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ABSTRACT: The Hurwitz space #%,(G) is the space of genus g covers of the Riemann sphere P* with  branch
points and the monodromy group G. In this paper, we enumerate the connected components of the Hurwitz spaces
HA,(G) for a finite primitive group G of degree 7 and genus zero except S,. We achieve this with the aid of the
computer algebra system GAP and the MAPCLASS package.
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1. Introduction

et Q be a finite set and || = n. Define a genus g system to be a triple (G, Q, (x4, ..., x;.)). G is a transitive
Lsubgroup of S, suchthat G =< xy, ..., %, >, x; " x5 * ... x, = 1 and x; € G\{1}

T

2m+g—-1)= Eindxi

i=1

where indx; is the minimal number of transpositions need to express x; as a product [6]. This condition is
equivalent to the existence of the branched covering f: X — P! where P! = C U {0} [8]. If f is an irreducible,

then G is primitive.

Let C, ..., C, be non-trivial conjugacy classes of a finite group G. The set of generating systems (xg, ..., x,) of G
with x; ...x, = 1 and such that there is a permutation m € S,. with x; € S;;y for i = 1,...,7 is called a Nielsen
class and denoted by N (C), where C = (Cy, ..., C;).

Each Nielsen class is the disjoint union of braid orbits, which are defined as the smallest subsets of the Nielsen
class closed under the braid operations [10]

o -1
(X1, eoer 27 ) 0= (Xq, ey Xjp 1) X1 XiXi 415 s Xp) (1)
fori=1,..,r.

We denote by 0, the space of subsets of C of cardinality r. The following definitions can be found in [10].
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CONNECTED COMPONENTS OF }[;f‘g(G)

Definition 1.1

Let B€O, and by, € P\ B, we call a map ¢:m;(P*\ B,by) » G admissible if it is a surjective
homomorphsim, and ¢(8,) # 1 for each b € B. Here ,, is the conjugacy class of 7, (P! \ B, by).

Definition 1.2.

Let B € 0, and ¢@:m; (P! \ B,») — G be admissible. Then we say that two pairs (B, ¢) and (B, @) are A-
equivalent if and only if B= B and @ = a o ¢ for some a € A.
Let [B, ¢], denote the A-equivalence class of (B, ¢). The set of equivalence classes [B, ¢], is denoted by H,A(G)
and is called the Hurwitz space of G-covers.

Here we enumerate the connected components of H;A(G) and then we show to which number of branch
points r, it is connected. The MAPCLASS package of James, Magaard, Shpectorov and Volklein, is designed to
perform braid orbit computations for a given finite group and given type.

2. Preliminary

As usual Inn(G) and Aut(G) denote the inner-automorphism and automorphism groups of a group G
respectively. A denotes a subgroup of Aut(G). In particular if A = Inn(G), then the Hurwitz space HA(G) is
denoted by #£™(G).The details of the following results and concepts can be found in [10] and [8].

Lemma 2.1. The map W,: HA(G) - O,, ¥4([B, ¢]) = B is covering.

The fiber Y3 (By) = {[By, @]a: @:m; (P! \ B,o0) - G is admissible}. This ¢ gives a product one generating
tuple (xq,...,x,) of G. Define £.(G) = {(x1, ..., %,.):G = (X1, 000, %), X" X, =1, x; € G¥,i =1,2,...,7}. Let
A < Aut(G). Then the subgroup A acts on £.(G) via sending (x4, ...,%,) to (a(xq),..,a(x;)), for a € A. Let
EA(G) = E,(G)/A be the set of A-orbits. In particular, if A = Inn(G), then we have Inn(G) = G/Z(G).
Therefore E*(G) is the set of G-orbits.

Lemma 2.2. We obtain a bijection W;1(B,) = EA(G) by sending [B,, @], to the generators (X1, -, %) where
x=e(lyDfori=1,..,r.

Proposition 2.3. Let C be a fixed ramifcation type in G, and the subset #£"(C) of "(G) consists of all [B, @],
with B = {b,,...,b.}, @:m; (P*\B, ®) — G and @(6y,) € C; fori=1,...,r. Then HA(C) is a union of connected
components in HA(G). Under the bijection from Lemma 2.2, the fiber in 2*(C) over B, corresponds the set
NA(C). This yields a one to one correspondence between components of #2(C) and the braid orbits on N4 (C).
In particular, 7" (C) is connected if and only if B,acts transitively on " (C) = ' (C) .

Lemma 2.4. Let G be a group and X be a G-set. Then G acts transitively on X if and only if there is only one orbit.
Proof. Straightforward.

Corollary 2.5. Let C be a fixed ramifcation type in G, and the subset #™(C) of #"(G) consists of all [B, @],
with B = {by, ...,b,}, @:m;(P*\B, ) — G and @(8y,) € C; fori=1,...,r. Then HA(C) is a union of connected
components in H2A(G). Under the bijection from Lemma 2.2, the fiber in 2A(C) over B, corresponds the set
NA(C). This yields a one to one correspondence between components of #2(C) and the braid orbits on N4 (C).
In particular, 7, (C) is connected if and only if there is only one braid orbit.

Proof. It follows from Proposition 2.3 and Lemma 2.4.
3. Computing Indices and Labeling Conjugacy Classes

The classifications of all the primitive groups of degree 7 except S, for genus zero are given in this paper.
Before, we discuss computing the indices, we give an alternative formula to compute an index of an element in a
group. Let G be a group acting on a finite set Q and [Q| = n. If x € G, define the index of x by ind x =n —
orb x, where orb x is the number of orbits of < x > on Q. Also Fix x={w € 2 | xw = w}, f(x) = |Fix x|.

Furthermore, orb x = gz;i;gf(xi) where x has order d [6]. From the character table of A, we see the elements
of orders 2,3,4,5,6 and 7, then we compute fixed points, which are equal to 1a+2a of the elements of given orders.
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The Character Table of 4.

Alternating group 4,
Order =2520=23.32.5.7 mult =6 out=2
Constructions
Alternating S, = G.2 : all permutations of 7 letters;
A, = G : the even permutations; 2. G and 2. G. 2 : the schur double covers

Lattice 2A; = 2.6 : the symmetries of the lattice A, ,, whose minimal vectors are obtained from

+(i7;0,0,0) £ (0;i7,0,0) £ (1;,x,y,2) + (—x; 1Ly, —2) £ (—xy;,1,1,1) + (1; xy,1,1)
(xy;0,2,1)

+(—x;vz2,0,1) + (—=1;0,xy,2z) + (0; 1, —x, yz) by replacing each of x, y, z by one of b, or b5*, and
Cyclically permuting the last 3 coordinates
Vectors 3A, : symmetries of the 21 (w) vectors obtained from (200 00 00), (00 11 11), (01 01 ww) by
Bodiy permuting the 3 couples, and reversing any 2 couples (see A4 (hexacode));
The lattice these generate has auomorphism group 6U,(3).2 (see U,(3))

Unitary 34, has a 3-dimensional unitary representation over F,5 (see U5(5))
Presentations G =< A,B| A* = B®> = (AB)® = (A"'BA?B?)? =1 >=< xy, ..., x5|x} = (xl-x]-)z =1>;

G =< A,B| A> =[A,B?)> =[A,B%)? =1, B” = (AB)® >

Maximal subgroups specifications

Order Index Structure G.2 Character Abstract Alternating
360 7 Ag : S la + 2a N(24,34,3B,4A,5A) point
168 15 Ly(7) 7:6 la + 14b N(24,3B,4A,7AB) 5(2,3,7)
168 15 Ly(7) 7:6 la + 14b N(24,3B,44,7AB) 5(2,3,7)
120 21 Ss : S5 X 2 la +6a+14a N(24,34,54), C(2B) dual

72 35 (A, x3):2 :S,%xS;  la+6a+14ab N(34),N(242) triad
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; @ @ @ @ @ @ @ @ |@ @ @ | @ | @ |@ @ @
2520 |24 |36 |9 |4 |5 |12 |7 |7 120 [24 [12 |6 |3 |5 |6
p |power |A |A |A |A |A |AA|A |A A |A|A |AB|BC|AB |AB
p’ |pat |[A |A |A |A |A [AA]A |A A |A|A |AB|BC|AB |AB
ind | 1A | 2A | 3A | 3B [ 4A | 5A | 6A | 7A | B |fus |ind | 2B | 2C | 4B | 6B | 6C | 10A | 12A
X, |+ |1 1 |1 |1 |1 |1 |1 |1 |1 |: [+ |1 |1 |1 [1 |1 |1 |1
X, |+ |6 2 [3 |0 |0 |1 |1 |2 |1 |: [+ |4 o |2 |1 |o |1 |1
X, | O | 10 2 [1 (1 |0 [0 |1 |b |* + Jo |0 |0 |0 |0 [0 o
X, | O |10 2 [1 [1 |0 [0 [1 [* | b
X, |+ |14 2 |2 |1 ]0 |1 ]2 [0 |o + 16 |2 |0 |0 |1 |1 o
X, | + | 14 2 |1 |2 |0 |1 1 [0 |o + 14 |0 |2 |1 |0 |1 |1
X, |+ |15 1 [3 |0 |1 |0 |1 |1 |1 + 15 |3 |1 |1 |0 |0 |1
X, | + | 21 1 |30 |1 |1 |1 o |o + |1 |3 |11 [0 |1 |
X, |+ |35 1 |1 |1 ]1 |o [-1 |0 |o ++ |5 |1 |11 |1 |0 |-

If x is an element of order 2, then

indx =n—35ko fG) =n=J[fG) +f@]=7-3[7+3] =2,

If x is an element of order 3 of type 34, then

ind x =n—§ 2o flxh = n—%[f(xo) +f(x)+ f(x®)] = 7—%[7+4+4] = 2.

If x is an element of order 3 of type 3B, then

ind x =n—§ 2, f(xH =n—§[f(x°) +fx)+f(x®)] = 7—%[7+ 1+1] =4

If x is an element of order 4, then

indx =n—35,f() =n—<[fG)+fE) +fE)+fON] =7 -7+ 1+3+1] = 4.

If x is an element of order 5, then

ind x = n—g o f(xH =n—§[f(x°) + )+ )+ f(xh] = 7—%[7+2 +2+2+2] =4

If x is an element of order 6, then

indx =n—=%5 o f(x") =n—2[f() + FG) + f D) + f(x*) + [ =7 —<[7+0+4+3+4+0] = 4.
If x is an element of order 7 of type 74 or 7B, then

indx =n—2%8,f() =n—2[f&) +f@) +FG?) + FOH + ) +fxD] =72 [7+0+0+0+0+
0+ 0] =6.

4. Algorithm and Main Results

To obtain Tables 2 and 3, we need to perform the following steps:

1- We extract all primitive permutation groups G by using the GAP function [4]
AllPrimitiveGroups (DegreeOperation,n).

2- For given degree, genus and G we compute all possible ramification types satisfying the Riemann-Hurwitz formula
which is given in section 3.

3- We compute the character table of G and remove those types which have zero structure constant.

4- We obtain all generating types by GAP Codes which exist in Appendix C [8].

5- For each of the remaining generating types of length greater than or equal to 4, we use the MAPCLASS package to
compute braid orbits. For tuples of length 3, we determine braid orbits via double cosets in [8].

We now give our main results as follows:
Lemma 4.1. The Hurwitz spaces, H,™(C) are connected if G = D(2 * 7) or G = AGL(1,7).

Proof. It follows from the fact that the Nielsen classes V' (C) are the disjoint union of braid orbits but we have only
one braid orbit for r > 3 and n = 7. From Corollary 2.5, we obtain the Hurwitz spaces ;™ (C) are connected.

Lemma 4.2. The Hurwitz spaces, ™ (C) are connected if r > 4 and G = L(3,2).
Proof. It follows from the fact that the Nielsen classes V' (C) are the disjoint union of braid orbits but we have only
one braid orbit for r > 4 and n = 7. From Corollary 2.5, we obtain the Hurwitz spaces H;(C) are connected.

Lemma 4.3. The Hurwitz spaces, H,*(C) are disconnected if G = A, and G = C,.

Proof. It follows from the fact that the Nielsen classes V' (C) are the disjoint union of braid orbits but for these
groups we have at least two braid orbits for some type C as given in Table 2. From Corollary 2.5, we obtain the
Hurwitz spaces 7™ (C) are disconnected.
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Finally, we enumerate the connected components of #,™(G) in the cases where g = 0 and G is a primitive

group of degree 7. The total numbers of connected components of " (G) is summarized in Table 1.

Table 1. Primitive Genus Zero Systems: Number of Components.

Degree # Group Iso | #RTs # comp’s # comp’s # comp’s # comp’s # comp’s
types r=3 r=4 r=5 r=6 Total
7 5 154 179 61 67 10 317
Example 4.4

First of all, read the file in GAP program which exists in [8] and then choose the group and the specific tuple.

For instance let G = D(2 = 7) be the dihedral group and take the tuple

t =1[(2,5)(3,6)(4,7),(2,5)(3,6)(4,7),(2,5)(3,6)(4,7), (2,5)(3,6)(4,7)] . The run of the program which finds the

braid orbits is shown below:

gap> Read("qul.g");

Loading MapClass 1.2

by Adam James (http://www.mat.bham.ac.uk/~jamesa)

Kay Magaard (http://mat.bham.ac.uk/staff/magaardk.shtml)

Sergey Shpectorov (http://web.mat.bham.ac.uk/S.Shpectorov/index.html)
Helmut Volklein (http://www.iem.uni-due.de/algebra/people/voelklein.html)
For help, type: ?MapClass:

gap> LL:=AllPrimitiveGroups(DegreeOperation,7);
[ C(7), D(2*7), 7:3, AGL(1, 7), L(3, 2), A(7), S(7) ]
gap> k:=LL[2];

D(2*7)

gap> CheckingTheGroup(k);

gap> GT:=GeneratingType(k,7,0);

Checking the ramification type 10 with O remaining
[[2,2,5],][2,2,4],[2,2,3],[2,2,2,2]]

gap> t:=List(GT[4],x->CCI[X]);

[ (2,5)(3,6)(4,7), (2,5)(3,6)(4.,7), (2,5)(3,6)(4,7), (2,5)(3,6)(4.7) ]
gap> orb:=GeneratingMCOrbits(k,0,t);;

The current date is: Mon 07/10/2017

Enter the new date: (mm-dd-yy)

Total Number of Tuples: 336

Collecting 20 generating tuples .. done
Cleaning done; 20 random tuples remaining

Orbitl:

Length=24

Generating Tuple =[ (1,4)(3,5)(6,7), (1,6)(2,3)(5,7), (1,7)(2,6)(3,4), (1,3)(2,4)(5,6) ]
Centralizer size=1

0 tuples remaining

Cleaning a list of 20 tuples

Random Tuples Remaining: 0

Cleaning done; 0 random tuples remaining

Computation complete: 1 orbits found.
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Table 2. Primitive Groups of Degree 7.

CONNECTED COMPONENTS OF }[;f’g(G)

Group Ramification # of | Length of | Ramification # of | Length of
Type orbits largest Type orbits largest
orbit orbit
A, (54,5A4,54) 2 1 (44,54A,54) 8 1
(44,4A,54) 22 1 (44,44, 44) 24 1
(3B,54,54) 6 1 (3B,4A4,54) 10 1
(3B, 44, 4A) 8 1 (3B,3B,54) 2 1
(54,54, 64) 8 1 (44,54, 64) 8 1
(44,44, 64) 12 1 (3B,54, 64A) 6 1
(3B, 44, 64) 6 1 (3B,3B, 64) 2 1
(64,64, 64) 2 1 (3B, 64, 6A) 2 1
(44,64, 64) 4 1 (54,64, 64) 2 1
(34,54,74) 1 1 (34,54,7B) 1 1
(34,4A,74) 2 1 (34,54,7B) 2 1
(34,3B,74) 1 1 (34,3B,7B) 1 1
(34,64,74) 1 1 (34,64,7B) 1 1
(24,54,74) 2 1 (24,54,7B) 2 1
(24,44,74) 2 1 (24,44,7B) 2 1
(24,6A4,74) 2 1 (24,64,7B) 2 1
(34,34,54,54) 1 30 (34,34,44,54) 2 40
(34,34,44,44) 2 92 (34,34,3B,54) 1 40
(34,34, 3B, 4A) 2 44 (34,34,3B,3B) 1 26
(34,34,64,54) 1 60 (34,34, 64,44) 1 72
(34,34,3B, 64) 1 40 (34,34,64,64) 1 22
(34,34,34,74) 1 7 (34,34,34,7B) 1 7
(24,34,54,54) 1 80 (24,34,44,54) 1 170
(24,34,44, 44) 1 300 (24,34,3B,54) 1 90
(24,34, 3B, 4A) 1 126 (24,34,3B,3B) 1 62
(24,34,64,54) 1 80 (24,34,44,64) 1 118
(24,34,3B, 6A) 1 62 (24,34,64,64) 1 44
(24,34,34,74) 1 14 (24,34,64,7B) 1 14
(24,2A,54,54) 3 70 (24,24,4A4,54) 3 120
(24,24,44,44) 3 168 (24,24,3B,54) 1 150
(24,24, 3B, 4A) 1 192 (24,24,3B,3B) 1 44
(24,24,64,54) 3 60 (24,24,64,4A) 3 76
(24,24,3B, 6A) 1 90 (24,24, 64, 64) 3 36
(24,24,34,74) 1 28 (24,24,34,7B) 1 28
(24,24,24,74) 2 21 (24,24,24,7B) 2 21
(24,2C,34,34,44) 1 168 (24,24,34,34,64) 1 300
(24,2C,34,34,2B) |1 42 (24,34,34,34,44) |1 96
(24,34,34,34,64) |1 216 (24,2A,34,34,2B) |1 44
(24,2C,2C,34,44) 1 240 (24,2C,2C,34,64) 1 384
(24,2C,2C,2C,34) |1 57 (24,2C,2C,2C,44) |1 312
(24,2C,2C,2C,64) |1 486 (24,2C,2C,2C,2B) |1 60
(24,24,34,44,44) 1 89 (24,24,34,44,64) 1 202
(24,24,34,64,64) |1 336 (24,24,34,34,54) |1 75
(24,24,34,34,44) |1 80 (24,24,34,34,3B) |1 39
(24,24,2B,34,44) |1 36 (24,24,2B,34,64) |1 52
(24,24,2C,44,44) |1 158 (24,24,2C,44,64) |1 273
(24,24,2C,64,64) |1 426 (24,24,2C,34,54) |1 125
(24,24,2C,34,44) |1 100 (24,24,2C,34,3B) |1 48
(24,24,2C,2B,44) |1 40 (24,24,2B,2C,64) |1 60
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(24,24,2C,2C,54) 1 175 (24,24,2C,2C,44) 1 128
(24,24,2C,2C,3B) |1 54 (24,24,24,4A,54) |1 75
(24,24,24,4A,54) |1 72 (24,24,24,44,44) |1 36
(34,34,34,34,54) 1 300 (34,34,34,34,44A) 2 384
(34,34,34,34,3B) 1 312 (34,34,34,34,6A) 1 480
(24,34,34,34,54) 1 750 (24,34,34,34,44A) 1 1392
(24,34,34,34,3B) 1 744 (24,34,34,34,6A) 1 690
(24,24,34,34,54) 1 1550 (24,24,34,34,44A) 1 2704
(24,2A,34,34,3B) 1 1234 (24,24,34,34,6A) 1 1112
(24,24,2A4,34,54) 1 3000 (24,24,24,34,44A) 1 4584
(24,2A,24,34,3B) 1 2214 (24,24,2A4,34,54) 1 1896
(24,2A4,24,2A,54A) 3 1800 (24,24,24,24,44A) 3 2880
(24,2A4,2A4,24,3B) 1 3240 (24,24A,24,24,64A) 3 1080
(24,24,34,34,34,34) | 1 13764 (24,34,34,34,34,34) | 1 7280
(34,34,34,34,34,34) | 1 2870 (24,24,24,24,34,34) | 1 45692
(24,24,24A,24,24,34) | 1 79560 (24,24,24,24,24A,24) | 3 45360
(24,24,2A,34,34,34) | 1 26210
Table 3. Primitive Groups of Degree 7.
Group Ramification # of | Length of | Ramification # of | Length of
Type orbits largest Type orbits largest
orbit orbit
AGL(1,7) (24,3B, 6B) 1 1 (24,34, 64) 1 1
L(3,2) (34,34,44) 4 1 (34,44, 4A4) 2 1
(44,44, 44) 4 1 (24,34,7B) 1 1
(24,34,74) 1 1 (24,4A,7B) 1 1
(24,4A,74) 1 1 (24,24,34,34) 1 30
(24,24,34,44) 1 24 (24,24,44,44) 1 24
(24,24,24,74) 1 1 (24,24,24,7B) 1 7
(24,24,24,24,34) |1 216 (24,24,24,24,44) |1 192
(24,24,24,24,24) |1 1680
D2 *7) (24,24,74) 1 1 (24,24,7B) 1 1
(24,2A,7C) 1 1 (24,2A4,24,24) 1 24
C;: Cq (3B,3B,3B) 2 1 (34,34,34) 2 1

5. Conclusion

In this paper, we use the algorithm in [8] to compute braid orbits on Nielsen class. An application of the

algorithm is the classification of the primitive genus zero systems of degree 7. That is we find the connected

components H™(G) of G-curves X, such that g = 0. In our situation, the computation shows that there are exactly 307
braid orbits of primitive genus 0 systems of degree 7.
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