
SQU Journal for Science, 2017, 22(2), 114-119           DOI: http://dx.doi.org/10.24200/squjs.vol22iss2pp114-119 

Sultan Qaboos University  

114 

 

Finite Element Approximation of Variational 
Inequalities: An Algorithmic Approach 

Messaoud Boulbrachene 

Department of Mathematics and Statistics, Sultan Qaboos University, P.O. Box 36, PC 123,          
Al-Khoud, Muscat, Sultanate of Oman. Email:  boulbrac@squ.edu.om.  
 

ABSTRACT: In this paper, we introduce a new method to analyze the convergence of the standard finite element 

method for elliptic variational inequalities with noncoercive operators (VI). The method consists of combining the 

so-called Bensoussan-Lions algorithm with the characterization of the solution, in both the continuous and discrete 

contexts, as fixed point of contraction. Optimal error estimates are then derived, first between the continuous 

algorithm and its finite element counterpart, and then between the true solution and the approximate solution. 
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 تقريب العناصر المنتهية للتباينات المتفاوتة: المنهج الخوارزمي

 مسعود بولبراشن

باستخدام المؤثرات إلى التحدث عن طريقة جديدة لتحليل نقطة إلتقاء العناصر المنتهية للتباينات البيضاوية المتفاوتة  نتطرق في هذا البحث الملخص:

التقلص.  غير الإلزامية. حيث تتكون هذه الطريقة من دمج خوارزمية بنسوزان ليونز مع تمييز  الحلول في السياق المستمر والمنفصل كنقطة ثابتة من

 ديرات الأخطاء المثلى أولا من الخوارزمية المستمرة والعنصر النظير المنتهي، وانتهاءً بالحل الصحيح، والتقريبي. كما تشتق تق

 

 .التباينات المتفاوتة، الخوارزمية، العنصر المنتهي، تقدير الأخطاء: مفتاحيةالكلمات ال

1.  Introduction 

he theory of variational inequalities finds its roots in the work of Signorini [1] and Fichera [2] concerning 

unilateral problems. The mathematical foundation of the theory was widened by the invaluable 

contributions of Stampacchia [3] and then developed by the French and Italian schools (Stampacchia [4], 

Brezis [5], Mosco [6], Bensoussan-Lions [7]). It has emerged as an interesting and fascinating branch of 

applicable mathematics with a wide range of applications in industry, finance, economics, and in social and 

pure and applied sciences. 

This field is dynamic and is experiencing an explosive growth in both theory and applications; as a 

consequence, research techniques and problems are drawn from various fields. The ideas and techniques of 

variational inequalities are being applied in a variety of diverse areas of science and prove to be productive 

and innovative. 

In this paper, we are concerned with the standard finite element approximation of the noncoercive problem 

associated with elliptic variational inequalities (VI): Find u   K  such that 

 

( , ) (f, v u)a u v u    v  K                                                       (1) 

Here,   is a bounded domain of 
NR , with boundary  , f  in ( )L  , and   2, ( )W   such that 

/ n 0 on  , (.,.) is the inner product in 
2L ( ), K is the closed convex set 

                                                  
1{ ( ) such that }K v H v                                         (2)         

and (.,.)a is the bilinear form defined by 
,u v 

1( )H 
,  

T 
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( , ) ( ) u
n n

j k k

j k kj k k

u v u
a u v a b v a x v dx

x x x
 

   
       

  ,                    (3) 

where the coefficients ,j ka , kb 0a  ( , 1,..., Nj k  ) are sufficiently smooth, and satisfy 

                                           
2

,

, 1

| |
n

j k j k

j k

a    


  
N R , 0  , x                                           (4) 

                                          0a (x)  > 0 , x     .                                                                 (5) 

Denoting by Vh  the finite element space consisting of continuous piecewise linear functions, hr the usual 

interpolation operator, and where 

 { V  such that }h h hK v v r    ,                                                       (6) 

we define the discrete counterpart of (.) by find h hu K  such that  

( , - )  ( , - ) h h h ha u v u f v u v K       .                                                    (7)               

In stochastic control problems, the coefficients k 0b (x), a (x) can be such that the bilinear form (3) does not 

satisfy the usual coercivity assumption, making the problem under consideration noncoercive. Hence, in order to 

handle the noncoercive situation, we consider the equivalent VIs: 

( , - ) ( , - ) b u v u f u v u v K                                                           (8) 

and 

( , - )  ( , - ) h h h h hb u v u f u v u v K                                                 (9) 

for the continuous and discrete problems, respectively, where  > 0 is large enough so that the new bilinear form 

     , , ,b u v a u v u v                                                              (10) 

is strongly coercive on 
1( ),H  that is,  

1

2

( )
( , )

H
b v v v


 , 0        .                                                      (11) 

The standard finite element approximation for VIs with noncoercive operators was first studied in [9], where 

an optimal error estimate was established by means of a subsolution method. In a recent work [10], we developed 

a new method to carry out the approximation of the same problem, combining the Bensoussan-Lions (BL) 

algorithm and the concept of subsolutions. In the present paper, we instead combine, in both the continuous and 

discrete contexts, the BL- Algorithm with the characterization of the solution as a fixed point of a contraction. The 

novelty that results from this combination resides in the fact that the generated algorithm is both monotone and 

geometrically convergent with a rate of convergence depending explicitly on the coercivity parameter  . 

Combining the geometrical convergence results with standard finite element maximum norm error estimates 

for elliptic VIs, we first establish an error estimate between the continuous algorithm and its finite element version, 

and then between the exact solution and the finite element approximate.   

An outline of the paper is as follows: in section 2, we recall some qualitative properties and standard finite 

element error estimate results for elliptic coercive VIs. In section 3, we establish, in both the continuous and 

discrete cases, the geometrical convergence of the algorithm. Finally, in section 4, we give the finite element error 

analysis. 

2.   Preliminaries   

Let g in L
( ) and = (g)  be the solution of the following coercive VI: Find K such that  

( , - ) ( , - ) b v g v v K                                                            (12) 

Lemma 1. [7] Let g and g in L
( ), and ω and  be the corresponding solutions to VI (12). Then g g

implies   . 

Proposition 1. Under conditions of Lemma 1, we have  

1
g g

 


 
  


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Proof. For ,g g  in L
( ) we consider ( )g   and ( )g   the corresponding solution to VI (.). Let also 

=  
1

g g
  




. Then, since 

 g g g g


   , 

0

0 0

(( ( ) ) / ( )

( ( ) )   (   ( ) 0)

g a x

g a x because a x

  

 

   

     
 

Making use of lemma 1, we get 

         0( , ) ( ( ( ) ) , )g g a x       
  

On the other hand, one has 

0( , )  ( ( ( ) ) ; )g g a x              

Indeed,  

0( ,  - ( )) ( ,  - ) (( ( ) ) ,  - )b v F b v a x v             

 0( ,  - ) (( ( ) ),  - )g v a x v     

so 

0( ,  - ( )) ( ( ( ) ) ,  - ( ))

;  

b v g a x v

v v

   

 

        

     
 

Therefore, 

0 0( ( ( ) ) ;  ) ( ( ( ) ) ;  )g a x g a x            
 

That is  

  
 

The roles of  and g g being symmetric, we similarly get 

  
 

and the result follows. 

Now, let ( )  h h hg K    denote the solution of the discrete counterpart of VI (12), that is,  

( ,  - ) ( ,  - ) h h h hb v g v v K    
 

Remark 1. Lemma 1 and proposition 1 stay true in the discrete case, provided the stiffness matrix is an M-Matrix 

(this will be thoroughly explained in section 3). 

Theorem 1. [11] There exists a constant C independent of h  such that  

                                     
2 2| log |h Ch h 


                                                         (13) 

3. Algorithms 

3.1 The continuous algorithm 

Consider the following mapping : ( )T L K   such that  w Tw   ,where is the unique solution of 

the following coercive VI 

( ,  - ) ( ,  - ) b v f w v v K     
 

Now, starting from 
0u  , we define the sequence n 1( )nu   by  

1n nu Tu  , n 1                                                                         (14) 

such that each iterate 
nu  solves the coercive VI 

1( ,  - ) ( ,  - ) n n n nb u v u f u v u v K                                                      (15) 

Note that, thanks to lemma 1, the above sequence is monotonic decreasing. 

Theorem 2. Under conditions of proposition1, the mapping T is a contraction. Therefore, its unique fixed point 

coincides with the solution of VI (1), and we have the error bound 

0 1

1

n
n u uu u



 
  

  
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Proof. Let w and w in ( )L  , ( ), ( )f w f w          be the corresponding solutions to VI (.). 

Then, making use of proposition 1, we have 

Tw Tw   
   

 
1

f w f w 
  

  


  

w w


  





 

which yields the contraction of .T  The error bound follows straightforward from the fact that T is a contraction.  

3.2  The discrete Algorithm 

For the sake of simplicity, we suppose that   is polyhedral. We then consider a regular and quasi-uniform 

triangulation h of  , consisting of n  simplices  . Denote by h , the mesh size of h , with h being the 

diameter of . For each h  , denote by 1( )P  , the set of polynomials on   with degree no more than 1. The 

1P  conforming finite element space is given by  

1

1{ ( ) C( ) : v/ ( )}hV v H P        .                                             (16) 

Let ,  1 ( )iM i m h   denote the vertices of the triangulation h , and let     i ,  1 ( )i m h    denote the 

functions of hV  which satisfy  

i ( ) ,  1 , ( )j ijM i j m h   
 

so that the functions i  form a basis of Vh . For every 
1( ) C( )v H    , the function  

( )

i

1

( ) ( ) ( )
m h

h i

i

r v x v M x


                                                              (17) 

represents the interpolate of v over h . 

The convergence analysis of the discrete algorithm will require the monotonicity of the stiffness matrix. 

Definition 1. A real d d matrix (c )ijC  with c 0ij  , i j  , 1 ,i j d  , is called an M-Matrix if C

is nonsingular and 
1 0C    (i.e., all entries of its inverse are nonnegative). 

Denote by B  the matrix with generic coefficient  

i i( , ) ,1 , ( )ij j jb a dx i j m h   


      .                                        (18) 

Since the bilinear form (.,.)b  is coercive, then the matrix B is positive definite and 0iib  , 1 ( )i m h  . 

Furthermore, if the matrix ( )jka  involved in the bilinear form (3) is symmetric, then mesh conditions for which 

the off-diagonal entries of B satisfy 0,ijb i j   .  

Lemma 2 [13],[14] The matrix B is an M- Matrix. 

 

Theorem 3.  [9] Under conditions of lemma 2, the discrete VI (7) has a unique solution. 

Let us now consider the mapping : ( )h hT L K    such that h hw T w   , where h  is the unique 

solution of the following discrete coercive VI: 

( ,  - ) ( ,  - ) vh h h hb v f w v K      
. 

Starting from 
0

h hu r  , we define the discrete algorithm by  

1

h

n n

h hu uT  , n 1                                                                        (19) 

such that each iterate 
n

hu  solves the coercive VI 

1( ,  - ) ( ,  - )n n n n

h h h h hb u v u f u v u v K        .                                           (20) 

As, in the continuous case, thanks to Remark 1, the above sequence is monotonic decreasing. 

Theorem 4. Under conditions of lemma 2, the mapping hT  is a contraction. Therefore, its unique fixed point 

coincides with the solution of VI (7) and we have 
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0 1

1
h hh

n

h

n uu u u


 
  


 .                                                              (21) 

Proof. Similar to that of Theorem 3. 

4. ( )L  - Error Analysis 

This section is devoted to proving the main results of this paper. Next, we shall estimate the error in the 

maximum norm between the nth iterates 
nu of the algorithm and its finite element counterpart 

n

hu . For that, let us 

first introduce the following sequence of coercive VIs. Indeed, let us define the sequence  
1

n

h

n

u


such that 
n

hu  

solves the discrete VI 

1( ,  - ) ( ,  - )
n nn n
h hh hb u v u f u v u v K                                               (22) 

where 
nu  is the nth iterate of the continuous algorithm. From now on, C will denote a constant independent of 

both n and h . 

Lemma3. We have 

                                                   
2 2| log |

n
n

hu u Ch h


                                                             (23) 

Theorem 5.  We have 

      
2 2| log |n n

hu u Ch h


                                                            (24) 

Proof. We proceed by induction. Indeed, let
2 2( )= | log |h Ch h . Then, using standard error estimate in the 

maximum norm, we have 

 

         
0 0 2 2| log |h hu u r Ch h 


     

which, combined with Theorem 4 and estimate (23), yields 

          

1 1
1 1 1 1

0 0

0 0

2

( )

( )

1
(1 ) ( ) = ( )

1

hh hh

h

h

h h

u u u u u u

T Th u u

h u u

h h



 


  



  





    

  

  


 



   

Now assume that 

        

1 1 1
( )

1

n
n n

hu u h





 




 

  
Then, combining again Theorem 4 and estimate (23), we get 

              

1 1

1 1

( )

( )

1
( ) ( )

1

1
1 ( )

1

n nn n n n
h hh h

n n

h h h

n n

h

n

n

u u u u u u

T Th u u

h u u

h h

h



 


 




 



  

 



 



    

  

  


 



 
  

 
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Theorem 6.  We have 
2 2| log |hu u Ch h


     .                                                               (24)                                                          

 

Proof. Indeed, combining Theorems 2, 4, and 5 we have 

    
0 1 2 2 0 1| log |

1 1

n n n n

h h h h

n n

h h

u u u u u u u u

u u Ch h u u
 

 

   

 

      

    
 

 

So passing to the limit, as n  , we get 
2 2| log |hu u Ch h


  . 

5.  Conclusion 

Based on the constructive Bensoussan-Lions Algorithm and the Banach fixed point principle, we have derived 

error estimate in the maximum norm of the standard finite element approximation of elliptic variational inequalities 

with non coercive operators. This new approach turns out to be successful and may be extended, in a future work,  to 

system of variational inequalities related to HJB equations. 
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