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ABSTRACT: The subject of thermo-electroelasticity involves many complications due to the multiple ways in which 

the mechanical, thermal and electric fields can interact, some of these involving non-linearities. In extended 

thermodynamics, an additional difficulty arises due to the requirement of finiteness of the speed of propagation of the 

thermal disturbances. This implies, as may be observed in the extensive literature on the subject, a re-visiting of the 

basic postulates of thermodynamics, ultimately leading to the desired generalization. There are only a few nonlinear 

models dealing with this subject. In order to consider general nonlinear models, it is necessary to study linear ones first, 

as they represent most of the basic features of the studied phenomena. This is particularly true when the problem is 

tackled numerically through iteration methods, in which case the starting field equations are linear. 

Here we study a one-dimensional system of equations of thermo-electroelasticity in extended thermodynamics 

and in the quasi-electrostatic regime. The nonlinear equations are given for reference only. The mixed character, 

parabolic-hyperbolic, of the associated linear system is established through the study of the characteristic curves. Two 

speeds of wave propagation are given in evidence, one for the usual coupled thermoelastic wave, and the other for a 

second sound. Parabolicity is due to the quasi-static distribution of the electric field. An example concerning the half-

space is treated numerically by the Cranck-Nicolson method. The curves presented clearly illustrate the propagation of 

two types of waves, the usual coupled thermoelastic wave, and a faster wave generated by the second sound. It is 

hoped that the present study will clarify the basic features of the solution, as a prelude to tackling more sample, 

nonlinear equations. 
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الديناميكا الحرارية الموسعة إطار الكهروحرارية في نظرية المرونةل نموذج أحادي البعد  

 *غالب ؤادف حمدأو  أبو دينه ابرص صطفىم
 

الميكانيكي، الحراري : بين المجالاتيتضمن موضوع المرونة الحرارية الكهربائية العديد من الصعوبات بسبب الطرق المتعددة للتفاعل  :صالملخ

في الديناميكا الحرارية الموسعة، تنشأ صعوبة إضافية نظرا لمحدودية سرعة انتشار الاضطرابات . والكهربائي، وبعضها يتضمن ظواهر غير خطية

زيارة للمفاهيم الأساسية للديناميكا الحرارية،  واسعة النطاق حول هذا الموضوع، إعادةال وهذا يعني، كما يمكن أيضا  ملاحظته في المرجعيات. الحرارية

ومن أجل النظر في النماذج غير  من النماذج غير الخطية التي تتناول هذا الموضوع، يوجد عدد قليل فقط . مما يؤدي في نهاية المطاف إلى التعميم المطلوب

ويصدق ذلك بشكل خاص عندما تعالج . السمات الأساسية للظواهر المدروسةالخطية العامة، فمن الضروري دراسة النماذج الخطية أولا لأنها تمثل معظم 

 .المشكلة عدديا من خلال الطرق التكرارية، وفي هذه الحالة تكون معادلات خطوة البداية هى المعادلات الخطية

وتعطَى  .ستاتيكيارية الموسعة وفي النظام شبه الكهرووهنا ندرس نظاما أحادي البعُد لمعادلات نظرية المرونة الحرارية الكهربائية في الديناميكا الحر

 بواسطة من خلال النظام الخطي المرتبط "ناقصي –مكافئ " النظام المختلط الناتج من المعادلات التفاضلية يتم دراسةو .الخطية كمرجع فقط غيرالمعادلات 

ويرجع ذلك إلى  .لما يسُمى بالصوت الثاني والآخرى المقترنةواحدة للموجة المرنة الحرارية  :انتشار الموجة المنحنيات المميزة، وتوضع سرعتان في

وتوضح المنحنيات . نيكلسن -، ويتم التعامل مع مثال يتعلق بنصف فراغ رقميا بواسطة طريقة كرانك للمجال الكهربائي التوزيع شبه الكهروستاتيكي

ويؤمل أن . الموجة المرنة الحرارية المعتادة المقترنة، وموجة سريعة تم إنشاؤها بواسطة الصوت الثاني :شار نوعين من الموجاتالمعروضة بوضوح انت

 .تمهيدا لمعالجة المعادلات غير الخطية الأكثر وفرة ذه الدراسة السمات الأساسية للحلتوضح ه

 

 .نيكلسن -كرانك طريقة  -المنحنيات المميزة  –النظرية الخطية  –الديناميكا الحرارية الموسعة  -المرونة الكهربائية  :مفتاحيةالكلمات ال
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1.  Introduction 

he theory of thermo-electroelasticity in generalized thermodynamics may be of interest in the study of electrical 

disturbances which accompany the propagation of heat waves at low temperature (Rybalko et al. [1], Pashitskii 

and Ryabchenko [2], and Pashitskii et al. [3]). Dost [4] treats the case of thermoelastic dielectrics within the nonlinear 

theory. Ersoy [5, 6] considers electrically and thermally conducting magnetothermoelastic solids. His theory is based 

on the introduction of the electric current and the heat flux vectors as independent state variables. Montanaro [7] 

develops a model of nonlinear thermoelasticity in extended thermodynamics for electrically polarizable and finitely 

deformable, heat conducting elastic continua. Ghaleb [8] presents a fully nonlinear model for electrically polarizable, 

heat conducting elastic continuous media in the quasi-electrostatic approximation. Kuang [9] considers wave 

propagation in pyroelectrics and other materials with complex structure in extended thermodynamics within the 

linearized theory. Montanaro [10] treats the case of electrical continuous media within Green and Naghdi 

thermoelasticity theory. Chandrasekharaiah [11] develops a model for piezoelectrics with the heat flux as an 

independent state variable. Singh [12] investigates thermo-piezoelectric solids in extended thermodynamics using 

Green-Lindsay and Lord-Shulman theories. Zhou and Yang [13] investigate the propagation of plane waves in 

pyroelectric materials in the presence of viscous effects. Solutions of concrete problems are almost inexistant  in the 

literature. Our attention was drawn lately to a recent publication concerning two-dimensional electro-magneto 

thermoelastic wave propagation in an electrically conducting cylinder, within the frame of extended thermodynamics 

with one relaxation time [14]. 

All of the above references illustrate a multitude of approaches, conceived to remove the paradox of infinite 

propagation of thermal disturbances and to incorporate the electric interactions. Most of them rely on rigorous 

thermodynamics, meaning that the basic laws of thermodynamics are respected, as well as the celebrated Clausius-

Duhem inequality expressing the non-negativeness of the dissipation function. However, some of these approaches still 

need more solid experimental verification. A common ground to all of them is the need for an enrichment of the basic 

thermodynamical variables describing the electro-thermomechanical system. An interesting contribution discussing the 

difficulties facing the different models of extended thermodynamics may be found in [15]. 

For dielectric materials, which are the subject of the present investigation, we use the same approach as described 

in [7] and [8]. The basic set of thermodynamical parameters is enriched by adjoining the heat flow vector to the 

classical set involving strain and the electric field. That was shown to be consistent with the basic principles of 

thermodynamics in earlier work by Coleman et al. [16]. A new feature of the present work is the introduction of initial 

and boundary conditions for the heat flow vector, independently of those for temperature. 

In what follows, we study a one-dimensional system of linear equations of thermo-electroelasticity in extended 

thermodynamics and in the quasi-electrostatic regime. Thus, any magnetic contributions are disregarded from the 

outset. The original nonlinear equations are given for reference only. It is hoped that the obtained results will be helpful 

in clarifying the basic features of the solution, thus laying the background for the numerical treatment the nonlinear 

equations using an iterative method. Two speeds of wave propagation are put in evidence, one for the usual coupled 

thermoelastic wave, and the other for second sound. A numerical example is treated for the half-space. All the 

unknown functions are zeroed at a sufficiently large distance from the boundary of the half-space, as a result of which 

reflected waves are expected to arise. In order to avoid them, the computational grid includes somewhat restricted time 

values. As noted above, future work is under progress to study nonlinear wave propagation in pyroelectric materials in 

two dimensions. 

2.  The nonlinear equations 

The following equations are a restriction to one spatial dimension of a more general model of electro-

thermoelasticity based on the introduction of the heat flow vector as an additional state variable in the free energy 

density of the medium and are introduced in [8]. The equations are in dimensionless form, the velocity of elastic waves 

being taken as unity:  
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Here, U  denotes the mechanical displacement component,   is the absolute temperature as measured from a 

reference temperature 0 , Q  is the heat flow vector and E  is the electric field component. These four relations 

represent respectively: (i) the equation of electrostatics expressing the vanishing of the divergence of the electric 

T 
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induction, after integration and setting the integration constant equal to zero; (ii) the equation of motion; (iii) the 

equation of heat conduction and (iv) the Vernotte-Cattaneo law which replaces the usual Fourier law for heat 

conduction. The coefficient A  in eq.(3) is the multiplicative factor of the squared heat flow vector in the expression 

for the free energy of the system. The other coefficients appearing in the equations denote material constants having 

obvious meaning. In particular, the coefficients   and   express the dependence of the elastic moduli on strain. Many 

of these coefficients will drop out in the following sections, when considerations are restricted to the linear equations. 

It may be noticed that the form of the Vernotte-Cattaneo law used in (4) and proposed in [8] does not yield the classical 

Fourier law for heat conduction in the limit of small relaxation times, and hence it cannot be used under such a 

restrictive condition. 

Considering wave propagation in a half-space with initial uniform reference temperature 0 , the characteristic 

length 0L , time 0T  and heat flow vector 0Q  used to deduce the dimensionless equations are taken as follows:  
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where   is the material density, C  is the specific heat, K  is the thermal conductivity and V  is a characteristic 

velocity of propagation of the elastic waves. Tentatively, for common solids the different coefficients take on the 

following values in the SU  system of units:  
3 4 3 2 1 1 1 1 5 1

0 =10 , =10 , =10 , = 237 , =10 .K kgm C Jkg K K Wm K V ms        

In what follows we consider a problem for the half-space <<0 x . The formulation necessitates a boundary 

condition for the new variable of state Q , to be considered side by side with the boundary condition for temperature. 

3.  On the character of the system of linear equations 

Following [8] and using a well-known formalism based on the introduction of the heat flow vector as an 

additional state variable, one gets the linear equations of electro-thermoelasticity in extended thermodynamics. In the 

one-dimensional case, after dimension analysis to reduce the speed of the classical coupled thermoelastic waves to 

unity, the governing linear equations may be written as a system of first-order partial differential equations in six 

unknown functions },,,,,{ RPEQU   of the form:  
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The two unknown functions P  and R  are defined from the last two equations of the above system. The 

parameters  ,  are two positive small parameters introduced artificially for convenience. Subsequently, they will be 

made to decrease during the computations, starting from some initial values. The function f  represents the external 

forces of non-electric origin acting on the medium, while r  denotes the volume heat supply. The other parameters 

appearing in the equations are dimensionless quantities involving the physical parameters of the medium. 

Using standard analysis, it may be shown that all the characteristics of the considered linear system of equations 

are real, and do not depend on the two constants  ,  introduced earlier. Four of these characteristics yield the speeds 

of wave propagation, for the usual coupled thermoelastic wave and for second sound:  

                                                   .
1

=1,= 3,41,2


 vv  

These are the same as for the purely thermoelastic case, showing that in this linear approximation, the electric 

field does not influence the velocities of wave propagation. The remaining two velocities are equal to zero. 
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Thus the equations under consideration form a system of partial differential equations of the first order of mixed, 

parabolic-hyperbolic type. It is believed that the parabolic element is due to the considered quasi-electrostatic 

approximation. 

4.  Numerical scheme 

In what follows, we use the finite difference Crank-Nicholson method [17] to solve the initial set of linear 

equations (5)-(10). For the computational work, consider finite intervals on the x  and t  axes. The domain in the 

),( tx  plane is discretized by a grid with step length hx =  and time step .= kt  

Let NM ,  be natural numbers, and the coordinates of the mesh points are: 
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2. For first order space derivative  
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3. For source term  
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These expressions will be used to approximate the partial derivatives of all the unknown functions 

QPUE ,,,,   and R  in the proposed system. The above replacement changes this system into a linear algebraic 

system for the unknowns 
m

n

m

n

m

n

m

n

m

n QPUE ,,,,   and 
m

nR , and then the new system can be solved easily. Also, the 

local truncation error of this scheme is of the order ),( 2 khO   and it is well known that the Crank-Nicholson scheme 

is unconditionally stable when used to solve hyperbolic partial differential equations of the first order [17]. 

The system of equations is solved under the following initial-boundary conditions:  
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and for the following values of the material and geometrical constants  

 .=0,=0.0012,=,= 43231 QfffERf    

The unknowns P  and R  are not independent, but defined through the other unknowns. Thus, the constants 10 , pp  

and 0r  cannot be arbitrary. Simple calculations show that  
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All variables were zeroed at finalx , on the basis that waves have not reached this point at time finalt  and therefore no 

reflected waves will appear during this period of time. The maximal value for time is 35finalt , while the values of the 
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spatial coordinate x  were allowed to run up to the value =10 350final finalx t , in order to be able to view the fast 

wave travelling with velocity 3.16
1


. 

The solutions for the mechanical displacement, temperature, heat flow vector and electric field are represented as 

3-D surfaces on Figures 1-4, in which one clearly notices two separate propagating waves generated by the boundary 

regimes. The computations were repeated many times for different values of   and  , and it was noted that all the 

figures remained unchanged as these two constants were made smaller by many orders of magnitude, thus justifying 

their introduction for convenience.  

   

 
 

Figure 1. Mechanical displacement component U. 

   

 

 
 

Figure 2. Temperature  . 
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Figure 3. Heat flow vector component Q. 

   

 

 
 

Figure 4. Electric field component E. 

 

5.  Conclusion 

A model of linear thermo-electroelasticity in extended thermodynamics and in the quasi-electrostatic 

approximation has been investigated using the method of characteristics, and then numerically for given initial and 

boundary conditions. The main ingredient in this model is a Cattaneo-type evolution equation, which effectively 

requires the heat flow vector to be considered as an additional state function, independent of temperature. This requires 

the introduction of initial and boundary conditions for the heat flow vector, independently of those for temperature, a 

fact that represents a fundamental difference from the thermoelasticity problems solved within the frame of different 

theories of extended thermodynamics. For these, the additions of temporal derivatives occur in the heat equation itself. 

Moreover, the problems are usually solved by Laplace transform, with the elimination of the heat flow vector in favor 

of the other unknowns of the problem, hence not requiring additional limiting conditions for this variable. The 

presently used boundary condition for the heat flow vector is a Robin thermal condition which may be controlled 
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experimentally. Other types of boundary conditions for the heat flow vector may equally well be used for the 

computations. 

Dimension analysis and a study of the characteristic curves has revealed the mixed “parabolic-hyperbolic” 

character of the system of linear equations of electro-thermoelasticity. The parabolic element is due to the used quasi-

electrostatic approximation. Moreover, within the linear theory, the electric field does not influence the speeds of 

propagation of the waves. This will certainly not be true anymore in the nonlinear case. A numerical application clearly 

shows two types of waves: The usual, coupled thermoelastic wave and the second sound, propagating in the medium. 

It is hoped that the presented results, together with the future extension to include nonlinear interactions, will help 

investigating interesting problems in thermo-electroelasticity.  
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