl groups. Suitably sized ligand substituents can help to prevent agostic 

interaction through steric blocking of the space above and below the poly(pyrazolyl)borate ligands [19-20]. 

Substituents on the boron atom of Bp ligands have shown great stability such as on [(Ph2Bp)2Ni]. [21] Whilst the 

complex [(H2Bp)Ag] is air-sensitive, the analogue [(Ph2Bp)Ag] is very stable, [22]
 
suggesting that the stability of 

these complexes result from a combination of steric effects and not just solely from the aromatic substituents on 

the pyrazolyl rings.  

As part of our interest in luminescent lanthanide complexes, we describe the synthesis, crystal structure and 

luminescence behavior of a series of lanthanide complexes with the boron-substituted bis(pyrazolylpyridyl)borate 

ligand: Ph2Bp
py

 (L) (Chart1) in which two bidentate arms are connected to a boron centre. The incorporation of 

two phenyl units at the boron centre has altered its sensitization properties to Eu(III) and Tb(III) ions. The X-ray 

crystal structure confirmed the general formulae of the complexes to be: [Ln2(L)2(NO3)2(OH)2] where Ln = Eu, Gd 

or Tb. 

 

 

 

Chart 1: The structures of the poly(pyrazolyl)borates: Bp, Tp, Bp
py

 and Ph2Bp
py

 (L). 

2. Experimental 

The Boron ligand was prepared according to the method described by Trofimenko [19]. 

L (Na[Ph2Bp
py

]): 3-(2-pyridyl)pyrazole (0.6 g, 4.14 mmol) and NaBPh4 (0.58 g, 1.70 mmol) were ground together 

finely and heated gradually to 190 °C for 4 hrs under N2. During this time, H2 gas was evolved at 150 °C and then 

benzene was evolved at 190 °C.  Any unreacted 3-(2-pyridyl)pyrazole sublimed at the top of the flask. After 

cooling to r.t.; the melt was washed with hot toluene (15 mL) and hexane (15 mL) and finally dissolved in CH2Cl2 

and concentrated in vacuum to yield 0.50 g of white powder (60%). Positive-ion electrospray MS: m/z 477 [M
+
]. 

IR(KBr) 1021 cm
–1

 (B–C). 
11

B NMR (CDCl3): –0.819. Found: C, 70.61; H, 5.09; N, 17.49. Required for 

C28H22N6BNa: C, 70.63; H, 4.62; N, 17.65%.  

Synthesis of the complexes 

The complexes were prepared by combining equimolar quantities of Eu(NO3)3, Gd(NO3)3 or Tb(NO3)3 with 

the ligand in MeOH and left to stand for 1 hr during which time a precipitate was formed. The precipitate was 

filtered off and washed with MeOH to give a powder.
7 
Characterization data for the complexes are as follows: 

[Eu2(L)2(OH)2(NO3)2]. Yield 70 %. ES-MS: m/z 1310 {[Eu2(Ph2Bp
py

)2(OH)2(NO3)]}
+
. IR(KBr) 1001 cm

–1
 (B–C).   

[Gd2(L)2(OH)2(NO3)2]. Yield 72 %. ES-MS: m/z 1253 {[Gd2(Ph2Bp
py

)2(OH)2]}
2+

 and 1316 

{[Gd2(Ph2Bp
py

)2(OH)2(NO3)]}
+
. IR(KBr) 1003 cm

–1
 (B–C). X-ray quality crystals were grown by slow 

evaporation of a DCM solution of the complex in air. 

[Tb2(L)2(OH)2(NO3)2]. Yield 70 %. ES-MS: m/z 1318 {[Tb2(Ph2Bp
py

)2(OH)2(NO3)]}
+
. IR(KBr) 1001 cm

–1
 (B–C). 

Spectro-fluorimetric measurements 

UV-visible spectra were recorded on a Varian Cary 50 conc UV-visible spectrophotometer in range 250-800 

nm. Quartz cuvettes of 1 cm path length were used and solvent background corrections were applied. Steady state 

fluorescence spectra in solid and solution states were recorded on an Edinburogh FS5 fluorimeter. The solid state 
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phosphorescence lifetime measurements for the Ln(III) complexes were measured on Perkin-Elmer LS50B 

Fluorimeter at RT and 77 K. 

Crystallography 

Single crystals of the complex GdL was obtained as detailed above. Data was collected at 100 K, using 

Bruker APEX-II CCD diffractometer equipped with Mo-Kα radiation. Absorption corrections were applied in each 

case using SADABS. [28] The structures were solved by direct methods or heavy atom Patterson methods and 

refined by full matrix least squares methods on F
2
 using SHELXL-97. [29] The hydrogen atoms were generated 

geometrically with isotropic thermal parameters. Crystallography data (excluding the structure factors) for the 

reported structure have been deposited with the Cambridge Crystallographic Data Centre. 

 

3. Results and discussion 

The synthesis of the new bi(pyrazolylpyridyl)borate ligand: Ph2Bp
py

 (L) is outlined in Scheme 1. The key 

intermediates for formation of the ligand is 3-(2-pyridyl)pyrazole, which is prepared from 2-acetylpyridine, in the 

usual two-step procedure for conversion of acetyl groups to pyrazole groups. [23]
 
Then, L was prepared by 

reaction of 3-(2-pyridyl)pyrazole with KBPh4 in a melt at 190 °C until benzene vapour is no more evolved. [24] 

Satisfactory elemental analysis, FAB mass spectra, [11] B NMR and 
1
H NMR spectra confirmed the formulation 

of the ligand.  
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Scheme 1. Schematic route for the synthesis of Ph2Bp. 

Reaction of L with nitrate salts of Eu(III), Gd(III) or Tb(III) in MeOH afforded white precipitates 

respectively. X-ray quality crystals were grown by slow evaporation of their solutions in dichloromethane, DCM. 

The complexes were satisfactorily characterised by FAB mass spectrometry. For example, the fragment: 

{[M2(L)2(OH)2(NO3)]}
2+

 was observed at m/z 1310, 1316 and 1318 respectively for Eu(III), Gd(III) or Tb(III) 

complexes. The crystal structure of [Gd2(L)2(NO3)2(OH)2]·CH2Cl2 (GdL) in Figure 1 has proved to be a dinuclear 

complex in which each ligand donates two bidentate sites to one metal ion, with the two metal centres bridged 

through two hydroxyl groups. The coordination environment about each metal centre is 8-coordinate and best 

described as a square antiprismatic, having an equatorial belt of four N atoms from [L]
–
 with two bridging 

hydroxyl groups and one bidentate chelating (NO3)
–
 in the axial  positions on either side of the MN4 plane. The 

four N-donor atoms from each [L]
–
 ligand form a plane, with the Gd(III) centre lying 0.33 Å out of the N4 plane. 

The angle between the two Gd(NN) planes is 14.3°. The metal–ligand bond distances exhibit a Gd–N(py) bonds 

are on average significantly longer than the Gd–N(pz) bonds and are comparable to previously reported 

complexes. [12-13] Selected bond distances and angles are listed in Table 1.  

It is also worth noting that replacement of the hydrogen atoms in Bp by two phenyl rings in Ph2Bp
py

 (L) 

changes the coordination behaviour of the ligand compared to functionalized Bp which yielded mononuclear 
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complexes with Ln(III) ions. [12] The steric effects caused by the phenyl rings play a big role in the new structure. 

Intra-molecular O–H··· hydrogen-bonding interactions (~2.9 Å) are observed, involving one phenyl ring and the 

coordinating hydroxyl group, which clearly plays an important role in stabilising this complex. The steric 

interactions within the Gd(III) complex are shown in Figure 1 (Bottom). Other ··· and ···CH stacking 

interactions between the aromatic rings and the solvent molecules, were observed in the molecular packing. 

 

 

 

  Figure 1    Top: The crystal structure of GdL showing the two hydroxyl bridges.  

                  Bottom: The -interactions within the molecule.  

 

      Table 1.  Selected bond lengths (Å) and angles (˚) for GdL. 

Gd(1)-O(1H)#1
[a]

  2.253(5) Gd(1)-N(11) 2.496(6) 

Gd(1)-O(1H)  2.284(5) Gd(1)-N(31) 2.554(6) 

Gd(1)-O(1)  2.481(5) Gd(1)-N(1) 2.560(6) 

Gd(1)-N(21)  2.488(6) Gd(1)-Gd(1)#1
[a]

 3.7240(15) 

Gd(1)-O(2)  2.491(5)   

    

O(1H)#1-Gd(1)-O(1H)
[a]

 69.9(2) O(1H)-Gd(1)-O(2) 77.26(18) 

O(1H)#1-Gd(1)-O(1)
 [a]

 161.09(17) O(1)-Gd(1)-O(2) 51.43(17) 

O(1H)-Gd(1)-O(1) 128.68(17) N(21)-Gd(1)-O(2) 119.06(18) 

O(1H)#1-Gd(1)-N(21)
[a]

 85.19(18) O(1H)#1-Gd(1)-N(11)
[a]

 87.62(18) 

O(1H)-Gd(1)-N(21) 137.24(19) O(1H)-Gd(1)-N(11) 135.33(18) 

O(1)-Gd(1)-N(21) 77.82(19) O(1)-Gd(1)-N(11) 79.98(18) 

O(1H)#1-Gd(1)-O(2
 [a]

 147.09(17) N(21)-Gd(1)-N(11) 74.63(18) 
[a] Symmetry transformations used to generate equivalent atoms: #1 -x,-y+1,-z+1. 
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   Photo-physical properties 

The absorption spectrum of L in DCM is shown in Figure 2. It shows two strong transitions at 250 and 285 

nm which can be attributed to ligand-centred   * transitions from (pyrazolyl/pyridine) units [25].  

                                                                                                            

 

Figure 2. The absorption spectra of L and its Ln(III) complexes 

          (1x10
-5

 M) in DCM solutions at room temperature. 

 

Metal-centred luminescence  

The triplet state energy (
3
*) of L

 
can be determined from the phosphorescence spectrum of its Gd(III) 

complex recorded in a mixture of ethanol/methanol solution at 77K. Gd(III) ion lacks a low lying electronic 

acceptor level (>30,000 cm
–1

), so its luminescence features are associated with those of the coordinated ligand. 

From this emission spectrum, the ligand-based triplet state energy of GdL is 28,800 cm
–1

 (347 nm). The 

luminescence from the Eu(III) and Tb(III) complexes in DCM solution are presented in Figure 3. Excitation of the 

EuL at 345 nm in DCM results in intense red luminescence of Eu(III) showing characteristic peaks from the 
5
D0 

 
7
Fj transitions of Eu(III) at 558, 603, 626, 662 and 711 nm. This implies that energy-transfer from the ligand 

triplet state to the emissive 
5
D0 level of Eu(III) (ca. 17500 cm

-1
) is favourable.

 
The presence of the 

5
D0

7
F0 

transition proves the presence of the Eu(III) centres in a non-centrosymmetric site in EuL which agrees with the 

X-ray crystal structures. [26]
 
Upon excitation of the Tb(III) complex, TbL, at 345 nm in CH2Cl2, its luminescence 

spectrum displays strong green emission from the 
5
D4  

7
F6-2 transitions at 632, 592, 550 and 496 nm. The energy 

difference between the triplet state energy of L and the 
5
D4 level (20,500 cm

–1
) of Tb(III) is equal to ca. 8,300 cm

–

1
. According to Latva’s empirical rule, optimal sensitization for the Tb(III) luminescence requires an energy gap 

E(
3
*–

 5
D4) more than 1,850 cm

–1
. [27]

 
Therefore, L can sensitise the Tb(III) centre efficiently. By comparison 

to the Eu(III) complex, the situation is different. According to Latva’s empirical rule, for optimal ligand to Eu(III) 

energy transfer, the energy gap should be no more than 2,500 cm
–1

. In fact the calculated energy 

differenceE(
3
*–

 5
D0) is higher than this at around 11,300 cm

–1
. Therefore, the ligands can poorly transfer 

energy to the 
5
D0 excited states and hence the luminescence from Eu(III) is weak. This result is in agreement with 

their observed lifetime (obs) measurements. The phosphorescence decays of the Eu(III) and Tb(III) complexes 

with L in DCM are mono-exponential. The luminescence lifetime of Tb(III) is longer than that from Eu(III).  
 

                                      
 

                               Table 2. Summary of the photophysical data for L and its Ln(III) complexes. 
 

Compd max (nm)  
[(103 M-1cm-1) in MeCN 

Lifetime 
at f-f  (ms)[a] 

L 296(65), 248 (29) – 

EuL 293(36), 345 (sh) 0.56 

GdL 294(45), 345 (sh) – 

TbL 294(43), 345 (sh) 0.84 
                                                                     [a]  in dry DCM, the estimated standard error < 1%. 
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Figure 3. Luminescence spectra of the Ln(III) complexes: (a) [Eu2(L)2(NO3)2(OH)2] (EuL) and 

              (b) [Tb2(L)2(NO3)2(OH)2] (TbL) in (1x10
-5

 M) DCM solutions at room temperature. 

4. Conclusion  

The new boron-based ligand, L, which is derived from the well-known bis(pyrazolyl)borate core, has been 

synthesised and fully characterised. The X-ray crystal structure and MS analysis revealed the isostructural 

dinuclear complexes: [Ln2(L)2(NO3)2(OH)2], Ln = Eu, Gd and Tb. The metal centres are bridged through two 

hydroxyl groups. The steric effects caused by the aromatic substituents on the boron centre has played a big role in 

stabilizing the structures, through intra-molecular O–H··· hydrogen-bonding interactions. The photophysical 

investigations in DCM gave evidence that L is able to achieve ligand to metal energy transfer and intense red 

emission from Eu(III) and green emission from Tb(III) centres are observed in the visible region. 

 

 

            Table 3. Crystallographic data for GdL. 

Formula  C29H25BCl2GdN7O4 

Formula weight  774.52 

T (K)   100(2) K 

Crystal system  Triclinic, P1̄ 

a (Å)  11.430(4) 

b (Å) 12.063(4) 

c (Å)  12.255(4) 

 (°)                                                                              85.638(17) 

 (°)                                                                               80.838(18) 

(°)                                                                               63.208(17) 

V(Å3) 1489.1(8) 

Z 2 

Dcalc  1.727 

 (mm-1)  2.455 

Crystal size (mm) 0.16 x 0.08 x 0.04 

Reflections collected 24005 

Independent reflections 6845 [R(int) = 0.0887] 

Data / restraints / parameters 6845 / 4 / 392 

Goodness-of-fit on F2 0.976 

Final R indicesa  R1 = 0.0580, wR2 = 0.1419 

Largest diff. peak and hole (e.Å-3) 3.722 and -1.756 

 

Acknowledgement 

We would like to thank the department of Chemistry, College of Science, Sultan Qaboos University for 

support.  



SYNTHESIS AND COORDINATION CHEMISTRY 

79 

 

Appendix 

Crystallographic data for the structure reported in this article have been deposited with the Cambridge 

Crystallographic Data Center. A copy of the data can be obtained free of charge from the Director, 12 Union Road, 

Cambridge CB2 IEZ, UK; fax: +44(0)1222-336033; email: deposit@ccdc.cam.ac.uk. 
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