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ABSTRACT: Intelligent program diagnosis systems are computer programs capable 
of analyzing logical and design-level errors and misconceptions in programs. Upon 
discovering the errors, these systems provide intelligent feedback and thus guide the 
users in the problem-solving process. Intelligent program diagnosis systems are 
classified by their primary means of program analysis. The most distinct split is 
between those systems that are unable to analyze partial code segments as they are 
provided by the user and must wait until the entire solution code is completed before 
attempting any diagnosis, and those that are capable of analyzing partial solutions and 
providing proper guidance whenever an error or misconception is encountered. This 
paper gives an overview of the field and then critically compares work accomplished 
on  several closely related active diagnosis systems, emphasizing such issues as the 
representation techniques used to capture the domain knowledge required for the 
diagnosis, ability to handle the diagnosis of partial code segments of the solutions, 
features of the user interfaces, and methodologies used in conducting the diagnosis 
process.  Finally the paper presents a detailed discussion on issues related to active 
program diagnosis along with various design considerations to improve the 
engineering of this approach to intelligent diagnosis. The discussion presented in this 
paper tackles the issues referred above within the context of DISCOVER, an 
intelligent system for programming by discovery. 
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1. Introduction : Automatic Program Debugging  

1.1  The Background 

Over the past twenty years, the area of user programming has undergone a major change in perspective 
and direction. In the beginning, the emphasis was centered on the needs of the users in trying to learn 

programming and problem-solving. Intelligent programming systems developed for this purpose targeted 
the design and the planning sides of programming, which embodied an instruction-oriented paradigm. 
Users were led through a structured manner, embarking on well-defined tasks, and even designing and 
implementing their programs according to a model of good practice or ideal solution. This model was 
critical because it facilitated automated diagnosis when bugs were introduced by the users. This approach of 
instruction-oriented paradigm appeared to embody a clean, top-down, and reliable software engineering 
practice, since it aimed to get the design and specification error-free from the beginning. Unfortunately, in 
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reality, it also acted as a straight-jacket in many situations for novice users. Examples of these systems 
include (Bonar, 1992; Anderson, 1990; Reiser, 1992; Murray, 1986; Johnson, 1980).   

Subsequently and due to limitations associated with the above approach to automatic debugging, and 
in general with the difficulty in coming up with automatic debuggers which would cater for more than small 
and toy programs, the efforts in this area shifted to the software maintenance side of user programming. 
Discovery  programming environments along with support for  visual techniques were the focal point of this 
new direction. Efforts invested in this direction seemed to claim that helping the users to understand the 
dynamic behavior of programs and algorithms during execution could be proven to be more effective in 
teaching programming to novice users. The result of this direction created a shift from automated debuggers 
to software visualization. 

Ever since, much of research in user programming has been polarized toward these two opposite 
domains: intelligent programming systems and discovery programming environments. The intelligent 
systems concentrated mainly on helping novices in acquiring programming skills through a series of 
problem solving situations. Most of these systems ignored the significance of incorporating visualization 
and discovery features which would also help the users in compiling effective programming knowledge. 
Discovery systems, on the other hand, concentrated mainly on helping the users in building correct 
programming knowledge through visual and discovery environments. These systems neglected the issue of 
supporting intelligent diagnosis and tutoring through which novices can transform their knowledge into 
programming skill. Examples of these systems include Agentsheets (Repenning, 1996), SEE (Baecker, 
1990), TANGO (Stasko, 1992), ZEUS (Brown, 1992), and TPM (Eisenstadt, 1993). 

Recently, another improvement on the general lines discussed above has emerged. This recent 
direction emphasizes the incorporation of visualization and discovery features into intelligent program 
debuggers in order to come up with guided programming environments, which may hopefully help novice 
users in building both the programming knowledge and the problem-solving skill. A solid practical example 
of such  recent direction is exhibited by the DISCOVER system (Ramadhan, 1992a, 1992b, 1997, 1998, 
1999a, 1999b, 2000a, 2000b). Empirical evaluations of the system  seem to support the usefulness of this 
direction. 

With the advancement in the Internet computing and  Web development, teaching user programming 
over the Web is becoming a very promising direction. World Societies will become more reliant on 
proficiency in programming, so that teaching it quickly and effectively will become more important.  With 
the growth of distance learning technology, access to learning systems is expected to grow, and the lessons 
learnt from teaching programming have the potential to be applied to other areas such as medical diagnosis 
and circuit design and layout. 

Among the three general programming paradigms mentioned in the above discussion, this paper deals 
with only two types of systems: (1) automatic program debuggers, and (2) guided discovery programming 
systems. Discovery programming environments with no support for automatic program diagnosis are not 
covered in our analysis.  It is important to note here that due to difficulty encountered in the development of 
systems for automatic program diagnosis, very little progress has been reported in this interesting area 
especially in recent years. It is for this reason that most of the systems mentioned in this paper are the ones 
developed some considerable time ago. However, it is the methodology embodied in these systems that 
constitutes the core of this paper and not the systems themselves. We have also put considerable effort in 
suggesting better design directions to improve the engineering of new systems for program diagnosis.  

1.2    A general Model of Program Debugging 

Before describing specific systems that support automatic program diagnosis, it is worth looking at a 
general model of program diagnosis. This will facilitate characterizing and comparing various approaches 
and systems that have been developed in this area. 

An automatic program diagnosis and debugging system is a computer based program capable of 
analyzing programming solutions and providing intelligent feedback, and thus supporting problem-solving 
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domains. The program diagnosis methodologies discussed in this paper are basically specializations of the 
following general model. Task specifications are mapped to the code provided by the user. This mapping 
process allows the task of program debugging to be decomposed into smaller and simpler steps. When 
decomposition is no longer possible, the diagnostic critic looks for discrepancies between code and 
specifications and interprets these as bugs. When intelligent tutoring is also supported by the system, this 
information from the critic is passed over to the tutorial expert that interacts with the user model and 
provides tutorial interactions and instruction. 

The task specifications are precise criteria for successful completion of the debugging task. The 
following methods of task specifications have been used by the automatic program debugging systems 
indicated: 

 
• Model-answer programs (reference solutions): Laura (Adam, 1980), Aurac (Hashmer, 1983), Talus, 

Bridge, and DISCOVER. 
• Input/output pairs: BIP (Barr, 1976). 
• Goals to be achieved (specified in some special language or format): Proust, Bridge, GREATERP, GIL, 

Aurac, MYCROFT (Goldsein, 1974), and DISCOVER. 
• The expected trace: PDS6 (Shapiro, 1983). 
• Constraints on program output: MYCROFT. 

 
The diagnostic critic compares task specifications and program code for discrepancies that can be 

interpreted as bugs. The following indications have been used to flag the detection of bugs: 
• Mismatch between plan templates and student code: Proust, DISCOVER. 
• Inability to synthesize student code (simulate the ideal student): GREATERP, GIL. 
• Differences between expected and actual execution traces: BIP, PDS6. 
• Inability to verify program specifications: Talus, Aurac. 
• Inability to satisfy a list of program requirements: Bridge. 
• Violations of output constraints: MYCROFT. 

2.     Active Versus Passive Debugging 

Automatic program diagnosis and debugging systems can be classified by their primary means of 
program analysis. The most distinctive split is between those systems that are unable to analyze partial code 
segments as they are provided by the user and must wait until the entire solution code is completed before 
attempting any diagnosis, and those that are capable of analyzing partial solutions. The former perform 
post-event analysis while the later perform in-event analysis. 

Systems using post-event analysis can be further divided according to their methods of isolating and 
localizing errors into (1) those using specification based analysis, such as Proust, Pudsy (Lukey, 1980) and 
Aurac, (2) those using trace-based analysis, such as PDS6, (3) those using I/O based analysis, such as BIP, 
and (4) those using model-answer based analysis, such as Laura and Talus.  

Systems using in-event analysis can be further divided according to their methods of reasoning about 
the user into those supporting active analysis and those supporting passive analysis. Systems using passive 
analysis do not trace the intentions of the user or his design decisions while being developed and require 
him to explicitly request the automatic debugging of his code segments. These systems localize errors in the 
user programs either by looking for surface structural forms (plans) (Rich, 1986) or by accounting for 
differences between forms and actual code segments, as in the case of Bridge. Generally speaking, these 
systems rely on some sort of  pre-stored requirements for a complete solution, and hence are classified in 
our taxonomy under model-answer based systems. It is worth noting here that systems which rely on pre-
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stored requirements for a successful solution cannot solve the problems themselves, and hence cannot 
reason about the solutions and designs provided by the users (see section 2.2). 

On the other hand, systems using active analysis perform automatic debugging by implementing 
model-tracing (Anderson, 1990). Through this approach, these systems subdivide tasks into smaller steps 
that must be solved one at a time. The user’s design decisions are traced as he develops the solution. During 
each step taken by the user, these systems check to see if the user is following a design path known to be 
correct or buggy. Buggy paths are pruned as soon as they are detected by giving the user intelligent 
feedback and allowing him to try again. Examples of such systems include GREATERP, GIL and 
DISCOVER. These systems tend to be quite directive. However, through rich interaction and flexible 
immediate feedback, these systems detect very specific bugs and misconceptions. 

There is some overlap in these categories. DISCOVER performs model-tracing, but relies on a pre-
stored model answer (the reference solution) to represent its knowledge about the ideal user. Aurac 
performs specification based analysis to match code segments with the library of program clichés, but then 
later on uses its model-answer algorithm to conduct data-flow analysis. 

2.1   Advantages of Active Debugging 

Several advantages of the active approach to automatic program debugging can be outlined as follows: 
• Very specific errors can be diagnosed and feedback can be given in proper context of the error, hence 

the users can be explicitly guided in the process of acquiring problem-solving skills. 
• Systems using this approach are capable of analyzing partial solutions as they are provided by the user 

and therefore have access to all intermediate states, hence they work with more information than 
systems that are capable of only analyzing complete solutions. This in turn provides these systems with 
the capability of reasoning about the programming process itself and thus generates very specific 
explanations and advice. 

• The impact of multiple bugs on the diagnosis process is minimized. Many of the post-event based 
systems such as Proust, Talus, Aurac and Laura have to deal with disentangling multiple bugs which 
require them to generate all possible alternative treatments of these bugs and pick the best from among 
them. Systems using active analysis simply prevent the user from making multiple bugs and explain 
each bug immediately. Therefore, the code never contains more than one bug at a time. In addition to 
cognitive justifications, (see Anderson, 1982), this approach greatly simplifies the engineering and the 
implementation of automatic program diagnosis. 

 
Despite these advantages, this approach to automatic program diagnosis tends to be very directive. In 

addition, such approach ignores the issue of providing the user with some chance to detect and correct bugs 
on his own, since the user is not allowed to go wrong. However, these disadvantages can be overcome by 
supporting a more flexible style of user interaction while still retaining close ties to model-tracing. This was 
successfully accomplished by the DISCOVER system through (1) supporting an ability to give delayed 
feedback by increasing the grain size of automatic diagnosis to a complete program statement, not just a 
single word or symbol, and (2) allowing the user to do limited backtracking by giving him some chance to 
delete previously entered code and restart, while in full interaction with the system (see section 4 for more 
detail). 

2.2   The Implementation of Active Debugging 

One way to implement model-tracing, active program debugging is to provide the system with a set of 
problem solving rules (a production system) that allow it to model the user by generating possible steps that 
a user might take while solving a given problem. Thus, while the user is working, the system simulates the 
steps that an ideal user could take in completing the program. In addition, this approach also models 
possible errors that the user makes at each step on the basis of pre-known bugs and misconceptions stored 
in a library. By comparing the user’s actions (partial solution steps) to the set of possible correct actions and 
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the set of buggy actions, the system can determine whether the user is moving on a correct solution path or 
showing evidence of bug. This combination of correct and buggy sets of rules is referred to as the student 
model, while the process of comparing the user’s actions to the ones generated by these rules is referred to 
as model-tracing. Both GIL and GREATERP follow this model. 

DISCOVER followed a different approach in implementing model-tracing. In this approach the 
system is provided with a pre-stored reference solution that represents the ideal solution, but  with no 
account for possible and common bugs. The system much like Laura, Talus, Aurac and Bridge, applies 
various heuristics and pattern matching techniques to match steps taken by the user with parts of the 
reference solution. The system analyzes the surface code provided by the user without much specific 
knowledge about the problem to be solved or about how to design and construct an algorithm. Therefore, 
unlike production based systems, systems that rely on pre-stored reference solution cannot solve the 
problems themselves. Since these systems rely on manipulating the surface code, it is possible to describe to 
the user what the next step in the solution is but it is not possible to reason about why the step is appropriate.  

However, this problem can be bypassed to some extent by incorporating hand-coded explanations for 
each reference solution. In fact, by augmenting each complete step in the reference solution with a hand-
coded explanation that simulates the reasoning process, it becomes possible for DISCOVER to describe to 
the user quite specifically why each of his actions is appropriate or not. 

3.  Survey of Approaches 

As described above, automatic program debugging and tutoring systems can be classified by their 
primary means of program analysis.  The most distinctive split is between those debugging systems that are 
unable to analyze partial code segments as they are provided by the user and must wait until the entire 
solution code is completed before attempting any automatic debugging or tutoring, and those that are 
capable of analyzing partial solutions.  The former perform post-event analysis while the letter perform in-
event analysis. 

3.1  Post-event Systems 

Post-event analysis systems are characterized by their inability to diagnose partial, incomplete 
solution steps.  These systems also lack rich interaction with the user and require him to sufficiently 
understand both the detailed knowledge of the syntax and the semantics of the language constructions 
(programming knowledge), and the process of relating these constructs along with their semantics to come 
up with correct programs (algorithmic or programming skill).  The remainder of this section examines some 
of these systems in more details. 

3.1.1  Specification-based Analysis 

Automatic debugging systems that perform specification-based analysis are provided with a high-level 
description of the goals of the user’s code and they check to see to what extent these goals are satisfied by 
the user’s code.  Examples of such systems include Proust, Aurac, Pudsy, and MYCROFT. 

Proust uses stored plan templates to match against parsed student code.  The program specification is 
expressed as a sequence of task goals.  Proust stores a plan library that associates task goals with plan 
templates.  Plan templates are associated with the expected code in the user’s plan that they can match 
against.  Proust infers the intentions of the student program statements by matching each statement to some 
part of a plan.  When all goals are achieved, Proust fully determines the intentions of the student program.  
When more than one plan matches a statement, Proust uses heuristics to select the one that expects the 
fewest bugs in the student program.  By using heuristics, Proust avoids impractical exhaustive search. 

Aurac attempts to match segments of the student program written in Solo against a library of clichés.  
Because of the simplicity of the Solo domain, Aurac manages to store programming clichés that would 
match most segments of the student program.  Partial matching of the clichés to the code, is treated as a 
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candidate bug.  In the final stage, the system uses data flow analysis to detect such errors as unused 
bounded variables.  Aurac is also capable of recognizing some simple algorithms.  By making sure that the 
high-level goals specified by a model algorithm for a given algorithm are satisfied by the student code, 
Aurac can determine if the code is logically correct.  The system checks each line of the code against 
sample lines from an algorithm.  When all lines of a given algorithm are found, Aurac states that the code is 
correct. 

Pudsy uses a specification as the high-level description of the correct code, and matches the output of 
the student program against a specification.  Pudsy breaks the code into smaller logical chunks.  The system 
then relates each chunk to a particular task in the problem, using a record of tasks associated with the high-
level description of the program’s goals.  In the first pass, Pudsy looks for local clues that suggest bugs in 
chunks, such as redundant assignments.  In the second pass, Pudsy figures out low-level assertions about the 
values of variables on exiting each chunk and then transforms these low-level assertions into a high-level 
description.  The description is then matched against a specification.  On mismatch between specification 
and description, Pudsy examines the assertions built so far and determines the code segment responsible for 
discrepancies between specification and description. 

MYCROFT examines the side effects produced by a program.  The domain is drawing simple pictures 
in LOGO and the side effects are lines drawn and changes to the turtle state.  Like Pudsy, MYCROFT uses 
a specification as the high-level description of the correct code, and matches the output of the student’s code 
against a specification.  The specification describes the relationships between the components of the shapes 
drawn.  On finding a mismatch between the drawing and the specification, MYCROFT determines the bug 
to be in the code that produced the drawing. 

3.1.2  Trace Analysis 

Systems that perform trace analysis engage in a debugging dialogue with the user.  PDS6 is an 
example of such a system.  The system interactively debugs Prolog programs by monitoring program 
execution.  The system builds a tree of the calling sequence of the procedures involved.  It then asks the 
user questions about the desired and actual behavior of the procedures.  By comparing actual program 
execution with the desired execution, PDS6 can determine the buggy procedure.  The system relies heavily 
on an ‘oracle,’ typically the user, to answer questions about the expected behavior of the program. 

3.1.3  Model-answer Analysis 

Debugging systems that perform model-answer based analysis attempt to match pre-stored, possibly 
parsed, model programs to the parsed student code.  Examples of such systems include Laura, Talus and 
Ruth’s system (Ruth, 1973). 

Laura analyzes the surface code of the student program.  The system transforms the student program 
written in FORTRAN and the model program into graphs and then normalizes these graphs.  Normalization 
transforms the graphs into a standard form.  An example of transformation used might be - if the same 
variable is used for two different purposes then a new variable is generated.  This makes the matching 
process easier.  Any discrepancies discovered between these graphs during the matching process are 
considered to be bugs. 

Talus debugs programs in Lisp by reasoning about the computational semantics of the programs.  
Recursive programs are compared to model programs.  These programs act both as specifications and 
sources for correcting the buggy code.  An inductive proof of equivalence is constructed to compare student 
and reference programs.  Where the proof would fail, the student program is altered with code from the 
reference program.  Talus applies various heuristics to pair reference functions with student functions and to 
pair formal variables with actual variables.  The system simplifies the student code using a sequence of 
program simplification transformations.  This process transforms the programs into IF-normal forms, which 
then facilitates algorithm recognition and bug detection by reducing the variability of the programs.  Talus 
detects bugs by generating and evaluating verification conditions that are required for the inductive proofs 
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that establish the functional equivalence of each student function to its paired function.  When the proof 
would fail, Talus knows that a bug has been discovered. 

Ruth’s system uses ‘generative semantic grammars’ to represent plans, and student programs are 
parsed in terms of the grammar.  This method is similar to syntactic analysis in natural language processing.  
The system analyzes simple sorting programs with this approach and a grammar similar to an Augmented  
Transition Network (ATN).  The system uses the grammar to translate a given algorithm into the program 
submitted by the student.  If the translation fails, then the program is considered to be incorrect.  The system 
also uses the same grammar to generate the problems in the first place. 

3.2  In-event Analysis 

Automatic program debugging systems which diagnose partial solutions as they are provided by the 
user perform in-event analysis.  The systems normally emphasize rich interactions and a visible user 
interface.  These systems allow the user to explore the problem-solving process through an interactive 
exploration of programming functions, concepts and plans.  The user is not required to have extensive 
programming knowledge and programming skill to be able to explore programming in these systems.  The 
user learns by trying out his hypotheses which are represented by the fragments of knowledge he might 
have about programming, and it is up to the system to guide him in acquiring new knowledge and new skill.  
These systems can be further divided according to their methods of reasoning about the user into those 
using active analysis, such as GREATERP, GIL and DISCOVER, and those using passive analysis, such as 
Bridge.  

Interactive approach and immediacy features are two main characteristics which differentiate active 
systems from passive ones. Through rich interactions and immediate feedback, active systems bring 
affordance  into users’ knowledge of perception and action. Users are expected to perceive and manipulate 
the dynamic behavior of the program and its unfolding computation with less effort and accelerate the 
debugging task. Hence, these systems can reduce the mental overhead and help the users in putting more 
emphasis on program understanding, debugging and problem-solving.  

The remainder of this section examines in more detail these four fully implemented systems that 
perform in-event analysis. These examples are intended to show that every one of these automatic program 
debugging and tutoring systems is limited due to its inability either to support sufficiently large grain size of 
automatic debugging, as in the case of GREATERP, or to support active debugging of partial solution steps 
as they are provided by the user, as in the case of Bridge. A more critical analysis of the Lisp Tutor vs. 
DISCOVER is covered in the last section of this paper.  

3.2.1  Greaterp 

GREATERP (the Lisp Tutor) uses production rules to synthesize code for both an ‘ideal’ and a 
‘buggy’ novice Lisp programmer.  The student’s design decisions are traced as the student develops the 
program. This approach is called the model tracing approach to automatic program debugging.  As each 
Lisp symbol in the student program is entered, GREATERP decides what rule would have to fire to 
duplicate the input.  If the duplicating rule is in the ‘expert’ set then GREATERP does nothing, but if the 
duplicating rule is in the ‘buggy’ set then GREATERP gives the student a short tutorial on his 
misconception.  In this way, the system always checks to see if the student is following a design path of an 
ideal model.  Buggy paths are pruned as soon as they are discovered. 

The system is based on a cognitive model which suggests that mistakes by the student should be 
flagged as soon as they are encountered.  Anderson (1990) argues that there is considerable psychological 
evidence that humans learn better with immediate feedback (an important learning assumption of the ACT* 
theory of skill acquisition), and that this approach increases the possibility that the student will be able to 
relate the advice to the current issue (context) rather than getting advice at a much later stage. 

The system is very directive and interventionist.  Computational advantages of such an approach are 
that it reduces the usual combinatorics associated with mal-rules to decide whether or not each new Lisp 
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token is a legal or illegal continuation of the program, and that it eliminates the problem of multiple bugs.  
The problem of deciding which bug to tutor does not even arise, because the tutor simply prevents the 
student from making multiple bugs.  Though of course, it cannot prevent the user from entertaining multiple 
misconceptions about a single symbol.  The disadvantage of this approach is that the student is highly 
constrained in the solutions that can be developed.  The student must conform to the task decomposition 
and coding sequence that GREATERP enforces. 

The latest version of GREATERP attempts to overcome some of the problems cited above by varying 
the nature of the tutorial interaction.  The new system has employed a problem compilation approach to 
provide the student with more control over the coding process in two ways:  by relaxing the constraint on , 
input order, so that the student can generate code in any order he wants instead of the left-to-right, top-to-
bottom manner, and by giving the student control over when feedback is presented.  This student controlled 
feedback is achieved by delaying feeding each unit of code to the tutorial engine as it is generated.  Instead, 
the code is buffered and submitted to the tutor at the student’s request.  However, the debugging of the user 
program is carried out in the same way:  the system scans the code in a top-to-bottom, left-to-right manner, 
stops at the first error encountered, and ignores the rest of the solution. 

This transition to the student-controlled interaction makes the new system, like Bridge, a passive 
system that waits for the novice to request automatic analysis of his code, and thus loses the rich interaction 
with him.  By doing that, this new system loses very important features:  the ability to monitor the novice’s 
progress on the solution path, determine when he shows evidence of errors within their proper and 
immediate context and decide when to guide him in what to say during interactive tutoring.  In principle, 
there is no reason why a model-tracing system should stick to a single-symbol based immediate feedback.  
One possible alternative would be to increase the grain size of automatic debugging to a full program 
statement or even to a block of statements, not just a single Lisp symbol.  This would not only provide the 
system with an ability to delay its interactive feedback but would also allow the user to backtrack and delete 
some previously entered code and restart.  Thus the system would support a more flexible style of 
interaction while preserving strong ties to the cognitive principles of model-tracing and immediate 
feedback. 

When two design paths leading to alternate implementations overlapped, GREATERP, in its old 
version, could not determine which design path was being followed.  Now through problem compilation 
approach, GREATERP can search multiple alternative branches down in the goal tree when it needs to 
disambiguate some responses.  In the current version, discrepancies between predicted implementations and 
expected implementations can be explained either in terms of an incorrect design path being assumed, or in 
terms of a bug in the student’s program.  By doing that, GREATERP follows a similar approach to 
interpreting discrepancies as that of Proust:  either the wrong plan has been chosen to interpret the program, 
or the plan is correct but the student’s program has a bug. 

The student interacts with the system mainly through a structure editor.  This feature aids automatic 
debugging by eliminating certain low-level syntax errors, such as balancing parentheses, and trapping and 
immediately remedying others, such as quoting a function call.  This feature also ensures that both the 
system and the student know explicitly which part of the problem is being coded, since this is always done 
by replacing one of the place-holding parameters in the partially completed code.  In this way, the student 
knows most of the time what goals and subgoals need to be satisfied. 

Besides the code-level interaction, the system also supports a planning mode. This mode is used by 
the system when the knowledge of the student’s design and planning decisions becomes very difficult to be 
derived from the code entered by the student. The mode is also used when the system suspects that the 
student is having some difficulty in planning or when the student requests help.  Interactions at the 
planning-level are supported by multiple choices from the menus. This feature simplifies the task of 
automatic debugging even more, since in this way plans are more easily recognized than trying to derive 
them from step-by-step coding. 
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3.2.2  Gil 

It is worth noting that the other model-tracing system, GIL, does not defer judgment.  Any errors are 
immediately pointed out and the feedback is presented to the user as soon as a single erroneous token is 
encountered.  However, GIL has one clear advantage over GREATERP.  The system incorporates a visual 
programming environment which allows the user to observe in a graphical manner how Lisp lists are 
constructed.  The newer version of GIL extends its functionality even more.  This is achieved by 
augmenting the guided, visible environment with a free, visible environment.  By doing that, this newer 
version has clearly followed a path similar to that already taken by the DISCOVER system. 

Like DISCOVER, this recent version of GIL synthesizes a free programming environment with a 
guided programming environment. This is implemented in two phases.  During the first phase (the free 
programming phase), the users are encouraged to explore the graphical programming environment to build 
a mental model of simple Lisp functions.  Users build a program by connecting together objects that 
represent program constructs into a graph, rather than by defining Lisp functions in their traditional text 
form.  However, the environment is not as dynamic as that of DISCOVER’s.  GIL does not evaluate 
individual steps taken by the users during their exploration, and hence does not allow the users to see the 
immediate effects of their actions in relation to the behavior of Lisp functions.  For example, when the user 
selects the ‘CONS’ icon from the menu, GIL displays a box with ‘CONS’ written in it along with two 
branches coming out from the box.  Here the user is expected to provide two arguments that go with the 
selected function.  After filling the two branches with appropriate arguments, the user does not get to see 
how the selected function is applied to the arguments.  The system just displays the partially completed 
graph.  It would be nice if GIL could allow the users to see the dynamic behavior of the partially completed 
graph. 

During the second phase (the guided phase), GIL’s users solve simple programming problems under 
the intelligent guidance of the system.  To be able to trace the user’s solution, the system requires the user 
to specify his next step by selecting graphical icons from the menu that correspond to Lisp functions.  
Concerning model-tracing, GIL analyzes each and every single Lisp symbol provided by the user.  
However, GIL has one important advantage over both DISCOVER and the Lisp Tutor:  it allows more 
flexibility than working on a program in top-down, left-to-right order.  This is accomplished by supporting 
both forward and backward reasoning, and thus allowing the user to choose the part of the problem on 
which to work. 

3.2.3  Bridge  

Bridge is a programming environment intended to understand student design and partially complete 
programs.  The system provides the user with intermediate design languages that allow him to talk about his 
plans and intentions directly.  By doing that, the system avoids the process of deriving student intentions 
using complicated techniques such as partial matching based on a bug catalog used in the Proust system, or 
partial matching based on a reference solution used in DISCOVER, or a process model of the student’s 
decision making used in GREATERP and GIL.  Bridge supports the user in an initial informal statement of 
a problem solution, later refinement of that solution, and final implementation of the solution as 
programming language code.  This is done in three phases.  In phase one, the user constructs a set of step-
by-step instructions for other people.  Each phrase represents a goal and corresponds to one programming 
plan.  In the next phase, the user matches these phrases to programming plans and builds a program using a 
representation of these plans.  In phase three, the user matches these plans to actual programming language 
constructs of Pascal and builds a solution to the original problem. 

As an example of this goal-plan-code matching during theses three phases, consider the following 
simple problem. Write a program to get an integer from the user and output the result of multiplying the 
integer by 10. To solve this problem correctly, the user is expected to provide the following four goals 
which represent one way to solve the problem: 
Setup the memory variables for the integer and its result   (G1) 
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Ask the user to enter an integer      (G2) 
Multiply the integer by 10                     (G3) 
Output the result on the display      (G4) 
 

Once the goals are provided, the user can now select the plans which would satisfy the above goals, 
i.e. plans that would implement the goals. Here is one possible scenario: 
Declare Num1 and Resultnum      (P1) 
Input Num1        (P2) 
Resultnum = Num1 * 10       (P3) 
Output Resultnum       (P4) 
 

Finally, the user matches these plans to actual programming language constructs of Pascal and builds 
a solution to the original problem. After the user finishes building a natural language solution to the 
problem, the system builds a symbolic representation of the natural language version of the program.  In 
this representation, Bridge notes the order of each plan, and compares the representation with a list of 
requirements for a correct solution to the problem.  The first requirement that the student fails to satisfy 
becomes the subject of the tutor’s remarks.  In other words, Bridge compares the required plans and their 
ordering in a pre-stored list of requirements against the plans supplied by the user in his solution.  
Whenever a mismatch occurs in this comparison, the system presents the user with a hind.  Only when all 
the plans in the requirements list are satisfied is the user allowed to move to the next phase.  The system 
also supports some aspects of supportive environments (microworlds), especially in the second phase.  This 
is accomplished by highlighting each plan during execution, animating data flow with floating value plans 
and highlighting the corresponding program statements, written during the first phase using the intermediate 
design language of the system. 

The advantages of providing a language for intermediate representations to allow the student to 
express his planning actions are obvious:  (1) it provides the student with specific mental models with 
which to conceptualize the problem-solving process, and (2) it separates out the two activities of planning 
and coding, and thus reduces the cognitive load and allows focusing on one level of problem-solving at a 
time.  This feature also reduces the engineering cost of automatic debugging, since the system does not need 
to infer the plans from the code using complex pattern matching:  the student spells them out to the system 
through menu selections. 

The driving force behind the design of the Bridge system was the desire of its developers to come up 
with an interactive learning programming environment that would overcome (1) the lack of rich interaction 
found in the Proust system, and (2) the rigidity and restricting directiveness found in GREATERP.  The 
current implementation of the system, however, is not as interactive as it is liked to be seen.  The system has 
no capability of actively reasoning about the novice user while he develops the solution.  During the first 
phase, novices are expected to select a plan that correctly goes with a goal statement and to relate these 
plans together in a correct order.  This pre-assumes that the user possesses adequate algorithmic skill to be 
able to accomplish this task.  When the user requests automatic debugging of his solution, the system steps 
through the code and presents the user with its feedback.  By doing that, Bridge resembles the latest version 
of GREATERP (the student-controlled version).  An interesting extension to the system would be to make it 
capable of explicitly guiding the novice in the process of selecting programming plans to go with the goals 
and organizing these plans in a required order.  

The important assumption underlying the system is that teaching plans to novices will improve their 
ability to comprehend and write programs.  There is very little evidence to suggest that this method is the 
only way that can provide a basis for the kind of outcome that Bonar (1992) hopes.  Experiments looking at 
using plans across different tasks  and programming languages have demonstrated that other knowledge 
structures play an equal or even greater role in programming comprehension and generation than plans 
(Gilmore et al, 1988).  The evaluation of Bridge  focuses on informal reports of the problems encountered 
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during interactions with the system and, therefore, provides neither a good insight into its effectiveness for 
novice programming nor an account on the usefulness of the plan-based approach to the design of learning 
environments. 

In the second phase, novices are required to select a plan and then select a corresponding Pascal 
construct that best implements that plan.   One of the difficulties of this approach is that the mapping from a 
plan to a piece of code, such as an assignment, or vice versa is neither easy for nor clear to the novices.  
Here is an assumption that the novice user already knows enough about these plans to be able to 
successfully select from them the most appropriate one for the next mapping task.  Interestingly, Bonar 
(1992) reports that the second phase was the most problematic in that the novices found it quite difficult to 
translate their plan-based solutions into Pascal programs.  This appears to suggest that knowing plans only 
might not be adequate to explain the performance of novice programmers.  Rather, what appears to be 
important is the conceptual knowledge and understanding of how different programming plans are used.  
One possible way to simplify this task would be to provide novices with a microworld-like, plan-based 
environment through which they can ‘discover’ themselves how different plans are used. 

3.2.4  Discover 

Like GIL, DISCOVER is an intelligent programming environment which synthesizes free with guided 
programming and supports software visualization (Mukherjea et al, 1994; Stasko et al, 1992; Price, 1993; 
Baecker et al, 1997; Anjaneyulu, 1992) and immediacy of feedback.  The system is designed to help 
novices acquire both programming knowledge and programming skill.  This is accomplished in two phases: 
• In the first phase, the exploratory phase, the system helps novices through visualization and 

immediacy features to explore the dynamic behavior of programming statements and of the underlying 
notional machine to build a robust mental model of language execution and machine behavior. 

• In the second phase, the guided phase, novices put together program statements and language 
constructs, explored in the first phase, to solve problems under the intelligent guidance of 
DISCOVER. 

The interface of the DISCOVER system (shown in figure 1) was designed to facilitate the comprehension 
of large quantities and activity options that normally characterize discovery systems.  The interface appears 
to a user as a collection of seven windows.  The four windows on the left side of the interface, namely the 
Memory Space, the Input Space, the Output Space and the Algorithm Space, represent the components of 
the programming machine (Ramadhan, 2000b).   

The interface is designed to expose the users to whatever is being manipulated and experienced, and 
hence brings them closer to the language and the machine.  By doing that, the system brings the affordance 
into the users’ knowledge of perception and action.  The visual model of the notional machine, through 
visualisation and immediacy features, is expected to help the users perceive and manipulate the dynamic 
behavior of the program and its unfolding computation with less effort and accelerate the debugging task.  
By allowing the users to have such visual view of program behavior within an integrated and coherent 
image of the programming machine, the system can reduce the mental overload on the novice users, hence 
more emphasis can be put on program understanding, debugging and problem solving.  In short, 
interactions in DISCOVER among the program, the language and the machine are designed to produce an 
environment which makes it effortless for users to examine a program, figure out its effects and 
connections, and to relate problem solving with the properties of the machine they are interacting with.  

It may be argued that the interface with its multiple windows and various forms of feedback messages 
may increase the cognitive overload on the novice users during  learning programming. We are aware of 
this point. During our pilot evaluations, summarized in the last section of this paper, we paid special 
attention to the comments made by the users on the usefulness of the display and its organization. We did 
not find any serious concerns on the novices’ side regarding the interface. We also have no reason to 
suspect that the interface layout is somewhat confusing to novices or distracting them while using 
DISCOVER. In fact, it is worth noting that the entire left portion of the interface represents one logical 
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entity which nicely integrates its four components and provides a high-level image of the underlying 
programming machine. 

The programming language of the system is a simple pseudo-code based and algorithm-like language.  
At present, the language has no provision for functions, procedures, recursion and complicated data 
structures such as records, arrays and lists, thus focusing users’ attention on basic programming concepts 
and simplifying the learning process.  Programming concepts supported include CREATE, PUT, READ IN, 
WRITE OUT, WHILE-END-WHILE and IF-ISTRUE-ISFALSE.  The naming of these concepts was drawn 
from the results of several well organized empirical experiments which studied the effects of pseudo-code 
as a programming language (Vessey, 1985; Boehm-Davis, 1987; Curtis, 198; Dyck, 1987; Mayer, 1985). 
 

 

Figure 1: The interface 

It may be claimed that the language is very simple and that more functionality needs to be supported 
by the language to orientate novices to modern programming environments. We accept this argument and 
note that there is no reason why DISCOVER’s language should not be scaled up to support advanced users. 
This can be done by supporting advanced programming features such as procedures, functions and 
recursion, and more abstract data structures such as arrays, records, pointers, sets and files.  In fact, it would 
be interesting to see in future versions of DISCOVER visual representations of advanced data structures 
such as lists and trees  in the Memory Space of the system. Having said that, it is our firm conviction that 
environments designed for beginner and intermediate programmers should avoid the temptation of 
including complicated functions and structures found in modern commercial languages such as support for 
visual applications, device interfacing, parallel programming and network support. Clearly, with this 
advanced functionality, the environment would no longer be suitable for novice programmers. 

The selections in the Concepts menu, shown in the top right-most position of the screen, contain the 
beginning of phrases.  Each phrase corresponds to one programming concept. When the user selects a 
concept, its corresponding name is inserted into the Editor window and all the user has to do is to complete 
it by typing in its parameter part (e.g. the names of memory cells to be created).  A template showing the 
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correct syntax for the selected concept is also inserted in the window next to the Concepts menu.  Once a 
concept is completed it appears in the Algorithm Space window, where the code so far entered is stored. 

During the free phase, users can either load pre-written example programs or type in their own 
programs and visually observe the dynamic behavior of the language and the machine.  For the later option, 
the system interprets each and every statement immediately after it is completed and visually shows its 
effects on the components of the notional machine.  The user can also disable this interactive execution of 
his statements. In this case, the user can type his program and request the execution at any point by 
selecting the Run option from the Debug menu.  Syntax errors in the programs are trapped by the syntax-
directed editor and reported in the Message window. Figure 2 shows the visual execution of a program 
loaded by the user. 
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Figure 2: Visual execution of a program 
 

In both phases, the system visually executes the currently encountered statement and instantly shows 
the c

The aim of the guided phase is to teach the novice how to compose and co-ordinate programming 
concepts and statements to solve   programming problems under the intelligent guidance of the system and 
thus build effective problem-solving skills.  The user has to build his solution to the current problem by 
properly putting together programming concepts.  Once a concept is completed and accepted by the syntax-
directed editor it is passed to the intelligent component of DISCOVER for automatic diagnosis.  In doing 
so, DISCOVER attempts to model the steps taken by the user by evaluating his actions and responses.  
DISCOVER analyzes the surface code of the completed statement (partial solution code) without much 
specific knowledge about the problem to be solved or about how to design and construct an algorithm (i.e. 
DISCOVER cannot solve the problem itself).  During the guided phase, users select from the Problems 
menu the problem to be solved.  For each problem, a statement is presented in the Problem Description 
window. 

hanges that take place in the Memory Space, Input Space or Output Space windows.  In addition, each 
statement of the program is visually highlighted during the execution to show the user how the control 
flows from one statement to another, and how the highlighted statement affects the current state of the 
underlying notional machine.  Figure 3 shows an example of interacting with the novice user during the 
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guided phase.  This figure also shows how different programming concepts affect the components of the 
visible notional machine during execution in a manner which clearly shows possible causes and effects. 

This figure shows the user interaction while attempting to solve the Ending Value Averaging Problem.  
In this example, the user has failed to accumulate the numbers read by the program for the averaging 
purpose.  The system detects this misconception and considers this step as a deviation from the solution 
path, and hence decides to interfere by guiding the user toward the expected step.  For more detail regarding 
the diagnosis process, see (Ramadhan, 1997). 

Much like Bridge, DISCOVER relies on a pre-stored reference solution (the ideal student model) for a 
given problem and applies various heuristics and pattern matching techniques to match the solution code 
provided by the novice with the reference solution in order to spot errors and misconceptions.  However, 
like GREATERP and GIL, DISCOVER is a model-tracing based system, capable of interactively analyzing 
partial solution code and providing immediate feedback on failure.  The system explicitly guides the novice 
in the process of putting together programming concepts to solve the given problem.  DISCOVER monitors 
the novices actions, not on a symbol-by-symbol basis as it is done in GREATERP, but on a complete 
statement-by-statement basis.  As long as each statement represents a correct goal on a solution path, 
DISCOVER continues guiding the novice towards the final goal, reasoning about the goals already satisfied 
and hinting at the goals that still remain to be satisfied.  

Unlike GREATERP and GIL, however, DISCOVER (1) utilizes goals and plans (not a production 
system) to represent the domain expertise, (2) does not keep an account, at least currently, of common error 
patterns (the buggy model), and (3) supports an ability to give delayed feedback by increasing the grain size 
of automatic debugging to a complete programming statement (not just a single symbol or token) and an 
ability to do limited backtracking by giving the user some chance to delete previously entered code and 
restart.  See (Ramadhan, 1997) for more description on how DISCOVER represents the reference solution 
and how it implements the diagnosis process.  In the sections to follow, we present a more detailed 
discussion on various design issues incorporated in active program diagnosis systems along with 
suggestions for improving their engineering. As mentioned earlier, this discussion is presented in the 
context of the system DISCOVER. 
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Figure 3 : A message from the intelligent component 
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3.2.5  A Summarized Com

he four systems included in the in-event analysis category. 
An o

3. 

Table 1: Comparative analysis 

Systems 

parative Analysis  

This section provides a short analysis  of t
bjective and comparative evaluation of learning environments requires a set of standards  to measure 

the effectiveness of the systems.  To compare the features of these systems reviewed above, we use the 
following three design principles as criteria for our analysis: 
1. Systems should help the users in avoiding learning a mass of detailed syntax of the programming 

language being explored.  
2. Systems should assist the users in exploring the programming experience interactively through 

supporting various immediacy features. Users should become active learners: forming their own 
hypotheses, exploring their own questions, and drawing their own conclusions. 
Systems should assist the users in problem-solving through supporting   automatic diagnosis with 
flexible immediate feedback on individual errors. 

Table 1 shows the correspondence between the criteria established above and the four  systems surveyed in 
the previous subsections. 
 

 
Criteria 1 Criteria 2 Criteria 3 

L isp Tutor Fair Excellent Good 
Bridge Exc ellent Good Fair 

GIL Fair Ex cellent Good 
DIS COVER Exc ellent Excellent Good 

 
egarding the first cr  th th being d, It has been claimed 

that 
R iterion, namely e scope of e language  explore

simplicity is among the most important characteristics that a programming language intended for 
novices should have (du Boulay et al, 1981).  Three types of simplicity have been proposed: functional, 
logical and syntactic simplicity. 

The language should be kept functionally simple by giving it small set of basic instructions that are 
easy to understand; it should be kept logically simple by giving it instructions that are suited to the 
problems of interest to the novices, so that they can tackle and solve these problems by short and simple 
programs; and it should be kept syntactically simple, i.e. the rules for writing instructions should be uniform 
and have well chosen names.  The names of the basic instructions are important as novices tend to make 
inferences about the language from these names. Examples of these names are LOAD and STORE 
instructions used in the assembler language that have real world connotations. Both the Lisp Tutor  and GIL 
require the users to have a good command of the Lisp language. Because of high abstraction involved in the 
syntax and semantics of the Lisp commands, constructs, and functions, users are faced with greater mental 
overhead when learning to program using the Lisp language. 

DISCOVER and Bridge use a pseudo-code like language which puts more emphasis on programming 
concepts and less emphasis on detailed syntax and abstract data types and constructs. Regarding the pseudo-
code language, it has been noted that comprehension of programs depend both on the language used and on 
the task for which the language is used (du Boulay et al, 1981).  Thus, even if the underlying algorithms are 
identical, creating the internal representation from one language may be more difficult than creating that 
representation from another language.  In addition, it has been reported that the reason why it may be less 
difficult to create internal representations using pseudo-code language could be that it lessens the 
'translation distance' from the documentation format to the program code.   

On the second Criterion, namely the scope of the interaction, DISCOVER, GIL and the Lisp Tutor 
provide highly interactive environments. All these three systems implement program diagnosis using 
model-tracing methodology, by which they monitor the actions of the user as he moves along the solution 
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the third criterion, namely flexibility of the immediate feedback, Bridge falls behind the 
other

4.   Model-Tracing Based Diagnosis  

Model-tracing, used in the Lisp Tutor and GIL, simply expresses the fact that the novice user is made 
to fol

 one of the rules in the ideal user 
mode

 short, the main features of model-tracing based diagnosis and tutoring are the following: 
•  shows an 

• of checking low-level syntax of the 

• that it responds to every step (e.g. a single Lisp symbol) the user 

 
Through this approach to automatic diagnosis and tutoring, a model-tracing system can (1) diagnose 

very 

path, automatically analyze partial solutions for semantic errors and misconceptions, and offer guidance 
whenever he deviates from a correct solution path. Bridge is not as interactive as it should be. The system 
has no capability of actively reasoning about the novice user while he develops the solution.   As it was 
mentioned in section 3.2.3, the user builds his solution in a passive-like mode. When the user requests 
automatic debugging of his solution, the system steps through the code and presents the user with its 
feedback. An interesting extension to the system would be to make it capable of explicitly guiding the 
novice in the process of selecting programming plans to go with the goals and organizing these plans in a 
required order.   

Finally, on 
 three systems, as shown in table 1. The system has no capability of actively reasoning about the 

novice user while developing the solution, and hence the feedback is not immediate. DISCOVER, GIL and 
the Lisp Tutor do support immediate feedback on errors. However, the grain size of automatic diagnosis in 
DISCOVER is not confined to a single language token or command, as in GIL and the Lisp Tutor, but to a 
complete statement and expression.  This feature gives the user some opportunity for self-correction and 
provides a larger context for tutorial instruction; hence its feedback is considered to be more flexible.  

low the system’s model quite closely.  A model-tracing based system analyzes each and every step of 
the user’s solution to determine whether it is on a correct path toward a solution or indicates a 
misconception.  In the Lisp Tutor and GIL, the user’s step is analyzed by comparing it with the rules 
currently considered by the system, which represent the ideal user model. 

If the step taken by the user is one that can be produced by executing
l, the rule is applied and the user is considered to be moving on a correct solution path.  In this case, 

the system remains silent in the background and permits the user to continue.  Alternatively, if the user’s 
step cannot be produced by the ideal model, the system considers its buggy model, which represents general 
patterns of errors.  Misconceptions are flagged and diagnosed when the user’s step is produced by one of 
the rules of the buggy model.  Here the system interrupts and offers advice associated with the buggy rule.  
In this way, the system understands each step the user takes to build his program.  It is this combined use of 
the ideal and buggy models, together called the generic model, which defines the model-tracing 
methodology:  the system traces out the path currently taken by the user through the generic model and 
insists that the user stay on a correct path. 

 
In
The system constantly monitors partial steps taken by the user and intervenes whenever he
evidence for a misconception by deviating from a solution path. 
The interface in these systems tries to eliminate the problem 
language being learned (e.g. via the use of structure editors), and thus reduces the mental overhead 
associated with problem-solving. 
The interface is highly active in 
provides. 

specific errors and misconceptions, and provide clear advice and explanation within proper and 
immediate context, (2) explicitly guide the user in the process of organizing different programming 
concepts and statements, and (3) simplify the engineering of automatic diagnosis by preventing multiple 
bugs and errors. 
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Anderson’s (1990) work on model-tracing and immediate feedback has strongly argued that these 
advantages make it worthwhile to incorporate this approach in the design of intelligent diagnosis and 
tutoring systems.  His well documented empirical evaluations of the effectiveness of model-tracing and 
immediate feedback in procedural domain indicate that users learn procedures more quickly than 
conventional tutoring when provided with a model-tracing based environment.  Students can more easily 
utilize feedback and explanations when the system, the Lisp Tutor, supports the capability of automatically 
tracing, analyzing and reasoning about their partial solution steps that led to the error. Anderson has also 
shown that such a tutoring strategy can prevent long episodes of counter-productive floundering by 
interactively trapping errors and correcting them as they show up in their proper context during the 
performance of a task.  Similar results have also been reported by Reiser (1992) on his model-tracing, 
interactive, graphical Lisp tutoring system GIL. 

4.1  Critiquing Model-Tracing 

Despite the achievement of the model-tracing based methodology to intelligent diagnosis, the 
approach suffers several drawbacks and shortcomings.  First, by restricting the user to a symbol-by-symbol 
based top-to-bottom coding order, model-tracing hinders the opportunity for experimentation that might 
lead to a clearer understanding of the problem and thereby does not allow the users to explore and discover 
new strategies nor does it allow them to detect and correct their own errors and misconceptions.  The main 
driving force behind model-tracing based systems is the detection of deviations from the ideal user model.  
These systems reject any other correct approach to solving a problem if it differs from the path currently 
followed by the system (Nwana, 1991; Wegner, 1987). 

Second, the success of model-tracing based systems depends heavily on the extent of their model-
tracing knowledge, which includes the number of correct rules in the ideal user model and the number of 
the mal-rules in the buggy user model (Wegner, 1987).  For example, the production system of the Lisp 
Tutor currently contains more than 1200 rules, more than half of which are mal-rules (Anderson, 1990).  
Production systems, despite their many advantages, impose several computational problems when utilized 
to support model-tracing based diagnosis and tutoring, especially of large problems, see section 4.3.2. 

Third, the important programming activity of debugging is taken away from the user since model-
tracing based systems, in principle, do not permit floundering (Nwana, 1991; Wegner, 1987).  As a 
consequence, such systems may weaken the user’s personal motivation and sense of discovery.  To address 
these issues, we have designed a prototype system called DISCOVER. The system uses a different 
implementation of model-tracing, supports an improved engineering of model-tracing based diagnosis, and 
provides a slightly more flexible style of tutorial interaction (e.g. than the Lisp Tutor) while preserving 
close ties to the underlying cognitive modeling of the model-tracing based diagnosis. Before moving on, it 
is very important to clarify points that have to do with the terminology used to describe DISCOVER’s 
approach to automatic diagnosis, intelligent tutoring and knowledge representation. 

4.1.1  What Goals and Plans in DISCOVER Stand for 

There has been a great deal of work with programming ‘plans’.  This includes formal definition (Rich, 
1986), empirical investigation (Soloway, 1984), and implementation in AI systems (Johnson, 1990).  The 
plan notation has been developed to characterize aspects of language independent knowledge (information) 
about programming and to characterize language dependent knowledge used by novices and experts to 
implement programming problems (Bonar, 1992). 

In this paper, we focus on plans as a tool for coding and matching syntactic templates that correspond 
to the low-level syntactic code objects in the DISCOVER’s language. This implies that plans here are 
language dependent.  Moreover, the plans presented and used in this paper reflect only the actual 
implementation of the code provided by novices, and not the possible implementation of the underlying 
knowledge of novices. The plans used in this research are thus neither (1) characterized to be the plans that 
were derived from a psychological theory of programming plans that was developed at Yale, or the plans 
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that were developed at MIT for the automatic programming project (Rich, 1986), nor (2) characterized to 
have any sort of structures in them. 

Concerning the ‘goals,’ Johnson (1990) points out that goals are the principal requirements that must 
be satisfied if a solution is to meet the problem specification.  These goals are used to represent the 
intentions of the programmer.  A goal statement consists of a name of a type of goal followed by arguments.  
In short, Johnson argues that goals describe what the programs must do, while plans describe how these 
programs are supposed to do it.  In this paper, the term ‘goal’ is used to indicate the programming concept 
that the user is expected to select while solving a programming problem.  So for example, when we say that 
the next goal is to initialize cell NUM, what we mean is that the user is expected to select a PUT concept 
from the menu to store a value in cell NUM.  In this paper, goals are used as a planning tool for enabling 
novices to break down the problem in smaller steps, and each corresponds to the concept in a single 
program statement. In short, goals are mapped to programming concepts, which in turn are mapped to 
single statements. Whereas in the original goal-and-plan literature, goals are mapped to plans, which are 
mapped to structures, which in turn are mapped to multiple statements, or possibly single statements. 

4.1.2   Is DISCOVER an Intelligent Diagnosis and Tutoring System? 

Instead of using a production system to perform automatic diagnosis and tutoring, DISCOVER uses a 
reference solution to trace all the possible solution paths needed to guide the tutoring process. The reference 
solution is represented in terms of a Proust-like goal-and-plan tree, except (1) that it includes explicit 
relationships to constrain user steps on a solution path, and thus allows DISCOVER to preserve strong ties 
with the model-tracing paradigm, and (2) it is encoded procedurally. In the current implementation, the 
reference solutions (goal-and-plan trees) that guide automatic diagnosis in DISCOVER are generated by 
hand, and manually coded as a set of procedures, where a procedure represents a goal or subgoal, which in 
turn calls other procedures that represent the plans.  In short, at present there is no explicit representation of 
knowledge in the system. 

It could be argued that this approach neither makes DISCOVER a knowledge-based system nor an 
intelligent debugging system, and hence a better term to characterize DISCOVER would be ‘an automatic 
diagnosis system’. While we agree with the first criticism, we argue that DISCOVER is more than an 
automatic diagnosis system.  Since the system currently has no student model and good courseware, we do 
not claim that it is a complete ITS. The plans in the reference tree  have provision for associating a feedback 
message with user behavior. The system through these hand-coded explanations is capable of generating 
highly specific tutorial-like messages, and thus simulating some of the functionality of an ITS. By 
supporting that, DISCOVER is more than just a diagnosis system. 

4.1.3  Production Systems and Model-Tracing 

In this paper, we argue that a production system is not the most efficient way to represent the domain 
expertise needed to implement model-tracing. Model-tracing requires the system to be capable of 
interactively tracing all the possible paths that a user might decide to follow.  To accomplish this, a 
production system needs to follow several branches simultaneously, and thus keep several rules active at 
one time.  This is true even when a model-tracing system, such as the Lisp Tutor, is only capable of 
handling a very small grain size of modeling (e.g. single Lisp symbol).  In this paper, we argue that for a 
model-tracing system to be able to handle larger grain sizes of diagnosis (e.g. a complete program 
statement), the computational cost associated with time and space becomes too high.  It is important to note 
the context for the discussion that follows.  The critique is of production rules as used in model-tracing 
systems like the Lisp Tutor.  It is not a critique of production systems in general.  In short, the discussion 
that follows does not attempt to devalue the modular and expressive nature of production systems, but the 
way these systems are used to handle model-tracing in the domain of computer programming. 
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4.2  DISCOVER Approach to Model-Tracing 

Like the Lisp Tutor and GIL, DISCOVER analyzes each and every step of the user’s solution to 
determine whether it is on a correct path toward a solution or indicates a misconception.  However, the 
grain size of automatic diagnosis in DISCOVER is not confined to a single language token or command, 
but to a complete statement and expression.  This feature gives the user some opportunity for self-correction 
and provides a larger context for tutorial instruction. 

To consider a simple example, suppose the user is expected to compute the average by generating 
‘PUT total/count IN average’ statement in DISCOVER language.  DISCOVER will not diagnose individual 
parameters and tokens that make up this expression and will wait until the user submits the completed 
statement as his current step by hitting the return key.  Even if the user selects an entirely different concept 
than the one expected by the system, for example ‘READ’ instead of ‘PUT’ in this case, the system will 
immediately recognize the bad selection but will not flag an error and thus give the user some opportunity 
for self-correction. 

In DISCOVER, the user’s step is analyzed by comparing it with the goals and plans of the reference 
solution, and not rules.  If the step taken by the user is the one that can be matched with one of the plans 
(e.g. with the syntactic templates of plans) that are currently considered by the system, the plan is applied 
(e.g. the plan’s template is matched with the code object in the user’s statement) and the user is considered 
to be moving on a correct solution path.  In this case, the system permits him to continue.  Alternatively, if 
the user’s step cannot be matched with any of the plans currently considered by the system, the system 
interrupts and offers a feedback message that attempts to explain the misconception in relation to its current 
context. 

In short, DISCOVER relies on its explicit planning mechanism (discussed in the next section) to trace 
the user’s planning and design decisions during problem-solving.  As each complete statement in the user’s 
program is entered, DISCOVER checks to see if the user is following a correct design path.  Incorrect paths 
are pruned as soon as they are detected and the user is allowed to try again.  If the user cannot determine 
how to proceed, DISCOVER can assist him and if necessary can provide the next correct step. 

4.3  Improving the Engineering of Model-Tracing 

Several alternative design principles can be proposed to tackle some of the pitfalls associated with the 
model-tracing approach, as it is implemented in the Lisp Tutor and GIL, while preserving close ties to the 
underlying cognitive modeling on which it is based. One approach would be to support the following 
features and capabilities: 
1. Increasing the grain size of automatic analysis and tutoring to handle a complete expression and 

statement, rather than a single token, and thus delaying the feedback until the whole statement is 
submitted will give the user some flexibility for self-correction of errors.  This approach will also 
provide the system a larger context for automatic diagnosis.  This larger context in turn will enable the 
system to support a more flexible mode of tutorial interaction. 

2. Supporting an explicit planning (though low level) mechanism through which the information about the 
user’s planning and design actions are provided to the system naturally and voluntarily using a menu 
during all stages of the problem-solving process and not only in response to the Lisp Tutor like 
interventionist dialogue, which occurs at the last stage of the diagnosis process (e.g. when the system 
fails to determine the user’s planning decisions) will not only provide the user with an opportunity to 
decompose the problem into smaller steps, but will also simplify the computational cost involved in the 
automatic diagnosis process. 

3. Representing the ideal model using some other knowledge representation formalism that is more 
practical in terms of implementation and less expensive in terms of cost associated with time and space 
than the production system currently used in the Lisp Tutor and GIL. 
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4.3.1  Explicit Planning Mechanism 

To model the problem-solving process, DISCOVER utilizes an explicit planning mechanism.  
Through this mechanism, DISCOVER, like Bridge and GIL, explicitly requires the novice user to select 
programming concepts from a menu.  These selections externalize and represent the user’s design actions.  
In this way, the information about the user’s overall planning decisions is provided to the system by the user 
naturally while solving a problem.  In other words, the information about the user’s goals (e.g. 
programming concepts to be selected in this case) needed to monitor his progress on a  solution path is 
provided nonintrusively as an integrated part of problem-solving. 

The novice is presented with a menu of programming concepts that represent high-level goals.  The 
novice solves the problem by selecting these concepts and putting them together in their proper positions.  
Selecting a READ IN concept, for example, indicates to the system that the novice’s current goal is 
probably to get a value or an input from the user.  Through this mechanism, the system always gets the 
information needed to trace the novice’s actions in building the program. 

This approach greatly simplifies the problems associated with the automatic diagnosis of the solution.  
The system does not need to establish goals (programming concepts) because the novice spells them out for 
it. Thus, the time spent by the system in diagnosing the errors could be certainly reduced, since the 
uncertainty in what path the novice would take is greatly minimized.  The system compares the concept 
selected by the novice, which represents his current goal, with the one expected by the system (considered 
in the reference solution) and generates feedback without relying on a bug catalog. 

This mechanism, however, does not eliminate the plan-recognition problem.  The representation of 
DISCOVER’s reference solution resembles the goal-and-plan tree of Spohrer (1985).  For each goal, there 
is number of plans that may be applied to implement and satisfy that goal.  Although the novice tells the 
system what goal he wants to pursue (i.e. what concept he wants to select), the system still needs to 
recognize the plans (i.e. code objects) used by the novice to properly implement the selected goal. 

4.3.2  Plan-Based Model-Tracing 

A frequently used strategy in representing domain knowledge is to use a set of problem solving rules.  
Each rule contains a description of a particular problem situation and a step to take in that situation, 
basically an action-oriented approach (Clancy, 1987).  A combination of these rules makes up what is 
known to be the production system.  A production based system traces a user’s solution by matching each 
partial step provided by the user against the conditions of the rules in its problem solving model.  GIL and 
Lisp Tutor are the classic examples of programming tutoring systems that follow this approach. 

Production systems, despite their advantages, are not the most efficient way (e.g. in terms of 
computational costs associated with time and space (Anderson, 1990) to implement model-tracing 
(discussed in the next section).  These systems have to consider a very large number of rules at any point 
during diagnosis process to be able to trace all possible next steps that the novice might follow.  Moreover, 
to cope with the problem of nondeterminism, these systems have to be used nondeterministically (i.e. more 
than one rule active at once) to be able to trace multiple paths before disambiguating information is 
encountered. 

The inability of these production systems to easily handle a larger grain size of modeling, for example 
a complete programming expression or statement (see next section), while supporting model-tracing, 
greatly contributes to their weaknesses.  Theoretically, there is no reason why a production system cannot 
handle larger grain sizes of modeling.  In practice though, this would require a large increase in the number 
of rules, as will be shown shortly.  In fact, it is for this reason that the systems based on such representation 
force a particular interpretation of the novice’s behavior on the novice (e.g. single-symbol based tutoring), 
rather than waiting until the novice generates enough of the solution step (e.g. complete statement), which 
in turn will enable the system to establish an adequate context for dealing with ambiguity.  Therefore, to 
increase the grain size of tutoring, a model-tracing system needs to depart somehow from using production 
systems as its driving force during the process of automatic diagnosis and tutoring. 
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Implementing a production system also has high computational cost both in terms of space and time.  
Problems tend to become more costly as they become larger even if they involve the same underlying 
knowledge.  This is because the working memory of the production system tends to increase, as does the 
nondeterminism.  In terms of time, a production based tutoring system becomes very slow when trying to 
simulate the user dynamically and interactively in order to trace and guide him. 

Running the production system through an off-line compiler would solve the computational cost 
associated with time, but would increase the computational cost associated with space. Because when the 
system is run ahead of time to produce the trace tree, it is necessary to follow every branch at an or-node so 
that later the system can trace the user down any possible branch.  This requires exhaustively searching the 
trace tree for possible alternatives in the user solution, and also results in very large structures needed to 
store the trace tree.  Additionally, it is also an onerous task to develop complete production systems that 
also include a good set of buggy rules to model possible misconceptions and errors (Nwana, 1991).    

DISCOVER uses a different approach to implementing a model-tracing based tutoring.  Instead of 
developing a complete production system with all the necessary mal-rules in it, DISCOVER uses a 
reference solution to trace all the possible solution paths needed to guide the diagnosis process.  Currently, 
the system has no knowledge of what bugs and misconceptions are likely to occur in the novice program.  
The system relies on its explicit planning mechanism to trace the user’s high-level goals and utilizes pattern 
matching and heuristics to trace the user’s plan-oriented actions.  Through this approach, DISCOVER 
detects and diagnoses very specific bugs when they arise in their immediate and proper context.    

The reference solution is represented in terms of a Proust-like goal-and-plan tree, except that it 
includes explicit relationships to constrain user steps on a solution path, and thus allows DISCOVER to 
preserve strong ties with the model-tracing paradigm.  In addition, plans in the reference tree also have 
provision for associating a feedback message with user behavior.  Goals represent different programming 
concepts which the novice needs to have in his solution and the plans represent the correct implementation 
of goals.  Thus plans are used to indicate the textual structure that the user code must have and the goal-
subgoal structure of the code.   Variability as well as constraints over the user solution are represented using 
AND/OR clauses in the reference tree.  It is this representation coupled with pattern matching which makes 
DISCOVER capable of supporting more variability (e.g. than the Lisp Tutor and GIL) and larger grain sizes 
of modeling. For a detailed description of the representation mentioned here, see (Ramadhan, 1997). 

4.3.3  Rules Versus Plans 

It is not easy for a rule-based system to allow the type of variability supported by DISCOVER, while 
at the same time handling active diagnosis and tutoring.  The following discussion illustrates this point.  
Consider the following function call in the case of the Lisp Tutor ( + (cdr list1) (cdr list2)), where the 
function cdr is used to return the remaining part of the list after stripping the first argument, e.g. applying 
the function cdr to the list (‘a b c d’) will return the list (‘b c d’).  Since the ordering of arguments to the 
function + is not important, the system allows the user to code the two arguments in either order.  Thus, 
when the goal is set to code the first argument, there are two candidate productions, each of which codes 
cdr. When the user types cdr, the context is not large enough to make it possible for the system to determine 
which argument the user is coding.  This ambiguity could be resolved only in the next cycle when the next 
symbol is typed.  However, to postpone resolution for a cycle, it would be necessary for the production 
system to follow both possible branches.  That requires matching the user’s next step to the subgoal of each 
production, and thus increasing the amount of pattern matching required. 

Moreover, even this simple variability that concerns the typing of the arguments in any order, as long 
as the ordering is unimportant, becomes very costly when the number of arguments grows larger than two.  
Currently, the Lisp Tutor easily handles different unimportant orderings of arguments as long as the number 
of arguments is not greater than two.  This requires only two productions to keep track of the two 
arguments, one checks for the ‘list1’, in our simple example, and the other for the ‘list2’.  When the number 
of arguments is 4, for example, the number of different orderings becomes 4! (24 orderings).  This implies 
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that the production system either has to have four productions, each with 4 matching components, or 24 
different productions.  In both cases, 24 different matchings are required.  In addition, these productions 
have to follow at least 4 branches at the same time to be able to resolve the ambiguity, which in turn 
increases the computational cost involved. 

Had we decided to represent DISCOVER’s knowledge using a rule-based approach, the same 
problems would have made the attempt to handle larger grain sizes of modeling very difficult to implement.  
In the case of DISCOVER, only 4 plans are required to check the unimportant ordering of 4 different 
arguments.  For example, consider the following statement PUT (num1*4) + (num2*3) + (num3*7) + 
(num4*8) IN newnum.  Since the entire statement is submitted at once,  the first plan verifies the existence 
of the argument (num1*4) in the statement, regardless of its order.  This is done by making sure that the 
pattern (num1*4) does exist in the statement.  The second plan verifies the existence of the pattern 
(num2*3), and so on.  Since these patterns are hand coded in the reference solution, only one matching 
operation is required per plan. For example, the following plan (expressed in POP-11 programming 
language) 

MEMBER(“ (num3*7)”, statement) 
would be enough to make sure that the user has indeed included this argument in his statement.  This would 
have been impossible had DISCOVER allowed the user to enter only one single symbol or token at a time.  
Of course, the production system could incorporate this approach in its implementation (e.g. requires 
expected patterns to be hand coded in its rules to reduce the amount of matching components).  But then, 
this would make the system become more or less DISCOVER-like, hand coded reference solution, which in 
turn would make the system lose its ability to synthesize the solution and simulate the user. 

4.4  Immediacy of Feedback 

To develop the novice’s programming skill, a program diagnosis system must be able to trace the 
novice’s actions and determine when he diverges from a correct solution path so that it can offer 
suggestions or criticism on individual steps, rather than being limited to advice on complete solution step.  
By following the novice’s actions while trying to put programming concepts together, the system can 
respond to the underlying misconceptions that motivated the behavior rather being restricted to comments 
concerning the surface form of the whole solution.  This requires, besides model-tracing, support for 
immediate feedback on both failure and success. 

4.4.1 The Need for Flexible Interaction 

The principal features of the Lisp Tutor’s interaction style can be summarized as follows: 
 
• The system insists that the novice stay on a correct solution path and immediately flags errors.  The 

system reacts to every symbol the novice types and provides immediate feedback as soon  as the 
novice deviates from the solution path. 

• The system does not allow the novice to backtrack and delete previously entered code. 
• The system uses a menu-based dialogue to track planning decisions and behaviors when it fails to 

trace them nonintrusively. 
• The system forces the novice to enter the code in a left-to-right, top-to-bottom manner.  This implies 

that the next piece of code or the next step on a solution path is decided by the system and not by the 
novice.  Occasionally though, the user is given some freedom in dealing with arguments whose 
ordering is not important, or even with functions which have the same underlying functionality, such 
as cons, append and list. 
 
While each of these features has pedagogical justification and close ties to the underlying cognitive 

modeling, there is no reason why some of these features, especially the first two, cannot be improved to 
support a more flexible style of tutorial interaction while preserving a close relationship to the model-
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tracing approach.  Some amount of self-detection and correction of errors may lead to a clearer 
understanding of the problem and a better explanation of the programming process by the novice and 
certainly is something that users using the Lisp Tutor have said they wanted (Anderson, 1990).  Providing 
immediate feedback upon every single Lisp symbol is also extremely undesirable and restricting in 
situations where not enough context has been established for the novice to understand why his solution is 
wrong. 

4.4.2  The Interaction Style of DISCOVER 

DISCOVER supports a more flexible style of tutorial interaction that is based on improving the first 
two features of the Lisp Tutor’s interaction style mentioned above.  This is achieved by increasing the grain 
size of automatic tutoring and by providing novices with some opportunity for self-correction of errors.  
The principal features of DISCOVER’s interaction style can be summarized as follows: 
• The system reacts to every complete programming statement and expression, not to a single symbol, 

and provides immediate feedback as soon as the novice wanders off the correct solution path. 
• The system supports limited backtracking by allowing novices to delete previously entered code (e.g. 

parts of the statement currently being completed). 
• The system supports an explicit planning mechanism to trace the intentions and high-level goals of the 

novices.  Novices externalize their planning decisions by choosing form a menu of programming 
concepts rather than through a dialogue. 

• The system requires the novice to enter the code in a top-to-bottom manner. 
 
By increasing the grain size of tutoring to a complete statement and expression, DISCOVER provides 

novices with some opportunity for self-correction and also a larger context for instruction.  Since the grain 
size of tutoring is confined to a single symbol, the Lisp Tutor finds it difficult to explain why a novice’s 
action is wrong at the point which the misconception is first manifested because there is not enough context. 

To consider an example, compare a novice who provides (append x y) where (cons x y) is better for 
appending the contents of the two lists x and y in a single list returned by the system.  It would become 
easier to explain the choice after the complete statement has been provided rather than after ‘(append’ has 
been entered.  In the case of DISCOVER, this problem does not arise.  If the novice provides, for example, 
‘READ 5 IN num’ where ‘PUT 5 IN num’ is more appropriate, the system explains the choice after the 
complete statement has been typed in rather than immediately after ‘READ’ has been selected. 

This allows DISCOVER to generate more appropriate explanations and advice that can derive 
mapping, generalization and coordination that exist between similar programming concepts.  For example, 
in the case of ‘READ’ instead of ‘PUT’, DISCOVER informs the novice that it would be better in normal 
cases where getting an input from the user is not required to use the ‘PUT’ concept for assigning values to 
cells.  This explanation would not become possible to generate if DISCOVER could not wait to see whether 
the novice indeed wanted to read 5 and not some other values in cell ‘num’. 

DISCOVER also supports limited backtracking by allowing novices to delete previously entered 
parameters and operators of the statement currently being completed.  Unfortunately, at present the 
backtracking is confined to the current statement only.  The novice can also cancel the selection of a 
concept and select a new one that best represents his next goal.  For example, if the novice selects the 
‘READ’ concept where ‘WHILE’ is expected and realizes after completing the selected concept, but before 
submitting it, that he made an error, he can backspace over the statement.  The system would ignore the 
selection without considering it a deviation from a solution path.  This gives the novice some opportunity 
for self-correction.  In fact, there are cases in which the novice may be confused about what goals and plans 
are appropriate in the current situation and would realize only if he is given a little more time to self-correct.  
This is not possible with the classical version of the Lisp Tutor. 
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5. Conclusion 

In this paper we have presented an overview of the field of intelligent program diagnosis and critically 
compared work accomplished on four closely related active diagnosis systems while  emphasizing such 
issues as the representation techniques used to capture the domain knowledge required for the diagnosis, 
ability to handle the diagnosis of partial code segments of the solutions, features of the user interfaces, and 
methodologies used in conducting the diagnosis process. Several design considerations to improve the 
engineering of active approach to intelligent diagnosis were proposed. In particular, we have argued in this 
paper that the model-tracing based active approach to automatic program diagnosis has several advantages 
when compared to other approaches. These advantages include (1) the ability for diagnosing very specific 
errors and providing specific feedback within proper context, (2) the ability to analyze partial solution steps 
as they are generated by the users and hence reason about the problem solving process, and (3) the ability to 
minimize the impact of multiple bugs on the diagnosis process. Despite these advantages, we have also 
argued that this approach to automatic diagnosis tends to be very directive and that some alternative design 
decisions need to be incorporated into this approach to make it support a more flexible style of user 
interaction.  

Alternatives proposed include (1) supporting an ability to give delayed feedback by increasing the 
grain size of diagnosis to a complete program statement, not just a single word or token, (2) allowing the 
users to do limited backtracking by giving them some chance to delete previously entered code and restart, 
and (3) departing from production system when representing the expertise needed for automatic diagnosis. 
These alternative design issues were successfully incorporated in the implementation of DISCOVER.   

With the rapid growth in the Web development and distance learning technology, we hope to develop 
a Web version of DISCOVER using some Internet programming languages such as Java to introduce 
programming concepts and problem-solving to novice users all over the world. The language supported by 
the system can also vary to cover other languages used in some popular applications such as the scripting 
language used in the spreadsheets calculations, SQL language used in the database applications, and the 
HTML language used in the Web applications.  
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