
 Science and Technology, Special Review (2000) 157-183
 © 2000 Sultan Qaboos University

157

Intelligent Systems for Active Program
Diagnosis

Haider Ali Ramadhan and Khalil Shihab

Department of Computer Science, College of Science, Sultan Qaboos
University, P. O. Box 36, Al Khod 123, Muscat, Sultanate of Oman.

 أنظمة البرمجه الذكية للتحليل الفوري

 حيدر علي رمضان و خليل شهاب

 يتناول هذا البحث دراسة تحليلية و مقارنة لانظمة البرمجة الذكية القادرة على اكتشاف الاخطاء :خلاصة
و الوسائل , كما يتناول البحث طبيعة المعالجة الذكية للبرنامج في هذه الانظمة . المنطقية في البرنامج

كما يطرح البحث السبل البديلة للتغلب على السلبيات . عملية المعالجة لضرورية ل المستخدمة لتمثيل المعلومات
 .الموجودة في الانظمة الحالية

ABSTRACT: Intelligent program diagnosis systems are computer programs capable
of analyzing logical and design-level errors and misconceptions in programs. Upon
discovering the errors, these systems provide intelligent feedback and thus guide the
users in the problem-solving process. Intelligent program diagnosis systems are
classified by their primary means of program analysis. The most distinct split is
between those systems that are unable to analyze partial code segments as they are
provided by the user and must wait until the entire solution code is completed before
attempting any diagnosis, and those that are capable of analyzing partial solutions and
providing proper guidance whenever an error or misconception is encountered. This
paper gives an overview of the field and then critically compares work accomplished
on several closely related active diagnosis systems, emphasizing such issues as the
representation techniques used to capture the domain knowledge required for the
diagnosis, ability to handle the diagnosis of partial code segments of the solutions,
features of the user interfaces, and methodologies used in conducting the diagnosis
process. Finally the paper presents a detailed discussion on issues related to active
program diagnosis along with various design considerations to improve the
engineering of this approach to intelligent diagnosis. The discussion presented in this
paper tackles the issues referred above within the context of DISCOVER, an
intelligent system for programming by discovery.

KEYWORDS: Intelligent programming systems, knowledge representation, program
debugging, software development, user programming.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

CONTENTS

1. Introduction: Automatic Program Debugging 158
1.1 The Background 158
1.2 A general Model of Program Debugging 159

2. Active Versus Passive Debugging 160
2.1 Advantages of Active Debugging 161
2.2 The Implementation of Active Debugging 161

3. Survey of Approaches 162
3.1 Post-Event Systems 162

3.1.1 Specification-Based Analysis 162
3.1.2 Trace Analysis 163
3.1.3 Model-Answer Analysis 163

3.2 In-Event Analysis 164
3.2.1 Greaterp 164
3.2.2 Gil 166
3.2.3 Bridge 166
3.2.4 Discover 168
3.2.5 A Summarized Comparative Analysis 172

4. Model-Tracing Based Diagnosis 173
4.1 Critiquing Model-Tracing 174

4.1.1 What Goals and Plans in DISCOVER Stand for 174
4.1.2 Is DISCOVER an Intelligent Diagnosis and Tutoring System? 175
4.1.3 Production Systems and Model-Tracing 175

4.2 DISCOVER Approach to Model-Tracing 176
4.3 Improving the Engineering of Model-Tracing 176

4.3.1 Explicit Planning Mechanism 177
4.3.2 Plan-Based Model-Tracing 177
4.3.3 Rules Versus Plans 178

4.4 Immediacy of Feedback 179
4.4.1 The Need for Flexible Interaction 179
4.4.2 The Interaction Style of DISCOVER 180

5. Conclusion 181
6. References 181

1. Introduction : Automatic Program Debugging

1.1 The Background

Over the past twenty years, the area of user programming has undergone a major change in perspective
and direction. In the beginning, the emphasis was centered on the needs of the users in trying to learn

programming and problem-solving. Intelligent programming systems developed for this purpose targeted
the design and the planning sides of programming, which embodied an instruction-oriented paradigm.
Users were led through a structured manner, embarking on well-defined tasks, and even designing and
implementing their programs according to a model of good practice or ideal solution. This model was
critical because it facilitated automated diagnosis when bugs were introduced by the users. This approach of
instruction-oriented paradigm appeared to embody a clean, top-down, and reliable software engineering
practice, since it aimed to get the design and specification error-free from the beginning. Unfortunately, in

 158

INTELLIGENT SYSTEMS

 159

reality, it also acted as a straight-jacket in many situations for novice users. Examples of these systems
include (Bonar, 1992; Anderson, 1990; Reiser, 1992; Murray, 1986; Johnson, 1980).

Subsequently and due to limitations associated with the above approach to automatic debugging, and
in general with the difficulty in coming up with automatic debuggers which would cater for more than small
and toy programs, the efforts in this area shifted to the software maintenance side of user programming.
Discovery programming environments along with support for visual techniques were the focal point of this
new direction. Efforts invested in this direction seemed to claim that helping the users to understand the
dynamic behavior of programs and algorithms during execution could be proven to be more effective in
teaching programming to novice users. The result of this direction created a shift from automated debuggers
to software visualization.

Ever since, much of research in user programming has been polarized toward these two opposite
domains: intelligent programming systems and discovery programming environments. The intelligent
systems concentrated mainly on helping novices in acquiring programming skills through a series of
problem solving situations. Most of these systems ignored the significance of incorporating visualization
and discovery features which would also help the users in compiling effective programming knowledge.
Discovery systems, on the other hand, concentrated mainly on helping the users in building correct
programming knowledge through visual and discovery environments. These systems neglected the issue of
supporting intelligent diagnosis and tutoring through which novices can transform their knowledge into
programming skill. Examples of these systems include Agentsheets (Repenning, 1996), SEE (Baecker,
1990), TANGO (Stasko, 1992), ZEUS (Brown, 1992), and TPM (Eisenstadt, 1993).

Recently, another improvement on the general lines discussed above has emerged. This recent
direction emphasizes the incorporation of visualization and discovery features into intelligent program
debuggers in order to come up with guided programming environments, which may hopefully help novice
users in building both the programming knowledge and the problem-solving skill. A solid practical example
of such recent direction is exhibited by the DISCOVER system (Ramadhan, 1992a, 1992b, 1997, 1998,
1999a, 1999b, 2000a, 2000b). Empirical evaluations of the system seem to support the usefulness of this
direction.

With the advancement in the Internet computing and Web development, teaching user programming
over the Web is becoming a very promising direction. World Societies will become more reliant on
proficiency in programming, so that teaching it quickly and effectively will become more important. With
the growth of distance learning technology, access to learning systems is expected to grow, and the lessons
learnt from teaching programming have the potential to be applied to other areas such as medical diagnosis
and circuit design and layout.

Among the three general programming paradigms mentioned in the above discussion, this paper deals
with only two types of systems: (1) automatic program debuggers, and (2) guided discovery programming
systems. Discovery programming environments with no support for automatic program diagnosis are not
covered in our analysis. It is important to note here that due to difficulty encountered in the development of
systems for automatic program diagnosis, very little progress has been reported in this interesting area
especially in recent years. It is for this reason that most of the systems mentioned in this paper are the ones
developed some considerable time ago. However, it is the methodology embodied in these systems that
constitutes the core of this paper and not the systems themselves. We have also put considerable effort in
suggesting better design directions to improve the engineering of new systems for program diagnosis.

1.2 A general Model of Program Debugging

Before describing specific systems that support automatic program diagnosis, it is worth looking at a
general model of program diagnosis. This will facilitate characterizing and comparing various approaches
and systems that have been developed in this area.

An automatic program diagnosis and debugging system is a computer based program capable of
analyzing programming solutions and providing intelligent feedback, and thus supporting problem-solving

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 160

domains. The program diagnosis methodologies discussed in this paper are basically specializations of the
following general model. Task specifications are mapped to the code provided by the user. This mapping
process allows the task of program debugging to be decomposed into smaller and simpler steps. When
decomposition is no longer possible, the diagnostic critic looks for discrepancies between code and
specifications and interprets these as bugs. When intelligent tutoring is also supported by the system, this
information from the critic is passed over to the tutorial expert that interacts with the user model and
provides tutorial interactions and instruction.

The task specifications are precise criteria for successful completion of the debugging task. The
following methods of task specifications have been used by the automatic program debugging systems
indicated:

• Model-answer programs (reference solutions): Laura (Adam, 1980), Aurac (Hashmer, 1983), Talus,

Bridge, and DISCOVER.
• Input/output pairs: BIP (Barr, 1976).
• Goals to be achieved (specified in some special language or format): Proust, Bridge, GREATERP, GIL,

Aurac, MYCROFT (Goldsein, 1974), and DISCOVER.
• The expected trace: PDS6 (Shapiro, 1983).
• Constraints on program output: MYCROFT.

The diagnostic critic compares task specifications and program code for discrepancies that can be

interpreted as bugs. The following indications have been used to flag the detection of bugs:
• Mismatch between plan templates and student code: Proust, DISCOVER.
• Inability to synthesize student code (simulate the ideal student): GREATERP, GIL.
• Differences between expected and actual execution traces: BIP, PDS6.
• Inability to verify program specifications: Talus, Aurac.
• Inability to satisfy a list of program requirements: Bridge.
• Violations of output constraints: MYCROFT.

2. Active Versus Passive Debugging

Automatic program diagnosis and debugging systems can be classified by their primary means of
program analysis. The most distinctive split is between those systems that are unable to analyze partial code
segments as they are provided by the user and must wait until the entire solution code is completed before
attempting any diagnosis, and those that are capable of analyzing partial solutions. The former perform
post-event analysis while the later perform in-event analysis.

Systems using post-event analysis can be further divided according to their methods of isolating and
localizing errors into (1) those using specification based analysis, such as Proust, Pudsy (Lukey, 1980) and
Aurac, (2) those using trace-based analysis, such as PDS6, (3) those using I/O based analysis, such as BIP,
and (4) those using model-answer based analysis, such as Laura and Talus.

Systems using in-event analysis can be further divided according to their methods of reasoning about
the user into those supporting active analysis and those supporting passive analysis. Systems using passive
analysis do not trace the intentions of the user or his design decisions while being developed and require
him to explicitly request the automatic debugging of his code segments. These systems localize errors in the
user programs either by looking for surface structural forms (plans) (Rich, 1986) or by accounting for
differences between forms and actual code segments, as in the case of Bridge. Generally speaking, these
systems rely on some sort of pre-stored requirements for a complete solution, and hence are classified in
our taxonomy under model-answer based systems. It is worth noting here that systems which rely on pre-

INTELLIGENT SYSTEMS

 161

stored requirements for a successful solution cannot solve the problems themselves, and hence cannot
reason about the solutions and designs provided by the users (see section 2.2).

On the other hand, systems using active analysis perform automatic debugging by implementing
model-tracing (Anderson, 1990). Through this approach, these systems subdivide tasks into smaller steps
that must be solved one at a time. The user’s design decisions are traced as he develops the solution. During
each step taken by the user, these systems check to see if the user is following a design path known to be
correct or buggy. Buggy paths are pruned as soon as they are detected by giving the user intelligent
feedback and allowing him to try again. Examples of such systems include GREATERP, GIL and
DISCOVER. These systems tend to be quite directive. However, through rich interaction and flexible
immediate feedback, these systems detect very specific bugs and misconceptions.

There is some overlap in these categories. DISCOVER performs model-tracing, but relies on a pre-
stored model answer (the reference solution) to represent its knowledge about the ideal user. Aurac
performs specification based analysis to match code segments with the library of program clichés, but then
later on uses its model-answer algorithm to conduct data-flow analysis.

2.1 Advantages of Active Debugging

Several advantages of the active approach to automatic program debugging can be outlined as follows:
• Very specific errors can be diagnosed and feedback can be given in proper context of the error, hence

the users can be explicitly guided in the process of acquiring problem-solving skills.
• Systems using this approach are capable of analyzing partial solutions as they are provided by the user

and therefore have access to all intermediate states, hence they work with more information than
systems that are capable of only analyzing complete solutions. This in turn provides these systems with
the capability of reasoning about the programming process itself and thus generates very specific
explanations and advice.

• The impact of multiple bugs on the diagnosis process is minimized. Many of the post-event based
systems such as Proust, Talus, Aurac and Laura have to deal with disentangling multiple bugs which
require them to generate all possible alternative treatments of these bugs and pick the best from among
them. Systems using active analysis simply prevent the user from making multiple bugs and explain
each bug immediately. Therefore, the code never contains more than one bug at a time. In addition to
cognitive justifications, (see Anderson, 1982), this approach greatly simplifies the engineering and the
implementation of automatic program diagnosis.

Despite these advantages, this approach to automatic program diagnosis tends to be very directive. In

addition, such approach ignores the issue of providing the user with some chance to detect and correct bugs
on his own, since the user is not allowed to go wrong. However, these disadvantages can be overcome by
supporting a more flexible style of user interaction while still retaining close ties to model-tracing. This was
successfully accomplished by the DISCOVER system through (1) supporting an ability to give delayed
feedback by increasing the grain size of automatic diagnosis to a complete program statement, not just a
single word or symbol, and (2) allowing the user to do limited backtracking by giving him some chance to
delete previously entered code and restart, while in full interaction with the system (see section 4 for more
detail).

2.2 The Implementation of Active Debugging

One way to implement model-tracing, active program debugging is to provide the system with a set of
problem solving rules (a production system) that allow it to model the user by generating possible steps that
a user might take while solving a given problem. Thus, while the user is working, the system simulates the
steps that an ideal user could take in completing the program. In addition, this approach also models
possible errors that the user makes at each step on the basis of pre-known bugs and misconceptions stored
in a library. By comparing the user’s actions (partial solution steps) to the set of possible correct actions and

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 162

the set of buggy actions, the system can determine whether the user is moving on a correct solution path or
showing evidence of bug. This combination of correct and buggy sets of rules is referred to as the student
model, while the process of comparing the user’s actions to the ones generated by these rules is referred to
as model-tracing. Both GIL and GREATERP follow this model.

DISCOVER followed a different approach in implementing model-tracing. In this approach the
system is provided with a pre-stored reference solution that represents the ideal solution, but with no
account for possible and common bugs. The system much like Laura, Talus, Aurac and Bridge, applies
various heuristics and pattern matching techniques to match steps taken by the user with parts of the
reference solution. The system analyzes the surface code provided by the user without much specific
knowledge about the problem to be solved or about how to design and construct an algorithm. Therefore,
unlike production based systems, systems that rely on pre-stored reference solution cannot solve the
problems themselves. Since these systems rely on manipulating the surface code, it is possible to describe to
the user what the next step in the solution is but it is not possible to reason about why the step is appropriate.

However, this problem can be bypassed to some extent by incorporating hand-coded explanations for
each reference solution. In fact, by augmenting each complete step in the reference solution with a hand-
coded explanation that simulates the reasoning process, it becomes possible for DISCOVER to describe to
the user quite specifically why each of his actions is appropriate or not.

3. Survey of Approaches

As described above, automatic program debugging and tutoring systems can be classified by their
primary means of program analysis. The most distinctive split is between those debugging systems that are
unable to analyze partial code segments as they are provided by the user and must wait until the entire
solution code is completed before attempting any automatic debugging or tutoring, and those that are
capable of analyzing partial solutions. The former perform post-event analysis while the letter perform in-
event analysis.

3.1 Post-event Systems

Post-event analysis systems are characterized by their inability to diagnose partial, incomplete
solution steps. These systems also lack rich interaction with the user and require him to sufficiently
understand both the detailed knowledge of the syntax and the semantics of the language constructions
(programming knowledge), and the process of relating these constructs along with their semantics to come
up with correct programs (algorithmic or programming skill). The remainder of this section examines some
of these systems in more details.

3.1.1 Specification-based Analysis

Automatic debugging systems that perform specification-based analysis are provided with a high-level
description of the goals of the user’s code and they check to see to what extent these goals are satisfied by
the user’s code. Examples of such systems include Proust, Aurac, Pudsy, and MYCROFT.

Proust uses stored plan templates to match against parsed student code. The program specification is
expressed as a sequence of task goals. Proust stores a plan library that associates task goals with plan
templates. Plan templates are associated with the expected code in the user’s plan that they can match
against. Proust infers the intentions of the student program statements by matching each statement to some
part of a plan. When all goals are achieved, Proust fully determines the intentions of the student program.
When more than one plan matches a statement, Proust uses heuristics to select the one that expects the
fewest bugs in the student program. By using heuristics, Proust avoids impractical exhaustive search.

Aurac attempts to match segments of the student program written in Solo against a library of clichés.
Because of the simplicity of the Solo domain, Aurac manages to store programming clichés that would
match most segments of the student program. Partial matching of the clichés to the code, is treated as a

INTELLIGENT SYSTEMS

 163

candidate bug. In the final stage, the system uses data flow analysis to detect such errors as unused
bounded variables. Aurac is also capable of recognizing some simple algorithms. By making sure that the
high-level goals specified by a model algorithm for a given algorithm are satisfied by the student code,
Aurac can determine if the code is logically correct. The system checks each line of the code against
sample lines from an algorithm. When all lines of a given algorithm are found, Aurac states that the code is
correct.

Pudsy uses a specification as the high-level description of the correct code, and matches the output of
the student program against a specification. Pudsy breaks the code into smaller logical chunks. The system
then relates each chunk to a particular task in the problem, using a record of tasks associated with the high-
level description of the program’s goals. In the first pass, Pudsy looks for local clues that suggest bugs in
chunks, such as redundant assignments. In the second pass, Pudsy figures out low-level assertions about the
values of variables on exiting each chunk and then transforms these low-level assertions into a high-level
description. The description is then matched against a specification. On mismatch between specification
and description, Pudsy examines the assertions built so far and determines the code segment responsible for
discrepancies between specification and description.

MYCROFT examines the side effects produced by a program. The domain is drawing simple pictures
in LOGO and the side effects are lines drawn and changes to the turtle state. Like Pudsy, MYCROFT uses
a specification as the high-level description of the correct code, and matches the output of the student’s code
against a specification. The specification describes the relationships between the components of the shapes
drawn. On finding a mismatch between the drawing and the specification, MYCROFT determines the bug
to be in the code that produced the drawing.

3.1.2 Trace Analysis

Systems that perform trace analysis engage in a debugging dialogue with the user. PDS6 is an
example of such a system. The system interactively debugs Prolog programs by monitoring program
execution. The system builds a tree of the calling sequence of the procedures involved. It then asks the
user questions about the desired and actual behavior of the procedures. By comparing actual program
execution with the desired execution, PDS6 can determine the buggy procedure. The system relies heavily
on an ‘oracle,’ typically the user, to answer questions about the expected behavior of the program.

3.1.3 Model-answer Analysis

Debugging systems that perform model-answer based analysis attempt to match pre-stored, possibly
parsed, model programs to the parsed student code. Examples of such systems include Laura, Talus and
Ruth’s system (Ruth, 1973).

Laura analyzes the surface code of the student program. The system transforms the student program
written in FORTRAN and the model program into graphs and then normalizes these graphs. Normalization
transforms the graphs into a standard form. An example of transformation used might be - if the same
variable is used for two different purposes then a new variable is generated. This makes the matching
process easier. Any discrepancies discovered between these graphs during the matching process are
considered to be bugs.

Talus debugs programs in Lisp by reasoning about the computational semantics of the programs.
Recursive programs are compared to model programs. These programs act both as specifications and
sources for correcting the buggy code. An inductive proof of equivalence is constructed to compare student
and reference programs. Where the proof would fail, the student program is altered with code from the
reference program. Talus applies various heuristics to pair reference functions with student functions and to
pair formal variables with actual variables. The system simplifies the student code using a sequence of
program simplification transformations. This process transforms the programs into IF-normal forms, which
then facilitates algorithm recognition and bug detection by reducing the variability of the programs. Talus
detects bugs by generating and evaluating verification conditions that are required for the inductive proofs

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 164

that establish the functional equivalence of each student function to its paired function. When the proof
would fail, Talus knows that a bug has been discovered.

Ruth’s system uses ‘generative semantic grammars’ to represent plans, and student programs are
parsed in terms of the grammar. This method is similar to syntactic analysis in natural language processing.
The system analyzes simple sorting programs with this approach and a grammar similar to an Augmented
Transition Network (ATN). The system uses the grammar to translate a given algorithm into the program
submitted by the student. If the translation fails, then the program is considered to be incorrect. The system
also uses the same grammar to generate the problems in the first place.

3.2 In-event Analysis

Automatic program debugging systems which diagnose partial solutions as they are provided by the
user perform in-event analysis. The systems normally emphasize rich interactions and a visible user
interface. These systems allow the user to explore the problem-solving process through an interactive
exploration of programming functions, concepts and plans. The user is not required to have extensive
programming knowledge and programming skill to be able to explore programming in these systems. The
user learns by trying out his hypotheses which are represented by the fragments of knowledge he might
have about programming, and it is up to the system to guide him in acquiring new knowledge and new skill.
These systems can be further divided according to their methods of reasoning about the user into those
using active analysis, such as GREATERP, GIL and DISCOVER, and those using passive analysis, such as
Bridge.

Interactive approach and immediacy features are two main characteristics which differentiate active
systems from passive ones. Through rich interactions and immediate feedback, active systems bring
affordance into users’ knowledge of perception and action. Users are expected to perceive and manipulate
the dynamic behavior of the program and its unfolding computation with less effort and accelerate the
debugging task. Hence, these systems can reduce the mental overhead and help the users in putting more
emphasis on program understanding, debugging and problem-solving.

The remainder of this section examines in more detail these four fully implemented systems that
perform in-event analysis. These examples are intended to show that every one of these automatic program
debugging and tutoring systems is limited due to its inability either to support sufficiently large grain size of
automatic debugging, as in the case of GREATERP, or to support active debugging of partial solution steps
as they are provided by the user, as in the case of Bridge. A more critical analysis of the Lisp Tutor vs.
DISCOVER is covered in the last section of this paper.

3.2.1 Greaterp

GREATERP (the Lisp Tutor) uses production rules to synthesize code for both an ‘ideal’ and a
‘buggy’ novice Lisp programmer. The student’s design decisions are traced as the student develops the
program. This approach is called the model tracing approach to automatic program debugging. As each
Lisp symbol in the student program is entered, GREATERP decides what rule would have to fire to
duplicate the input. If the duplicating rule is in the ‘expert’ set then GREATERP does nothing, but if the
duplicating rule is in the ‘buggy’ set then GREATERP gives the student a short tutorial on his
misconception. In this way, the system always checks to see if the student is following a design path of an
ideal model. Buggy paths are pruned as soon as they are discovered.

The system is based on a cognitive model which suggests that mistakes by the student should be
flagged as soon as they are encountered. Anderson (1990) argues that there is considerable psychological
evidence that humans learn better with immediate feedback (an important learning assumption of the ACT*
theory of skill acquisition), and that this approach increases the possibility that the student will be able to
relate the advice to the current issue (context) rather than getting advice at a much later stage.

The system is very directive and interventionist. Computational advantages of such an approach are
that it reduces the usual combinatorics associated with mal-rules to decide whether or not each new Lisp

INTELLIGENT SYSTEMS

 165

token is a legal or illegal continuation of the program, and that it eliminates the problem of multiple bugs.
The problem of deciding which bug to tutor does not even arise, because the tutor simply prevents the
student from making multiple bugs. Though of course, it cannot prevent the user from entertaining multiple
misconceptions about a single symbol. The disadvantage of this approach is that the student is highly
constrained in the solutions that can be developed. The student must conform to the task decomposition
and coding sequence that GREATERP enforces.

The latest version of GREATERP attempts to overcome some of the problems cited above by varying
the nature of the tutorial interaction. The new system has employed a problem compilation approach to
provide the student with more control over the coding process in two ways: by relaxing the constraint on ,
input order, so that the student can generate code in any order he wants instead of the left-to-right, top-to-
bottom manner, and by giving the student control over when feedback is presented. This student controlled
feedback is achieved by delaying feeding each unit of code to the tutorial engine as it is generated. Instead,
the code is buffered and submitted to the tutor at the student’s request. However, the debugging of the user
program is carried out in the same way: the system scans the code in a top-to-bottom, left-to-right manner,
stops at the first error encountered, and ignores the rest of the solution.

This transition to the student-controlled interaction makes the new system, like Bridge, a passive
system that waits for the novice to request automatic analysis of his code, and thus loses the rich interaction
with him. By doing that, this new system loses very important features: the ability to monitor the novice’s
progress on the solution path, determine when he shows evidence of errors within their proper and
immediate context and decide when to guide him in what to say during interactive tutoring. In principle,
there is no reason why a model-tracing system should stick to a single-symbol based immediate feedback.
One possible alternative would be to increase the grain size of automatic debugging to a full program
statement or even to a block of statements, not just a single Lisp symbol. This would not only provide the
system with an ability to delay its interactive feedback but would also allow the user to backtrack and delete
some previously entered code and restart. Thus the system would support a more flexible style of
interaction while preserving strong ties to the cognitive principles of model-tracing and immediate
feedback.

When two design paths leading to alternate implementations overlapped, GREATERP, in its old
version, could not determine which design path was being followed. Now through problem compilation
approach, GREATERP can search multiple alternative branches down in the goal tree when it needs to
disambiguate some responses. In the current version, discrepancies between predicted implementations and
expected implementations can be explained either in terms of an incorrect design path being assumed, or in
terms of a bug in the student’s program. By doing that, GREATERP follows a similar approach to
interpreting discrepancies as that of Proust: either the wrong plan has been chosen to interpret the program,
or the plan is correct but the student’s program has a bug.

The student interacts with the system mainly through a structure editor. This feature aids automatic
debugging by eliminating certain low-level syntax errors, such as balancing parentheses, and trapping and
immediately remedying others, such as quoting a function call. This feature also ensures that both the
system and the student know explicitly which part of the problem is being coded, since this is always done
by replacing one of the place-holding parameters in the partially completed code. In this way, the student
knows most of the time what goals and subgoals need to be satisfied.

Besides the code-level interaction, the system also supports a planning mode. This mode is used by
the system when the knowledge of the student’s design and planning decisions becomes very difficult to be
derived from the code entered by the student. The mode is also used when the system suspects that the
student is having some difficulty in planning or when the student requests help. Interactions at the
planning-level are supported by multiple choices from the menus. This feature simplifies the task of
automatic debugging even more, since in this way plans are more easily recognized than trying to derive
them from step-by-step coding.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 166

3.2.2 Gil

It is worth noting that the other model-tracing system, GIL, does not defer judgment. Any errors are
immediately pointed out and the feedback is presented to the user as soon as a single erroneous token is
encountered. However, GIL has one clear advantage over GREATERP. The system incorporates a visual
programming environment which allows the user to observe in a graphical manner how Lisp lists are
constructed. The newer version of GIL extends its functionality even more. This is achieved by
augmenting the guided, visible environment with a free, visible environment. By doing that, this newer
version has clearly followed a path similar to that already taken by the DISCOVER system.

Like DISCOVER, this recent version of GIL synthesizes a free programming environment with a
guided programming environment. This is implemented in two phases. During the first phase (the free
programming phase), the users are encouraged to explore the graphical programming environment to build
a mental model of simple Lisp functions. Users build a program by connecting together objects that
represent program constructs into a graph, rather than by defining Lisp functions in their traditional text
form. However, the environment is not as dynamic as that of DISCOVER’s. GIL does not evaluate
individual steps taken by the users during their exploration, and hence does not allow the users to see the
immediate effects of their actions in relation to the behavior of Lisp functions. For example, when the user
selects the ‘CONS’ icon from the menu, GIL displays a box with ‘CONS’ written in it along with two
branches coming out from the box. Here the user is expected to provide two arguments that go with the
selected function. After filling the two branches with appropriate arguments, the user does not get to see
how the selected function is applied to the arguments. The system just displays the partially completed
graph. It would be nice if GIL could allow the users to see the dynamic behavior of the partially completed
graph.

During the second phase (the guided phase), GIL’s users solve simple programming problems under
the intelligent guidance of the system. To be able to trace the user’s solution, the system requires the user
to specify his next step by selecting graphical icons from the menu that correspond to Lisp functions.
Concerning model-tracing, GIL analyzes each and every single Lisp symbol provided by the user.
However, GIL has one important advantage over both DISCOVER and the Lisp Tutor: it allows more
flexibility than working on a program in top-down, left-to-right order. This is accomplished by supporting
both forward and backward reasoning, and thus allowing the user to choose the part of the problem on
which to work.

3.2.3 Bridge

Bridge is a programming environment intended to understand student design and partially complete
programs. The system provides the user with intermediate design languages that allow him to talk about his
plans and intentions directly. By doing that, the system avoids the process of deriving student intentions
using complicated techniques such as partial matching based on a bug catalog used in the Proust system, or
partial matching based on a reference solution used in DISCOVER, or a process model of the student’s
decision making used in GREATERP and GIL. Bridge supports the user in an initial informal statement of
a problem solution, later refinement of that solution, and final implementation of the solution as
programming language code. This is done in three phases. In phase one, the user constructs a set of step-
by-step instructions for other people. Each phrase represents a goal and corresponds to one programming
plan. In the next phase, the user matches these phrases to programming plans and builds a program using a
representation of these plans. In phase three, the user matches these plans to actual programming language
constructs of Pascal and builds a solution to the original problem.

As an example of this goal-plan-code matching during theses three phases, consider the following
simple problem. Write a program to get an integer from the user and output the result of multiplying the
integer by 10. To solve this problem correctly, the user is expected to provide the following four goals
which represent one way to solve the problem:
Setup the memory variables for the integer and its result (G1)

INTELLIGENT SYSTEMS

 167

Ask the user to enter an integer (G2)
Multiply the integer by 10 (G3)
Output the result on the display (G4)

Once the goals are provided, the user can now select the plans which would satisfy the above goals,
i.e. plans that would implement the goals. Here is one possible scenario:
Declare Num1 and Resultnum (P1)
Input Num1 (P2)
Resultnum = Num1 * 10 (P3)
Output Resultnum (P4)

Finally, the user matches these plans to actual programming language constructs of Pascal and builds
a solution to the original problem. After the user finishes building a natural language solution to the
problem, the system builds a symbolic representation of the natural language version of the program. In
this representation, Bridge notes the order of each plan, and compares the representation with a list of
requirements for a correct solution to the problem. The first requirement that the student fails to satisfy
becomes the subject of the tutor’s remarks. In other words, Bridge compares the required plans and their
ordering in a pre-stored list of requirements against the plans supplied by the user in his solution.
Whenever a mismatch occurs in this comparison, the system presents the user with a hind. Only when all
the plans in the requirements list are satisfied is the user allowed to move to the next phase. The system
also supports some aspects of supportive environments (microworlds), especially in the second phase. This
is accomplished by highlighting each plan during execution, animating data flow with floating value plans
and highlighting the corresponding program statements, written during the first phase using the intermediate
design language of the system.

The advantages of providing a language for intermediate representations to allow the student to
express his planning actions are obvious: (1) it provides the student with specific mental models with
which to conceptualize the problem-solving process, and (2) it separates out the two activities of planning
and coding, and thus reduces the cognitive load and allows focusing on one level of problem-solving at a
time. This feature also reduces the engineering cost of automatic debugging, since the system does not need
to infer the plans from the code using complex pattern matching: the student spells them out to the system
through menu selections.

The driving force behind the design of the Bridge system was the desire of its developers to come up
with an interactive learning programming environment that would overcome (1) the lack of rich interaction
found in the Proust system, and (2) the rigidity and restricting directiveness found in GREATERP. The
current implementation of the system, however, is not as interactive as it is liked to be seen. The system has
no capability of actively reasoning about the novice user while he develops the solution. During the first
phase, novices are expected to select a plan that correctly goes with a goal statement and to relate these
plans together in a correct order. This pre-assumes that the user possesses adequate algorithmic skill to be
able to accomplish this task. When the user requests automatic debugging of his solution, the system steps
through the code and presents the user with its feedback. By doing that, Bridge resembles the latest version
of GREATERP (the student-controlled version). An interesting extension to the system would be to make it
capable of explicitly guiding the novice in the process of selecting programming plans to go with the goals
and organizing these plans in a required order.

The important assumption underlying the system is that teaching plans to novices will improve their
ability to comprehend and write programs. There is very little evidence to suggest that this method is the
only way that can provide a basis for the kind of outcome that Bonar (1992) hopes. Experiments looking at
using plans across different tasks and programming languages have demonstrated that other knowledge
structures play an equal or even greater role in programming comprehension and generation than plans
(Gilmore et al, 1988). The evaluation of Bridge focuses on informal reports of the problems encountered

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 168

during interactions with the system and, therefore, provides neither a good insight into its effectiveness for
novice programming nor an account on the usefulness of the plan-based approach to the design of learning
environments.

In the second phase, novices are required to select a plan and then select a corresponding Pascal
construct that best implements that plan. One of the difficulties of this approach is that the mapping from a
plan to a piece of code, such as an assignment, or vice versa is neither easy for nor clear to the novices.
Here is an assumption that the novice user already knows enough about these plans to be able to
successfully select from them the most appropriate one for the next mapping task. Interestingly, Bonar
(1992) reports that the second phase was the most problematic in that the novices found it quite difficult to
translate their plan-based solutions into Pascal programs. This appears to suggest that knowing plans only
might not be adequate to explain the performance of novice programmers. Rather, what appears to be
important is the conceptual knowledge and understanding of how different programming plans are used.
One possible way to simplify this task would be to provide novices with a microworld-like, plan-based
environment through which they can ‘discover’ themselves how different plans are used.

3.2.4 Discover

Like GIL, DISCOVER is an intelligent programming environment which synthesizes free with guided
programming and supports software visualization (Mukherjea et al, 1994; Stasko et al, 1992; Price, 1993;
Baecker et al, 1997; Anjaneyulu, 1992) and immediacy of feedback. The system is designed to help
novices acquire both programming knowledge and programming skill. This is accomplished in two phases:
• In the first phase, the exploratory phase, the system helps novices through visualization and

immediacy features to explore the dynamic behavior of programming statements and of the underlying
notional machine to build a robust mental model of language execution and machine behavior.

• In the second phase, the guided phase, novices put together program statements and language
constructs, explored in the first phase, to solve problems under the intelligent guidance of
DISCOVER.

The interface of the DISCOVER system (shown in figure 1) was designed to facilitate the comprehension
of large quantities and activity options that normally characterize discovery systems. The interface appears
to a user as a collection of seven windows. The four windows on the left side of the interface, namely the
Memory Space, the Input Space, the Output Space and the Algorithm Space, represent the components of
the programming machine (Ramadhan, 2000b).

The interface is designed to expose the users to whatever is being manipulated and experienced, and
hence brings them closer to the language and the machine. By doing that, the system brings the affordance
into the users’ knowledge of perception and action. The visual model of the notional machine, through
visualisation and immediacy features, is expected to help the users perceive and manipulate the dynamic
behavior of the program and its unfolding computation with less effort and accelerate the debugging task.
By allowing the users to have such visual view of program behavior within an integrated and coherent
image of the programming machine, the system can reduce the mental overload on the novice users, hence
more emphasis can be put on program understanding, debugging and problem solving. In short,
interactions in DISCOVER among the program, the language and the machine are designed to produce an
environment which makes it effortless for users to examine a program, figure out its effects and
connections, and to relate problem solving with the properties of the machine they are interacting with.

It may be argued that the interface with its multiple windows and various forms of feedback messages
may increase the cognitive overload on the novice users during learning programming. We are aware of
this point. During our pilot evaluations, summarized in the last section of this paper, we paid special
attention to the comments made by the users on the usefulness of the display and its organization. We did
not find any serious concerns on the novices’ side regarding the interface. We also have no reason to
suspect that the interface layout is somewhat confusing to novices or distracting them while using
DISCOVER. In fact, it is worth noting that the entire left portion of the interface represents one logical

INTELLIGENT SYSTEMS

entity which nicely integrates its four components and provides a high-level image of the underlying
programming machine.

The programming language of the system is a simple pseudo-code based and algorithm-like language.
At present, the language has no provision for functions, procedures, recursion and complicated data
structures such as records, arrays and lists, thus focusing users’ attention on basic programming concepts
and simplifying the learning process. Programming concepts supported include CREATE, PUT, READ IN,
WRITE OUT, WHILE-END-WHILE and IF-ISTRUE-ISFALSE. The naming of these concepts was drawn
from the results of several well organized empirical experiments which studied the effects of pseudo-code
as a programming language (Vessey, 1985; Boehm-Davis, 1987; Curtis, 198; Dyck, 1987; Mayer, 1985).

Figure 1: The interface

It may be claimed that the language is very simple and that more functionality needs to be supported
by the language to orientate novices to modern programming environments. We accept this argument and
note that there is no reason why DISCOVER’s language should not be scaled up to support advanced users.
This can be done by supporting advanced programming features such as procedures, functions and
recursion, and more abstract data structures such as arrays, records, pointers, sets and files. In fact, it would
be interesting to see in future versions of DISCOVER visual representations of advanced data structures
such as lists and trees in the Memory Space of the system. Having said that, it is our firm conviction that
environments designed for beginner and intermediate programmers should avoid the temptation of
including complicated functions and structures found in modern commercial languages such as support for
visual applications, device interfacing, parallel programming and network support. Clearly, with this
advanced functionality, the environment would no longer be suitable for novice programmers.

The selections in the Concepts menu, shown in the top right-most position of the screen, contain the
beginning of phrases. Each phrase corresponds to one programming concept. When the user selects a
concept, its corresponding name is inserted into the Editor window and all the user has to do is to complete
it by typing in its parameter part (e.g. the names of memory cells to be created). A template showing the

 169

HAIDER ALI RAMADHAN and KHALIL SHIHAB

correct syntax for the selected concept is also inserted in the window next to the Concepts menu. Once a
concept is completed it appears in the Algorithm Space window, where the code so far entered is stored.

During the free phase, users can either load pre-written example programs or type in their own
programs and visually observe the dynamic behavior of the language and the machine. For the later option,
the system interprets each and every statement immediately after it is completed and visually shows its
effects on the components of the notional machine. The user can also disable this interactive execution of
his statements. In this case, the user can type his program and request the execution at any point by
selecting the Run option from the Debug menu. Syntax errors in the programs are trapped by the syntax-
directed editor and reported in the Message window. Figure 2 shows the visual execution of a program
loaded by the user.

 170

Figure 2: Visual execution of a program

In both phases, the system visually executes the currently encountered statement and instantly shows
the c

The aim of the guided phase is to teach the novice how to compose and co-ordinate programming
concepts and statements to solve programming problems under the intelligent guidance of the system and
thus build effective problem-solving skills. The user has to build his solution to the current problem by
properly putting together programming concepts. Once a concept is completed and accepted by the syntax-
directed editor it is passed to the intelligent component of DISCOVER for automatic diagnosis. In doing
so, DISCOVER attempts to model the steps taken by the user by evaluating his actions and responses.
DISCOVER analyzes the surface code of the completed statement (partial solution code) without much
specific knowledge about the problem to be solved or about how to design and construct an algorithm (i.e.
DISCOVER cannot solve the problem itself). During the guided phase, users select from the Problems
menu the problem to be solved. For each problem, a statement is presented in the Problem Description
window.

hanges that take place in the Memory Space, Input Space or Output Space windows. In addition, each
statement of the program is visually highlighted during the execution to show the user how the control
flows from one statement to another, and how the highlighted statement affects the current state of the
underlying notional machine. Figure 3 shows an example of interacting with the novice user during the

INTELLIGENT SYSTEMS

guided phase. This figure also shows how different programming concepts affect the components of the
visible notional machine during execution in a manner which clearly shows possible causes and effects.

This figure shows the user interaction while attempting to solve the Ending Value Averaging Problem.
In this example, the user has failed to accumulate the numbers read by the program for the averaging
purpose. The system detects this misconception and considers this step as a deviation from the solution
path, and hence decides to interfere by guiding the user toward the expected step. For more detail regarding
the diagnosis process, see (Ramadhan, 1997).

Much like Bridge, DISCOVER relies on a pre-stored reference solution (the ideal student model) for a
given problem and applies various heuristics and pattern matching techniques to match the solution code
provided by the novice with the reference solution in order to spot errors and misconceptions. However,
like GREATERP and GIL, DISCOVER is a model-tracing based system, capable of interactively analyzing
partial solution code and providing immediate feedback on failure. The system explicitly guides the novice
in the process of putting together programming concepts to solve the given problem. DISCOVER monitors
the novices actions, not on a symbol-by-symbol basis as it is done in GREATERP, but on a complete
statement-by-statement basis. As long as each statement represents a correct goal on a solution path,
DISCOVER continues guiding the novice towards the final goal, reasoning about the goals already satisfied
and hinting at the goals that still remain to be satisfied.

Unlike GREATERP and GIL, however, DISCOVER (1) utilizes goals and plans (not a production
system) to represent the domain expertise, (2) does not keep an account, at least currently, of common error
patterns (the buggy model), and (3) supports an ability to give delayed feedback by increasing the grain size
of automatic debugging to a complete programming statement (not just a single symbol or token) and an
ability to do limited backtracking by giving the user some chance to delete previously entered code and
restart. See (Ramadhan, 1997) for more description on how DISCOVER represents the reference solution
and how it implements the diagnosis process. In the sections to follow, we present a more detailed
discussion on various design issues incorporated in active program diagnosis systems along with
suggestions for improving their engineering. As mentioned earlier, this discussion is presented in the
context of the system DISCOVER.

 171

Figure 3 : A message from the intelligent component

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 172

3.2.5 A Summarized Com

he four systems included in the in-event analysis category.
An o

3.

Table 1: Comparative analysis

Systems

parative Analysis

This section provides a short analysis of t
bjective and comparative evaluation of learning environments requires a set of standards to measure

the effectiveness of the systems. To compare the features of these systems reviewed above, we use the
following three design principles as criteria for our analysis:
1. Systems should help the users in avoiding learning a mass of detailed syntax of the programming

language being explored.
2. Systems should assist the users in exploring the programming experience interactively through

supporting various immediacy features. Users should become active learners: forming their own
hypotheses, exploring their own questions, and drawing their own conclusions.
Systems should assist the users in problem-solving through supporting automatic diagnosis with
flexible immediate feedback on individual errors.

Table 1 shows the correspondence between the criteria established above and the four systems surveyed in
the previous subsections.

Criteria 1 Criteria 2 Criteria 3

L isp Tutor Fair Excellent Good
Bridge Exc ellent Good Fair

GIL Fair Ex cellent Good
DIS COVER Exc ellent Excellent Good

egarding the first cr th th being d, It has been claimed

that
R iterion, namely e scope of e language explore

simplicity is among the most important characteristics that a programming language intended for
novices should have (du Boulay et al, 1981). Three types of simplicity have been proposed: functional,
logical and syntactic simplicity.

The language should be kept functionally simple by giving it small set of basic instructions that are
easy to understand; it should be kept logically simple by giving it instructions that are suited to the
problems of interest to the novices, so that they can tackle and solve these problems by short and simple
programs; and it should be kept syntactically simple, i.e. the rules for writing instructions should be uniform
and have well chosen names. The names of the basic instructions are important as novices tend to make
inferences about the language from these names. Examples of these names are LOAD and STORE
instructions used in the assembler language that have real world connotations. Both the Lisp Tutor and GIL
require the users to have a good command of the Lisp language. Because of high abstraction involved in the
syntax and semantics of the Lisp commands, constructs, and functions, users are faced with greater mental
overhead when learning to program using the Lisp language.

DISCOVER and Bridge use a pseudo-code like language which puts more emphasis on programming
concepts and less emphasis on detailed syntax and abstract data types and constructs. Regarding the pseudo-
code language, it has been noted that comprehension of programs depend both on the language used and on
the task for which the language is used (du Boulay et al, 1981). Thus, even if the underlying algorithms are
identical, creating the internal representation from one language may be more difficult than creating that
representation from another language. In addition, it has been reported that the reason why it may be less
difficult to create internal representations using pseudo-code language could be that it lessens the
'translation distance' from the documentation format to the program code.

On the second Criterion, namely the scope of the interaction, DISCOVER, GIL and the Lisp Tutor
provide highly interactive environments. All these three systems implement program diagnosis using
model-tracing methodology, by which they monitor the actions of the user as he moves along the solution

INTELLIGENT SYSTEMS

 173

the third criterion, namely flexibility of the immediate feedback, Bridge falls behind the
other

4. Model-Tracing Based Diagnosis

Model-tracing, used in the Lisp Tutor and GIL, simply expresses the fact that the novice user is made
to fol

 one of the rules in the ideal user
mode

 short, the main features of model-tracing based diagnosis and tutoring are the following:
• shows an

• of checking low-level syntax of the

• that it responds to every step (e.g. a single Lisp symbol) the user

Through this approach to automatic diagnosis and tutoring, a model-tracing system can (1) diagnose

very

path, automatically analyze partial solutions for semantic errors and misconceptions, and offer guidance
whenever he deviates from a correct solution path. Bridge is not as interactive as it should be. The system
has no capability of actively reasoning about the novice user while he develops the solution. As it was
mentioned in section 3.2.3, the user builds his solution in a passive-like mode. When the user requests
automatic debugging of his solution, the system steps through the code and presents the user with its
feedback. An interesting extension to the system would be to make it capable of explicitly guiding the
novice in the process of selecting programming plans to go with the goals and organizing these plans in a
required order.

Finally, on
 three systems, as shown in table 1. The system has no capability of actively reasoning about the

novice user while developing the solution, and hence the feedback is not immediate. DISCOVER, GIL and
the Lisp Tutor do support immediate feedback on errors. However, the grain size of automatic diagnosis in
DISCOVER is not confined to a single language token or command, as in GIL and the Lisp Tutor, but to a
complete statement and expression. This feature gives the user some opportunity for self-correction and
provides a larger context for tutorial instruction; hence its feedback is considered to be more flexible.

low the system’s model quite closely. A model-tracing based system analyzes each and every step of
the user’s solution to determine whether it is on a correct path toward a solution or indicates a
misconception. In the Lisp Tutor and GIL, the user’s step is analyzed by comparing it with the rules
currently considered by the system, which represent the ideal user model.

If the step taken by the user is one that can be produced by executing
l, the rule is applied and the user is considered to be moving on a correct solution path. In this case,

the system remains silent in the background and permits the user to continue. Alternatively, if the user’s
step cannot be produced by the ideal model, the system considers its buggy model, which represents general
patterns of errors. Misconceptions are flagged and diagnosed when the user’s step is produced by one of
the rules of the buggy model. Here the system interrupts and offers advice associated with the buggy rule.
In this way, the system understands each step the user takes to build his program. It is this combined use of
the ideal and buggy models, together called the generic model, which defines the model-tracing
methodology: the system traces out the path currently taken by the user through the generic model and
insists that the user stay on a correct path.

In
The system constantly monitors partial steps taken by the user and intervenes whenever he
evidence for a misconception by deviating from a solution path.
The interface in these systems tries to eliminate the problem
language being learned (e.g. via the use of structure editors), and thus reduces the mental overhead
associated with problem-solving.
The interface is highly active in
provides.

specific errors and misconceptions, and provide clear advice and explanation within proper and
immediate context, (2) explicitly guide the user in the process of organizing different programming
concepts and statements, and (3) simplify the engineering of automatic diagnosis by preventing multiple
bugs and errors.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 174

Anderson’s (1990) work on model-tracing and immediate feedback has strongly argued that these
advantages make it worthwhile to incorporate this approach in the design of intelligent diagnosis and
tutoring systems. His well documented empirical evaluations of the effectiveness of model-tracing and
immediate feedback in procedural domain indicate that users learn procedures more quickly than
conventional tutoring when provided with a model-tracing based environment. Students can more easily
utilize feedback and explanations when the system, the Lisp Tutor, supports the capability of automatically
tracing, analyzing and reasoning about their partial solution steps that led to the error. Anderson has also
shown that such a tutoring strategy can prevent long episodes of counter-productive floundering by
interactively trapping errors and correcting them as they show up in their proper context during the
performance of a task. Similar results have also been reported by Reiser (1992) on his model-tracing,
interactive, graphical Lisp tutoring system GIL.

4.1 Critiquing Model-Tracing

Despite the achievement of the model-tracing based methodology to intelligent diagnosis, the
approach suffers several drawbacks and shortcomings. First, by restricting the user to a symbol-by-symbol
based top-to-bottom coding order, model-tracing hinders the opportunity for experimentation that might
lead to a clearer understanding of the problem and thereby does not allow the users to explore and discover
new strategies nor does it allow them to detect and correct their own errors and misconceptions. The main
driving force behind model-tracing based systems is the detection of deviations from the ideal user model.
These systems reject any other correct approach to solving a problem if it differs from the path currently
followed by the system (Nwana, 1991; Wegner, 1987).

Second, the success of model-tracing based systems depends heavily on the extent of their model-
tracing knowledge, which includes the number of correct rules in the ideal user model and the number of
the mal-rules in the buggy user model (Wegner, 1987). For example, the production system of the Lisp
Tutor currently contains more than 1200 rules, more than half of which are mal-rules (Anderson, 1990).
Production systems, despite their many advantages, impose several computational problems when utilized
to support model-tracing based diagnosis and tutoring, especially of large problems, see section 4.3.2.

Third, the important programming activity of debugging is taken away from the user since model-
tracing based systems, in principle, do not permit floundering (Nwana, 1991; Wegner, 1987). As a
consequence, such systems may weaken the user’s personal motivation and sense of discovery. To address
these issues, we have designed a prototype system called DISCOVER. The system uses a different
implementation of model-tracing, supports an improved engineering of model-tracing based diagnosis, and
provides a slightly more flexible style of tutorial interaction (e.g. than the Lisp Tutor) while preserving
close ties to the underlying cognitive modeling of the model-tracing based diagnosis. Before moving on, it
is very important to clarify points that have to do with the terminology used to describe DISCOVER’s
approach to automatic diagnosis, intelligent tutoring and knowledge representation.

4.1.1 What Goals and Plans in DISCOVER Stand for

There has been a great deal of work with programming ‘plans’. This includes formal definition (Rich,
1986), empirical investigation (Soloway, 1984), and implementation in AI systems (Johnson, 1990). The
plan notation has been developed to characterize aspects of language independent knowledge (information)
about programming and to characterize language dependent knowledge used by novices and experts to
implement programming problems (Bonar, 1992).

In this paper, we focus on plans as a tool for coding and matching syntactic templates that correspond
to the low-level syntactic code objects in the DISCOVER’s language. This implies that plans here are
language dependent. Moreover, the plans presented and used in this paper reflect only the actual
implementation of the code provided by novices, and not the possible implementation of the underlying
knowledge of novices. The plans used in this research are thus neither (1) characterized to be the plans that
were derived from a psychological theory of programming plans that was developed at Yale, or the plans

INTELLIGENT SYSTEMS

 175

that were developed at MIT for the automatic programming project (Rich, 1986), nor (2) characterized to
have any sort of structures in them.

Concerning the ‘goals,’ Johnson (1990) points out that goals are the principal requirements that must
be satisfied if a solution is to meet the problem specification. These goals are used to represent the
intentions of the programmer. A goal statement consists of a name of a type of goal followed by arguments.
In short, Johnson argues that goals describe what the programs must do, while plans describe how these
programs are supposed to do it. In this paper, the term ‘goal’ is used to indicate the programming concept
that the user is expected to select while solving a programming problem. So for example, when we say that
the next goal is to initialize cell NUM, what we mean is that the user is expected to select a PUT concept
from the menu to store a value in cell NUM. In this paper, goals are used as a planning tool for enabling
novices to break down the problem in smaller steps, and each corresponds to the concept in a single
program statement. In short, goals are mapped to programming concepts, which in turn are mapped to
single statements. Whereas in the original goal-and-plan literature, goals are mapped to plans, which are
mapped to structures, which in turn are mapped to multiple statements, or possibly single statements.

4.1.2 Is DISCOVER an Intelligent Diagnosis and Tutoring System?

Instead of using a production system to perform automatic diagnosis and tutoring, DISCOVER uses a
reference solution to trace all the possible solution paths needed to guide the tutoring process. The reference
solution is represented in terms of a Proust-like goal-and-plan tree, except (1) that it includes explicit
relationships to constrain user steps on a solution path, and thus allows DISCOVER to preserve strong ties
with the model-tracing paradigm, and (2) it is encoded procedurally. In the current implementation, the
reference solutions (goal-and-plan trees) that guide automatic diagnosis in DISCOVER are generated by
hand, and manually coded as a set of procedures, where a procedure represents a goal or subgoal, which in
turn calls other procedures that represent the plans. In short, at present there is no explicit representation of
knowledge in the system.

It could be argued that this approach neither makes DISCOVER a knowledge-based system nor an
intelligent debugging system, and hence a better term to characterize DISCOVER would be ‘an automatic
diagnosis system’. While we agree with the first criticism, we argue that DISCOVER is more than an
automatic diagnosis system. Since the system currently has no student model and good courseware, we do
not claim that it is a complete ITS. The plans in the reference tree have provision for associating a feedback
message with user behavior. The system through these hand-coded explanations is capable of generating
highly specific tutorial-like messages, and thus simulating some of the functionality of an ITS. By
supporting that, DISCOVER is more than just a diagnosis system.

4.1.3 Production Systems and Model-Tracing

In this paper, we argue that a production system is not the most efficient way to represent the domain
expertise needed to implement model-tracing. Model-tracing requires the system to be capable of
interactively tracing all the possible paths that a user might decide to follow. To accomplish this, a
production system needs to follow several branches simultaneously, and thus keep several rules active at
one time. This is true even when a model-tracing system, such as the Lisp Tutor, is only capable of
handling a very small grain size of modeling (e.g. single Lisp symbol). In this paper, we argue that for a
model-tracing system to be able to handle larger grain sizes of diagnosis (e.g. a complete program
statement), the computational cost associated with time and space becomes too high. It is important to note
the context for the discussion that follows. The critique is of production rules as used in model-tracing
systems like the Lisp Tutor. It is not a critique of production systems in general. In short, the discussion
that follows does not attempt to devalue the modular and expressive nature of production systems, but the
way these systems are used to handle model-tracing in the domain of computer programming.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 176

4.2 DISCOVER Approach to Model-Tracing

Like the Lisp Tutor and GIL, DISCOVER analyzes each and every step of the user’s solution to
determine whether it is on a correct path toward a solution or indicates a misconception. However, the
grain size of automatic diagnosis in DISCOVER is not confined to a single language token or command,
but to a complete statement and expression. This feature gives the user some opportunity for self-correction
and provides a larger context for tutorial instruction.

To consider a simple example, suppose the user is expected to compute the average by generating
‘PUT total/count IN average’ statement in DISCOVER language. DISCOVER will not diagnose individual
parameters and tokens that make up this expression and will wait until the user submits the completed
statement as his current step by hitting the return key. Even if the user selects an entirely different concept
than the one expected by the system, for example ‘READ’ instead of ‘PUT’ in this case, the system will
immediately recognize the bad selection but will not flag an error and thus give the user some opportunity
for self-correction.

In DISCOVER, the user’s step is analyzed by comparing it with the goals and plans of the reference
solution, and not rules. If the step taken by the user is the one that can be matched with one of the plans
(e.g. with the syntactic templates of plans) that are currently considered by the system, the plan is applied
(e.g. the plan’s template is matched with the code object in the user’s statement) and the user is considered
to be moving on a correct solution path. In this case, the system permits him to continue. Alternatively, if
the user’s step cannot be matched with any of the plans currently considered by the system, the system
interrupts and offers a feedback message that attempts to explain the misconception in relation to its current
context.

In short, DISCOVER relies on its explicit planning mechanism (discussed in the next section) to trace
the user’s planning and design decisions during problem-solving. As each complete statement in the user’s
program is entered, DISCOVER checks to see if the user is following a correct design path. Incorrect paths
are pruned as soon as they are detected and the user is allowed to try again. If the user cannot determine
how to proceed, DISCOVER can assist him and if necessary can provide the next correct step.

4.3 Improving the Engineering of Model-Tracing

Several alternative design principles can be proposed to tackle some of the pitfalls associated with the
model-tracing approach, as it is implemented in the Lisp Tutor and GIL, while preserving close ties to the
underlying cognitive modeling on which it is based. One approach would be to support the following
features and capabilities:
1. Increasing the grain size of automatic analysis and tutoring to handle a complete expression and

statement, rather than a single token, and thus delaying the feedback until the whole statement is
submitted will give the user some flexibility for self-correction of errors. This approach will also
provide the system a larger context for automatic diagnosis. This larger context in turn will enable the
system to support a more flexible mode of tutorial interaction.

2. Supporting an explicit planning (though low level) mechanism through which the information about the
user’s planning and design actions are provided to the system naturally and voluntarily using a menu
during all stages of the problem-solving process and not only in response to the Lisp Tutor like
interventionist dialogue, which occurs at the last stage of the diagnosis process (e.g. when the system
fails to determine the user’s planning decisions) will not only provide the user with an opportunity to
decompose the problem into smaller steps, but will also simplify the computational cost involved in the
automatic diagnosis process.

3. Representing the ideal model using some other knowledge representation formalism that is more
practical in terms of implementation and less expensive in terms of cost associated with time and space
than the production system currently used in the Lisp Tutor and GIL.

INTELLIGENT SYSTEMS

 177

4.3.1 Explicit Planning Mechanism

To model the problem-solving process, DISCOVER utilizes an explicit planning mechanism.
Through this mechanism, DISCOVER, like Bridge and GIL, explicitly requires the novice user to select
programming concepts from a menu. These selections externalize and represent the user’s design actions.
In this way, the information about the user’s overall planning decisions is provided to the system by the user
naturally while solving a problem. In other words, the information about the user’s goals (e.g.
programming concepts to be selected in this case) needed to monitor his progress on a solution path is
provided nonintrusively as an integrated part of problem-solving.

The novice is presented with a menu of programming concepts that represent high-level goals. The
novice solves the problem by selecting these concepts and putting them together in their proper positions.
Selecting a READ IN concept, for example, indicates to the system that the novice’s current goal is
probably to get a value or an input from the user. Through this mechanism, the system always gets the
information needed to trace the novice’s actions in building the program.

This approach greatly simplifies the problems associated with the automatic diagnosis of the solution.
The system does not need to establish goals (programming concepts) because the novice spells them out for
it. Thus, the time spent by the system in diagnosing the errors could be certainly reduced, since the
uncertainty in what path the novice would take is greatly minimized. The system compares the concept
selected by the novice, which represents his current goal, with the one expected by the system (considered
in the reference solution) and generates feedback without relying on a bug catalog.

This mechanism, however, does not eliminate the plan-recognition problem. The representation of
DISCOVER’s reference solution resembles the goal-and-plan tree of Spohrer (1985). For each goal, there
is number of plans that may be applied to implement and satisfy that goal. Although the novice tells the
system what goal he wants to pursue (i.e. what concept he wants to select), the system still needs to
recognize the plans (i.e. code objects) used by the novice to properly implement the selected goal.

4.3.2 Plan-Based Model-Tracing

A frequently used strategy in representing domain knowledge is to use a set of problem solving rules.
Each rule contains a description of a particular problem situation and a step to take in that situation,
basically an action-oriented approach (Clancy, 1987). A combination of these rules makes up what is
known to be the production system. A production based system traces a user’s solution by matching each
partial step provided by the user against the conditions of the rules in its problem solving model. GIL and
Lisp Tutor are the classic examples of programming tutoring systems that follow this approach.

Production systems, despite their advantages, are not the most efficient way (e.g. in terms of
computational costs associated with time and space (Anderson, 1990) to implement model-tracing
(discussed in the next section). These systems have to consider a very large number of rules at any point
during diagnosis process to be able to trace all possible next steps that the novice might follow. Moreover,
to cope with the problem of nondeterminism, these systems have to be used nondeterministically (i.e. more
than one rule active at once) to be able to trace multiple paths before disambiguating information is
encountered.

The inability of these production systems to easily handle a larger grain size of modeling, for example
a complete programming expression or statement (see next section), while supporting model-tracing,
greatly contributes to their weaknesses. Theoretically, there is no reason why a production system cannot
handle larger grain sizes of modeling. In practice though, this would require a large increase in the number
of rules, as will be shown shortly. In fact, it is for this reason that the systems based on such representation
force a particular interpretation of the novice’s behavior on the novice (e.g. single-symbol based tutoring),
rather than waiting until the novice generates enough of the solution step (e.g. complete statement), which
in turn will enable the system to establish an adequate context for dealing with ambiguity. Therefore, to
increase the grain size of tutoring, a model-tracing system needs to depart somehow from using production
systems as its driving force during the process of automatic diagnosis and tutoring.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 178

Implementing a production system also has high computational cost both in terms of space and time.
Problems tend to become more costly as they become larger even if they involve the same underlying
knowledge. This is because the working memory of the production system tends to increase, as does the
nondeterminism. In terms of time, a production based tutoring system becomes very slow when trying to
simulate the user dynamically and interactively in order to trace and guide him.

Running the production system through an off-line compiler would solve the computational cost
associated with time, but would increase the computational cost associated with space. Because when the
system is run ahead of time to produce the trace tree, it is necessary to follow every branch at an or-node so
that later the system can trace the user down any possible branch. This requires exhaustively searching the
trace tree for possible alternatives in the user solution, and also results in very large structures needed to
store the trace tree. Additionally, it is also an onerous task to develop complete production systems that
also include a good set of buggy rules to model possible misconceptions and errors (Nwana, 1991).

DISCOVER uses a different approach to implementing a model-tracing based tutoring. Instead of
developing a complete production system with all the necessary mal-rules in it, DISCOVER uses a
reference solution to trace all the possible solution paths needed to guide the diagnosis process. Currently,
the system has no knowledge of what bugs and misconceptions are likely to occur in the novice program.
The system relies on its explicit planning mechanism to trace the user’s high-level goals and utilizes pattern
matching and heuristics to trace the user’s plan-oriented actions. Through this approach, DISCOVER
detects and diagnoses very specific bugs when they arise in their immediate and proper context.

The reference solution is represented in terms of a Proust-like goal-and-plan tree, except that it
includes explicit relationships to constrain user steps on a solution path, and thus allows DISCOVER to
preserve strong ties with the model-tracing paradigm. In addition, plans in the reference tree also have
provision for associating a feedback message with user behavior. Goals represent different programming
concepts which the novice needs to have in his solution and the plans represent the correct implementation
of goals. Thus plans are used to indicate the textual structure that the user code must have and the goal-
subgoal structure of the code. Variability as well as constraints over the user solution are represented using
AND/OR clauses in the reference tree. It is this representation coupled with pattern matching which makes
DISCOVER capable of supporting more variability (e.g. than the Lisp Tutor and GIL) and larger grain sizes
of modeling. For a detailed description of the representation mentioned here, see (Ramadhan, 1997).

4.3.3 Rules Versus Plans

It is not easy for a rule-based system to allow the type of variability supported by DISCOVER, while
at the same time handling active diagnosis and tutoring. The following discussion illustrates this point.
Consider the following function call in the case of the Lisp Tutor (+ (cdr list1) (cdr list2)), where the
function cdr is used to return the remaining part of the list after stripping the first argument, e.g. applying
the function cdr to the list (‘a b c d’) will return the list (‘b c d’). Since the ordering of arguments to the
function + is not important, the system allows the user to code the two arguments in either order. Thus,
when the goal is set to code the first argument, there are two candidate productions, each of which codes
cdr. When the user types cdr, the context is not large enough to make it possible for the system to determine
which argument the user is coding. This ambiguity could be resolved only in the next cycle when the next
symbol is typed. However, to postpone resolution for a cycle, it would be necessary for the production
system to follow both possible branches. That requires matching the user’s next step to the subgoal of each
production, and thus increasing the amount of pattern matching required.

Moreover, even this simple variability that concerns the typing of the arguments in any order, as long
as the ordering is unimportant, becomes very costly when the number of arguments grows larger than two.
Currently, the Lisp Tutor easily handles different unimportant orderings of arguments as long as the number
of arguments is not greater than two. This requires only two productions to keep track of the two
arguments, one checks for the ‘list1’, in our simple example, and the other for the ‘list2’. When the number
of arguments is 4, for example, the number of different orderings becomes 4! (24 orderings). This implies

INTELLIGENT SYSTEMS

 179

that the production system either has to have four productions, each with 4 matching components, or 24
different productions. In both cases, 24 different matchings are required. In addition, these productions
have to follow at least 4 branches at the same time to be able to resolve the ambiguity, which in turn
increases the computational cost involved.

Had we decided to represent DISCOVER’s knowledge using a rule-based approach, the same
problems would have made the attempt to handle larger grain sizes of modeling very difficult to implement.
In the case of DISCOVER, only 4 plans are required to check the unimportant ordering of 4 different
arguments. For example, consider the following statement PUT (num1*4) + (num2*3) + (num3*7) +
(num4*8) IN newnum. Since the entire statement is submitted at once, the first plan verifies the existence
of the argument (num1*4) in the statement, regardless of its order. This is done by making sure that the
pattern (num1*4) does exist in the statement. The second plan verifies the existence of the pattern
(num2*3), and so on. Since these patterns are hand coded in the reference solution, only one matching
operation is required per plan. For example, the following plan (expressed in POP-11 programming
language)

MEMBER(“ (num3*7)”, statement)
would be enough to make sure that the user has indeed included this argument in his statement. This would
have been impossible had DISCOVER allowed the user to enter only one single symbol or token at a time.
Of course, the production system could incorporate this approach in its implementation (e.g. requires
expected patterns to be hand coded in its rules to reduce the amount of matching components). But then,
this would make the system become more or less DISCOVER-like, hand coded reference solution, which in
turn would make the system lose its ability to synthesize the solution and simulate the user.

4.4 Immediacy of Feedback

To develop the novice’s programming skill, a program diagnosis system must be able to trace the
novice’s actions and determine when he diverges from a correct solution path so that it can offer
suggestions or criticism on individual steps, rather than being limited to advice on complete solution step.
By following the novice’s actions while trying to put programming concepts together, the system can
respond to the underlying misconceptions that motivated the behavior rather being restricted to comments
concerning the surface form of the whole solution. This requires, besides model-tracing, support for
immediate feedback on both failure and success.

4.4.1 The Need for Flexible Interaction

The principal features of the Lisp Tutor’s interaction style can be summarized as follows:

• The system insists that the novice stay on a correct solution path and immediately flags errors. The

system reacts to every symbol the novice types and provides immediate feedback as soon as the
novice deviates from the solution path.

• The system does not allow the novice to backtrack and delete previously entered code.
• The system uses a menu-based dialogue to track planning decisions and behaviors when it fails to

trace them nonintrusively.
• The system forces the novice to enter the code in a left-to-right, top-to-bottom manner. This implies

that the next piece of code or the next step on a solution path is decided by the system and not by the
novice. Occasionally though, the user is given some freedom in dealing with arguments whose
ordering is not important, or even with functions which have the same underlying functionality, such
as cons, append and list.

While each of these features has pedagogical justification and close ties to the underlying cognitive

modeling, there is no reason why some of these features, especially the first two, cannot be improved to
support a more flexible style of tutorial interaction while preserving a close relationship to the model-

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 180

tracing approach. Some amount of self-detection and correction of errors may lead to a clearer
understanding of the problem and a better explanation of the programming process by the novice and
certainly is something that users using the Lisp Tutor have said they wanted (Anderson, 1990). Providing
immediate feedback upon every single Lisp symbol is also extremely undesirable and restricting in
situations where not enough context has been established for the novice to understand why his solution is
wrong.

4.4.2 The Interaction Style of DISCOVER

DISCOVER supports a more flexible style of tutorial interaction that is based on improving the first
two features of the Lisp Tutor’s interaction style mentioned above. This is achieved by increasing the grain
size of automatic tutoring and by providing novices with some opportunity for self-correction of errors.
The principal features of DISCOVER’s interaction style can be summarized as follows:
• The system reacts to every complete programming statement and expression, not to a single symbol,

and provides immediate feedback as soon as the novice wanders off the correct solution path.
• The system supports limited backtracking by allowing novices to delete previously entered code (e.g.

parts of the statement currently being completed).
• The system supports an explicit planning mechanism to trace the intentions and high-level goals of the

novices. Novices externalize their planning decisions by choosing form a menu of programming
concepts rather than through a dialogue.

• The system requires the novice to enter the code in a top-to-bottom manner.

By increasing the grain size of tutoring to a complete statement and expression, DISCOVER provides

novices with some opportunity for self-correction and also a larger context for instruction. Since the grain
size of tutoring is confined to a single symbol, the Lisp Tutor finds it difficult to explain why a novice’s
action is wrong at the point which the misconception is first manifested because there is not enough context.

To consider an example, compare a novice who provides (append x y) where (cons x y) is better for
appending the contents of the two lists x and y in a single list returned by the system. It would become
easier to explain the choice after the complete statement has been provided rather than after ‘(append’ has
been entered. In the case of DISCOVER, this problem does not arise. If the novice provides, for example,
‘READ 5 IN num’ where ‘PUT 5 IN num’ is more appropriate, the system explains the choice after the
complete statement has been typed in rather than immediately after ‘READ’ has been selected.

This allows DISCOVER to generate more appropriate explanations and advice that can derive
mapping, generalization and coordination that exist between similar programming concepts. For example,
in the case of ‘READ’ instead of ‘PUT’, DISCOVER informs the novice that it would be better in normal
cases where getting an input from the user is not required to use the ‘PUT’ concept for assigning values to
cells. This explanation would not become possible to generate if DISCOVER could not wait to see whether
the novice indeed wanted to read 5 and not some other values in cell ‘num’.

DISCOVER also supports limited backtracking by allowing novices to delete previously entered
parameters and operators of the statement currently being completed. Unfortunately, at present the
backtracking is confined to the current statement only. The novice can also cancel the selection of a
concept and select a new one that best represents his next goal. For example, if the novice selects the
‘READ’ concept where ‘WHILE’ is expected and realizes after completing the selected concept, but before
submitting it, that he made an error, he can backspace over the statement. The system would ignore the
selection without considering it a deviation from a solution path. This gives the novice some opportunity
for self-correction. In fact, there are cases in which the novice may be confused about what goals and plans
are appropriate in the current situation and would realize only if he is given a little more time to self-correct.
This is not possible with the classical version of the Lisp Tutor.

INTELLIGENT SYSTEMS

 181

5. Conclusion

In this paper we have presented an overview of the field of intelligent program diagnosis and critically
compared work accomplished on four closely related active diagnosis systems while emphasizing such
issues as the representation techniques used to capture the domain knowledge required for the diagnosis,
ability to handle the diagnosis of partial code segments of the solutions, features of the user interfaces, and
methodologies used in conducting the diagnosis process. Several design considerations to improve the
engineering of active approach to intelligent diagnosis were proposed. In particular, we have argued in this
paper that the model-tracing based active approach to automatic program diagnosis has several advantages
when compared to other approaches. These advantages include (1) the ability for diagnosing very specific
errors and providing specific feedback within proper context, (2) the ability to analyze partial solution steps
as they are generated by the users and hence reason about the problem solving process, and (3) the ability to
minimize the impact of multiple bugs on the diagnosis process. Despite these advantages, we have also
argued that this approach to automatic diagnosis tends to be very directive and that some alternative design
decisions need to be incorporated into this approach to make it support a more flexible style of user
interaction.

Alternatives proposed include (1) supporting an ability to give delayed feedback by increasing the
grain size of diagnosis to a complete program statement, not just a single word or token, (2) allowing the
users to do limited backtracking by giving them some chance to delete previously entered code and restart,
and (3) departing from production system when representing the expertise needed for automatic diagnosis.
These alternative design issues were successfully incorporated in the implementation of DISCOVER.

With the rapid growth in the Web development and distance learning technology, we hope to develop
a Web version of DISCOVER using some Internet programming languages such as Java to introduce
programming concepts and problem-solving to novice users all over the world. The language supported by
the system can also vary to cover other languages used in some popular applications such as the scripting
language used in the spreadsheets calculations, SQL language used in the database applications, and the
HTML language used in the Web applications.

6. References

ADAM, A. and LAURENT, J. 1980. LAURA: A System to Debug Student Programs. Journal of Artificial Intelligence,
15: 75-122.

ANDERSON, J. 1982. Acquisition of Cognitive Skill. Psychological Review, 89: 369-6.
ANDERSON, J. 1990. Cognitive Modeling and Intelligent Tutoring. Artificial Intelligence and Learning Environments,

Clancy and Soloway (Eds.), MIT/Elsevier.
ANJANEYULU, K. and ANDERSON, J. 1992. The Advantages of Data Flow Diagrams for Beginning Programming,

In Frasson, Gauthier and McCalla (Eds.), Intelligent Tutoring Systems, Springer-Verlag.
BAECKER, R. and DIGIANO, C. 1997. Software Visualization for Debugging. ACM Communications, Vol. 40: 45-

54.
BAECKER R. 1990. Human Factors and Typography for More Readable Programs, Addison-Wesley, Reading, Mass.,

1990.
BARR, A. 1976. The Computer as a Computer Laboratory. International Journal of Man-Machine Studies, 8: 567-596.
BOEHM-DAVIS, D. 1987. Program design languages: how much detail they should include, International Journal of

Man-Machine Studies, 27: 337-347.
BONAR, G. 1992. Intelligent Tutoring with Intermediate Representations. Proceedings of the Second Conference on

Intelligent Tutoring Systems (ITS-92), Canada.
BROWN, M. 1992. ZEUS: A system for algorithm animation and multi-view editing, Proceedings of the 1991 IEEE

Workshop on Visual Languages, Japan, pp. 4-9.
CLANCY, W. 1987. Qualitative Student Models. Annual Review of Computer Science, 1: 381-450.
CURTIS, B. 1988. Experimental evaluation of software documentation formats. Journal of systems and software, 9: 1-

41.

HAIDER ALI RAMADHAN and KHALIL SHIHAB

 182

DAVIES, S. 1992. Cognitive Models of Programming and the Design of Support for Learning. Proceedings of the
NATO Workshop on Cognitive Models and Intelligent Environments for Learning Programming, Italy.

DU BOULAY, J.B.H., O'SHEA, T. and MONK, J. 1981. The Black Box Inside the Glass Box: Presenting Computing
Concepts to Novices. International Journal of Man-Machine Studies, 14: 237-249.

DYCK, J. 1987. Learning and comprehension of Basic and natural language computer programming by novices, Ph.D
thesis, University of California, Santa Barbara, USA.

EISENSTADT M. 1993. Software Visualization as a pedagogical tool, Instructional Science, Vol. 21: 335-364.
GILMORE, D. and GREEN, T. 1988. Programming Plans and Programming Expertise. Journal of Experimental

Psychology, 40A: 69-92.
GOLDSEIN, I. 1974. Understanding Simple Picture Programs. PhD Thesis, MIT.
HASHMER, T. 1983. An Empirically-Based Debugging System for Novice Programmers. PhD Thesis, The Opend

University, UK.
JOHNSON, W. 1990. Understanding and Debugging Novice Programs. Artificial Intelligence and Learning

Environments, Clancey and Soloway (Eds.), MIT/Elsevier.
LAWRENCE, A. Empirically evaluating the use of animations to teach algorithms. IEEE Symposium on Visual

Languages, St. Louis.
LIEBERMAN, H. 1984. Seeing what your programs are doing. International Journal of Man-Machine Studies, 21:

311-331.
LUKEY, F. 1980. Understanding and Debugging Programs. International Journal of Man-Machine Studies, 12: 42-71.
MAYER, R. 1981. The Psychology of How Novices Learn Computer Programming. Computing Surveys, 13: 121-141.
MAYER, R. 1985. Learning in complex domains: a cognitive analysis of computer programming, in Psychology of

learning and motivation, Bower (Ed.), 19: 89-130, Academic Press, USA.
MILLER, J. 1982. Intelligent Tutoring for Programming Tasks. Technical Report, Texas Instruments.
MUKHERJEA, S. and STASKO, J. 1994. Toward visual debugging: integrating algorithm animation capabilities within

a source-level debugger, ACM TOCHI, Vol. 1: No. 3 (Sept. 1994), Pages 215-244.
MURRAY, W. 1986. Automatic Program Debugging for Intelligent Tutoring Systems. PhD Thesis, Texas University,

Austin, 1986.
NWANA, H. 1991. An Approach to Developing Intelligent Tutors. Proceedings of the 6th International PEG

Conference on Knowledge Based Environments for Teaching and Learning, Italy.
PRICE, B. A. 1993. Principled taxonomy of software visualization. Journal of Visual Languages and Compuling, 4(3):

211-266.
RAMADHAN, H. 1992a. Intelligent vs. Unintelligent Programming Systems for Novices. Proceedings of the IEEE

15th International Conference on Computer Applications and Systems, USA.
RAMADHAN, H and DU BOULAY, B. 1992b. Programming Environments for Novices. du Boulay and Lemut

(Eds.), Cognitive Models and Intelligent Environments for Learning programming, Spring Verlag.
RAMADHAN, H. 1997. Improving the Engineering of Model-Tracing Based Approach to Intelligent Program

Diagnosis and Tutoring, IEE Journal of Software Engineering, 144(3): 149-161.
RAMADHAN, H. 1997. Model tracing based approach to intelligent program diagnosis. SQU Journal of Science &

Technology, 2: 65-76.
RAMADHAN, H. 1999a. Active vs. Passive Systems for Automatic Program Diagnosis, Proceedings of International

Conference on HCI (HCI’99), pp 345-351, Munich, Germany.
RAMADHAN, H. 1999b. Improving the Engineering of Immediate Feedback for Model-Tracing Based Program

Diagnosis, Proceedings of International Conference on HCI (HCI’99), pp 352-358, Munich, Germany.
RAMADHAN, H. 2000a. DISCOVER: An intelligent system for discovery programming , Journal of Cybernetics &

Systems, Vol. 31: 87-114.
RAMADHAN, H., BRUSILOVSKY, P., and DEEK, F. 2000b. Incorporating Software Visualization in the Design of

Intelligent Diagnosis Systems for User Programming, Journal of Artificial Intelligence Review, 01: 1-24.
REISER, B. 1992. Making Process Visible: Scaffolding Learning with Reasoning-Congruent Representations.

Proceedings of the 2nd Conference on Intelligent Tutoring Systems (ITS ’92), Montreal.
REPENNING, A. 1996. Domain-Oriented Design Environments: Making Learning a Part of Life, Communications of

the ACM, 9: 56-72.
RICH, E. 1986. Characterization of plan-based program analysis approaches to debugging. Personal Communication,

April, 1986.
RUTH, G. 1973. Analysis of Algortihm Implementations. Technical Report, MIT Project MAC TR 130, MIT.
SHAPIRO, E. 1983. Algortihmic Program Debugging. MIT Press, MIT.

INTELLIGENT SYSTEMS

SOLOWAY, E. 1984. Empirical Studies of Programming Knowledge. IEEE Transactions on Software Engineering,
September, 1984.

STASKO J. and PATTERSON C. 1992. Understanding and Characterizing Software Visualization Systems,
Proceedings of the 1992 IEEE Workshop on Visual Languages, USA, pp. 3-10.

SPOHRER, J. 1985. A Goal/plan Analysis of Buggy Pascal Programs. Human Computer Interaction, 1(2): 163:207.
VESSEY, I. 1985. Expertise in debugging computer programs: a process analysis. International Journal of Man-

Machine Studies, 23: 459-494.
WEGNER, E. 1987. Artificial Intelligence and Tutoring Systems, Morgan Kaufmann Publishers, USA.

Received 22 September 1999
Accepted 3 July 2000

 183

	Intelligent Systems for Active Program Diagnosis
	
	Haider Ali Ramadhan and Khalil Shihab
	
	CONTENTS

	1. Introduction: Automatic Program Debugging 158
	
	6. References 181

	Introduction : Automatic Program Debugging
	
	
	Conclusion

	6. References

