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ABSTRACT: In this paper, we investigate the problem of the deviation of a function f from its de la Vallée-Poussin
sums of Fourier series in Morrey spaces defined on the unite circle in terms of the best approximation to f. Moreover,
approximation properties of de la Vallée-Poussin sums of Faber series in Morrey-Smirnov classes of analytic functions,
defined on a simply connected domain bounded by a curve satisfying Dini's smoothness condition are obtained.
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1. Introduction

M ain approximation problems in Lebesgue spaces have been studied by several authors [1, 2]. The approximation
of functions of Lebesgue spaces by partial sum of Faber-Laurent series was obtained by Israfilov [3]. These
results are generalized to Muckenhoupt weighted Lebesgue's spaces [4]. Approximation properties of Faber series in
weighted and non-weighted Orlicz spaces were dealt with by Jafarov and Israfilov [5-7].

The concept of Morrey space, introduced by C. Morrey [8] in 1938, has been studied intensively by various authors
and plays an important role in many areas such as applied mathematics, the theory of differential equations, potential
theory, and maximal and singular operator theory. Currently there are several investigations relating to the fundamental
problems in this space [9-14]. Therefore, the investigation into the approximation of functions by means of Fourier
trigonometric series in Morrey spaces is also important in these areas of research.

In the present paper, we investigate the problems of estimating the deviation of functions from their de la Vallée-
Poussin sums in Morrey spaces. Similar results in weighted Smirnov spaces and weighted Smirnov Orlicz spaces can
be found in the papers [15-17].

2. Notation and Basic definitions
Let G be a finite simply connected domain in the complex plane C bounded by a rectifiable Jordan curve T' and

G~ := ext I'. Without loss of generality, we suppose that 0 € G. Further, let y, := {w € C: |w| =1}, D:= int y,,
D™ := ext y,. We denote by w = ¢(z) the conformal mapping of G~ onto domain D~ normalized by the conditions

@(0) =00,  lim #¢)

Z—00 Z

>0,

and let y be the inverse mapping of .

We begin with the following definitions:
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Definition 2.1 [18] For 0 <a < 2 and 1 < p < oo, we denote by LP*(T) the Morrey space, as the set of locally
integrable function f, with a finite norm:
1
1 p
Fllpec = {sup——— | IfG@IPldzly <o
B |B N Fl[‘ 2 /BNl

where B is an arbitrary disk centered on I and |B N I'| is the linear Lebesgue measure of the set B N T.

In the case of T = y, := {w € C: |w| = 1} we obtain the space LP**(y,).

Under this definition LP*(T) is a Banach space. If a = 2 then the class LP?(T") coincides with the class L? ("), and for
a =0 the class LP°(I) coincides with the class L*(I'). Moreover, LP*1(T) c LP%2(T") for 0 < a; < a,. Thus,
LP*(T) c L}(T), Va € [0,2].

For given f € L,(y,), let

%+Z,‘i°=oak(f) cos kx + by (f) sin kx 1)

be the Fourier series of f, where a; (f) and b, (f) are Fourier coefficients of the function f. Further, let

ao = .
Splx, f) =—+ a, (f) cos kx + by (f) sin kx
> IZ; k k

be the n th partial sums of series (1).
We define the n — th de la Vallée-Poussin sums of series (1) as

n
1
Vam(x, f) = ——] Z Sk(x,f), 0<m<n, mn=123,...

k=n-m

Definition 2.2 [19] We define the » modulus of smoothness of a function f € LP*(y,) for r = 1,2,3,...by the relation
wp,a(f,8) = ;TEIIAZ(}C,-)IILM(YO), t>0,
where B

r _
W) = Do (1) (7K f (e + k).
The best approximation to LP*(y,) in the class 7;, of trigonometric polynomials of degree not greater than n is defined
by
En(ipacyy) = inflllf = Tullipacyy): Tn € Tn}-

Let T* € T, be a trigonometric polynomial such that

En(f)Lp'“(yo) =|f - T*“Lp'a(Yo)'

If m,n € N such that m > n, then we get

Em(f)Lp'“(yo) < En(f)Lp'“(yo)- (2

Using the boundedness of operator f — S,,(., f) in the Morrey spaces LP**(y,) we get
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If = SuC ODrpagy < If — T llpagy + 1T = Su(, Ollpagy)
= En(f)pagyy) + IISn (o f = TH)lpag,) < En(Hipagy) + Cllf — T pag,)

=(C+ 1)En(f)Lp'“(Yo) = CEn(f)Lp’a(YO)’

where C is a positive constantand ¢ = C + 1, i.e. there exists a constant ¢ such the following relation holds

I = SuCo llupagy) < CEnl(Firayyy. ©

Definition 2.3 [9] We define the Morrey-Smirnov classes EP*(G), 0 < a < 2and 1 < p < oo, of analytic functions in
G as

EP(G) = {f € E*(G) : f € LP*(D)}.

If we define ||f|gpacgy = lIfllLpaqr), then EP*(G) becomes a Banach space.

Definition 2.4 [20] A smooth curve T: o(s) is called Dini-smooth if it satisfies the condition

5 r
Q(a'(s),s
0

where Q(o’(s),s) modulus of continuity of function ¢'(s). By D we denote the set of all Dini-smooth curves.
If ' € D, then [21]

0<cSWW|<c<mo 0<c3<5|9'(2)|<cy <o (4
for some constants, c,, c¢,, c5 and, c,.

Hence, if I' € D and using (4), then by [9]

felPt(l) & fo=fop € LP(y) ®)

and the function f;F: D — C defined by

fiwy == L9 wep (6)

2mi YYo T—w

is analytic in D and f;t € EP*(D) [9].

IfT € Dandr = 1,2,3, .., we define the » — modulus of smoothness of f € LP*(T") by the relation (see, [9])
tpa(fr ) = wh o (foh 1), t>0. (7)
The Faber polynomials @, (t) of degree k are defined by the relation [22]

YW _ ge D@
pw)—t — “k=0 e

teG weD. (8)
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If f € EP%((), then by the definition 2.3, f € E1(G) and hence

_ fGs) , 1 P'(w)
f(z)_ﬁfrs—zds_Zni VOIIJ(W)—

Zfo(w)dw ,Z € G.

From the last formula and the relation (8), for every z € G we have
f(Z)~ZI(:)=O ak(f)q)k(z) , ZE G, (9)

fow)
—d =0,12,.. .
a’k(f) 27Tl v Wk+1 w, k 0; )&y

where

The n — th de la Vallée-Poussin sums of the series (9) are defined as
n

1
V;l,m(x'f) = m1

k=n-m

mn=123,..,

where
n

Sn@f) = ) a(HP@).
k=0
We define the operator T as follows:

T: EP%(D) - EP9(G)
T(A(@) =, ff,,w()w"; ) 4w,z € G. (10)

In order to prove our main results, we need the following theorems.
Theorem 2.1 [10] If T € D, then the operator T defined by (10) is linear, bounded, one to one and onto. Moreover

T(fy) = f for f € EP*(G).
Theorem 22 [9] Let ge€eEP*D) with 0<a<2 and 1<p<o. Then for a given
r =1,2,3, ... the inequality

1
En(g)Lp.a(yO) < Cs w;_a (g,_n n 1) ,n= 1,2,3,..
holds with a constant c; > 0 independent of n.

3. Main Results
In this section, we present the main results.

Theorem 3.1 Let LP“(y,) be a Morrey space with 0 < a < 2 and 1 < p < oo, then there exists a positive constant ¢,
such that for any f € LP*(y,), 0 < m < n,m,n = 1,2, ... the inequality

”f nm( f)” pa(y) — Zk =n-— mEk(f)Lp'“(yo) (11)

is true.

Proof. Let us chose the integer j such that 2/ < m + 1 < 2/*1. Then

1
f(x) - V;zm(x'f) = m—-l-l[f(x) - Sn—m(x:f)]

Zmz ()~ SiGe T+ — { 3 [f(x)—S(xf)]}
e m+1 e '

=1i=n-m+2k-1 k=n-m+2J

And from this, we get
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”f - Vn,m(ff)” LP9(y,)

J n-m+2k-1
S I = SumC Dllpery + Z D I =S Dllpay
=1i=n—-m+2k-1
1 n
o 1{ Z .“f_Sk(-rf)”Lp'“(yo)}-
k=n-m+2J

From the relation (3), we get
_C7 j n-m+2k—1 E
”f_ nm( f)”Lpa(y) ml Ey- m(f)L”“(yo) +m+1 k=12i=n—m+2k‘1 i(f)Lp'“(yo) +

m+1 {Zk =n-m+2/ Ex(f)rp. a()’o)} (12)

From (12) and using (2), we get

”f nm( f)”Lpa(y) = £10 {En m(f)Xa) +2 Zk 1En m+2k- 1(f)LPa(y0)} + Cll; m —

m+1

Zj + 1)En—m+21 (f)Lp'“()’o)' (13)
On the other hand, we have
i _ ; _ k-1_
{c=1 2k 1En—m+2k_1(f)Lp‘a(Vo) < En—m+1(f)Lp'a()/o) +2 Z{(=2 Z?:?ﬁ-:nizk_zl Ei(f)Lp‘a(Vo) =
_ j-1
C1z2 Dhend Eg (fLragyy)- (14)

Since 2/ <m+1<2/*! weget2/ >m—2/ + 1. Hence

(m =27 + 1)E,_ 0 (Dipagry) < Zhontm ~ E(fivacyy)- (15)
From (13), (14) and (15) we obtain
”f - Vn,m(' ff) ”Lp,a(yo)
n—m+2/-1 n-m+2/-1
C13
S Epn_m(F)rpagy + Z Ex(f)ipagy) + Z Ex(f)Lpagy,y)
k=n-m k=n-m

n
Ce
] Z Ex(f)rpay,)

. . k=n-m
and the inequality (11) is true.

Corollary 3.1 Let LP*(y,) be a Morrey space with 0 < @ < 2 and 1 < p < oo, then there exists a positive constant c;,
such that for any f € LP*(y,), 0 < m < n, m,n = 1,2, ... the inequality

”f - Vn,m("f)||Lp,a(y0) S ﬁ 112 =n-— m(‘)pa (frﬁ) (16)
is true.

Proof. From Theorem 3.1 we have

n
C
I = Vo Dll ey < g 2, BePiraco

k=n-m
and from Theorem 2.2 we get

1
En(f)Lp'“(yo) < s w;a (f, Tl_-i-l) ,n=123, ...
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We reach

n
c 1
”f - I/‘n,m(wf)”Lp,a(yo) < m ::l 1 Z “)g,a (f’k_H) yn= 1;2; e on

k=n-m

Theorem 3.2 Let G be a simply connected domain in the complex plane, bounded by a curve T € D. If f € EP4(G)

with0 <a <2and1 < p < oo, then for every 0 < m < n, n,m € N the estimate
n

1
If = VG Ollppaay < cis 2 Of pa (f'k_-l-l)

. . k=n-m
holds, where c; 5 is a positive constant.

Proof. Since f € EP*(G) and T is a Dini — smooth curve, then the boundary function of f belongs to LP-*(T") and from
the relation (5) we get f, € LP*(y,), and the function f;t which defined by (6) belongs to EP*(D). Since EP*(D) c
E1(D), we obtain f3* € E1(D) which has the following Taylor expansion

forw) = o ar(fiHw*, weD. (7)

Let {c,} be the Fourier coefficients of the boundary function of f;", then by [23] we get ¢, = a,(f;F) for k = 0 and
¢, = 0 for k < 0, and then by substitution in (17) we obtain

fof(w) = z cew®, wED.
k=0
Note that for the function f € EP*(G) the following Faber series holds

(0]

f~ D a(NP(2), 26,

k=0

where a, (f), k = 0,1,2, ... are the Taylor coefficients of the function f;, and by Theorem 2.1 we obtain

T (Z ak(f0+)wk> = Z ay ()@ (2)

k=0 k=0
and
T (VoW ) = Vom(z. )),0Sm<n,  nm=012,.. .
Hence, using the boundedness of operator T defined by (10) and the relation (11), we reach
— + + + +
1 = Ve o Dl ey = (TS =T (o )|y S 16l = Vo Fi gy
n

C17
< m+1 Z Ek(f0+)Lp'“(y0)-
k=n-m

Using the Theorem 2.2 we get

n
_ C1is n 1 )
1 = V€ Dl gy < 7 1k;—mw5,a(fo,—k+ ).

And by the relation (7) we reach
n
IF = VoD Ly S e > O (s
e em T m 41 tpe\k+ 1)
=n-m

Consequently, we have proved the Theorem 3.2.

94



APPROXIMATION PROPERTIES OF DE LA VALLEE-POUSSIN SUMS IN MORREY SPACES

4. Conclusion

A method was developed to estimate the deviation of functions from their de la Vallée-Poussin sums in Morrey
spaces in terms of the best approximation.
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