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ABSTRACT: In this paper we consider a system of delay differential equations as a model for the dynamics of tumor-
immune system interaction. We carry out a stability analysis of the proposed model. In particular, we show that the
system can have up to two steady states: the tumor free steady state, which always exist, and the tumor persistent
steady state, which exists only when the relative rate of increase of the tumor cells exceeds the ratio between the

natural proliferation rate and the relative death rate of the effector cells. We also determine an upper bound for the
delay, such that stability is preserved. Numerical simulations of the system under different parameter values are
performed.
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1. Introduction

he immune system (IS) is a very complex one. It is composed of a complex network of different cells which

operate collectively by communicating information through signalling. The duty of these cells is to keep our
system natural, i.e., free of foreign entities. When a foreign entity enters our system, particular immune system cells
raise an alarm and send signals through the network to other immune system cells calling for an attack on the foreign
entity. Once the foreign substance is located and identified as non-self, the immune system plans an attack strategy.
Among the most deadly foreign entities are cancer cells. Cancer cells are difficult to deal with because of their ability
to multiply so fast that the IS cannot keep up. Another property of cancer cells is that they are able to camouflage the
antigens (the substance that triggers the 1S) such that the IS cannot recognise them as foreign cells.

Once cancer cells are identified as foreign, the IS starts an attack to destroy them. The interactions between
tumour cells and the immune system are very complex and require sophisticated models to describe them.
Mathematical models, based on ordinary differential equations, delay differential equations or partial differential
equations, have proven to be useful tools in analysing and understanding the IS-tumor interactions. Several
mathematical models have been suggested to describe the interactions between tumour and immune system [1-9].
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Many of these papers consider the tumor-1S interaction with other factors such as treatment. In this paper, we
consider a mathematical model of IS-tumor interactions based on a system of delay differential equations. The delay is
introduced to reflect the non-instantaneous outcome of the interaction between the immune system cells and the tumor
cells. We carry out a stability analysis of the system and we simulate the system under different parameter values to
explore the different asymptotic behaviors.

Many models that have appeared in the literature are based of the well-known Kuznetsov and Taylor model [1]
which we describe in the next section.

2. Kuznetsov and Taylor model

The Kuznetsov and Taylor mathematical model to describe the tumor-immune system interaction is based on the
following:

1. The growth of tumor cells population T (in the absence of the immune system cells) follows a logistic model:
dT

E =al (1_thot ), (l)
where a is the maximum growth rate, b is the carrying capacity of the biological environment for the tumor cells,
and T, is the total population of unhit T cells, T,, =T +C.

2. The rate of production of the immune system cells E (the effector cells), has two sources: (i) a constant normal
production rate S (in the absence of the tumor cells) and (ii) a production rate caused by the presence of tumor cells.

The magnitude of the second production rate is a function, F(C,T), of the current concentrations of C and T,
where C is the concentration of the complex E —T . The immune system cells E die out at a rate d,.

3. The interaction between the effector cells E and the tumor cells T forming the complexes C=E-T is
described by the following kinetic

k1 k. E+Dr
BHE T
B ks Dg+T

Figure 1. Interaction kinetics between E and T cells.

where the C complex is formed at rate of k; and breaks at three different rates: k , giving E and T unaltered, K,

given E (unaltered) and D, , and K, giving D¢ and T (unaltered), where D, and D are altered T and E cells

which are bound to die.
Kuznetsov and Taylor’s complete model is given by the following set of differential equations

C:j—lf:s+F(C,T)—dlE —k,ET +(k_,+k,)C,

dT

E:aT (1-bT,,)-k,ET +(k ,+k,)C,

(jj—f:klET —(k ,+k,+k,)C,

D¢ _ k,C —d,Dg,

dD

dtT =k,C -d,D;,, ()

where, again, E, T, C, D¢ . D; are the concentrations at the tumor site of the immune system cells (effector cells),
the tumor cells, the effector-tumor cells complex, the inactived effector cells, and the inactived tumor cells,
respectively. The above model was simplified based on the fact that the E —T bond, which is formed at a rate of K,

lasts a relatively short period of time [10] and disassociates giving rise to E and T (no win situation) with a rate K.
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or D, and T (tumor wins) with a rate ks, or D; amd E (E wins) with a rate k,, see Figure 1. The inactivated

effector cells D and inactivated tumor cells D, are bound to die with rates d, and d3, respectively.
dC
In [1], it was claimed that C is approximately constant, that is E ~0, hence C~KET, with
K =k/(k ; +k,+k;). Inaddition, T,,, was approximated by T, , =T ,and F(C,T)=F(E,T).

These assumptions reduce the above system (2) to the following IS-tumor interaction model, in non-dimensional
form,

%—$=S+F(E,T)—mET —dE,
(jj—-lt-:aT (1-bT )—nET, (3)

where the parameters M = KK;, n = Kk,, and d =d, . The function F(E, T) describes the rate at which cytotoxic

effector cells accumulate around the region where the T cells are localized. Based on Kuznetsov and Taylor’s model,
many researchers have derived other models by considering different forms for the function F(E,T) and/or by
adding additional considerations (see [3]-[8], and references therein).

In [1], the authors analyzed model (3) with a Holling Type Il form for F . In non-dimensionl variables, their
model takes the form

dl:g-.}.ﬂ_’uxy —OX,

dt n+y

d

T=ay (- py)-xy. @

Later, in [6], the authors considered Kuznetsov and Taylor’s model (3) with Holling Type | response function
F(E,T) =KET , with and without delay, where the delay was introduced to reflect the delay in the response of the
immune system before proliferating effector cells.

In this work, we consider (3) with a Holling Type | response function F(E,T) = KET with delay introduced
in both equations as described in the next section.

3. A delay model

As in [6], we consider F(E,T) of Holling Type I, but we consider the delay 7 according to the following

biologically possible scenario. We assume that there is delay in both the proliferation of effector cells and in the
disposal of tumor cells. In dimensionless form, the model we consider is

X't)=oc+wx (t —-7)y (t —7)-06X,
y't)=ay(1-8y)-xt-7)yt-1), (5)

where X(t) and y(t) are the nondimensional density at the tumor site of the effector cells and of the tumor cells,

respectively. All parameters in (5) are nonnegative real numbers and are approximated (see [1] and [6]) by:
o =0.1181, w =0.04, 0 =0.3743,

a =1.636, B=2.0x10" (6)

The delay factor in model (5) models the natural delays in both the proliferation of effector cells and in the
disposal of tumor cells. This is biologically meaningful as the IS takes time to react and migrate effector cells to the
tumor site. Also, in the second equation of model (5), it models the delay in completely eradicating the tumor cells as
they will not die immediately upon interacting with effector cells.

Our aim in studying the above model (5) is to investigate the effect, if any, of the time delay, 7, in the disposal
of the tumor cells. We carry out the stability analysis of the equilibrium states of the model (5) and determine
necessary conditions for the local asymptotic stability. Also, we determine an upper bound for the delay parameter 7
such that stability is preserved. Numerical simulations of the model are performed to investigate the asymptotic
behavior of the system.

4. Steady states

The steady states, (X, Y), of (5) are the solutions of the nonlinear homogeneous system
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o +WXYy —oX =0,

ay(1-py)-xy =0. )
From the second equation of (7) we have either Y =0 or X = a(1— fY). If y =0 , then from the first equation of
(7) we have X = of S, giving the tumor free steady state E; = (a10,0) . If Y #0, then X = (1— Y) and from
the first equation of (7) we have the quadratic equation for Y :

afwy’ —a (B +W)y+ad—o =0
whose discriminant A is
A = a?(f5 —w)? +dafiow > 0.

Then depending on the parameter values, there may exist up to two more steady states E, (X, y;) and E,(X,,Y,).
where

_—a(B5-w)+/A y _a(Bs+w)—A

. 2w ' 20N ®
X2=_a(ﬂ5;ﬁv)_ﬂ, y2=a(ﬂ52;%+@ ©

The existence of E, and E, as biologically meaningful (i.e., with positive coordinates) depends on the
parameters. If, as assumed, all parameters are positive, then it is clear that X, <O because JA >l a(fo—w)|. So

E, does not exist as biologically meaningful. As for E,, since VA >| (5 —W) |, we have x, > 0. It remains to
check when y, > 0. Calculations reveal that y, > 0 if and only if o/ & < . Therefore, if & <o, we have only
the tumor free steady state E; =(0/0,0) and if o/6 <a, we have two steady states E, =(o/0,0) and

E, = (X, Y,) . where X, and y, are given by (8).

The value of & relative to « is very important as it determines how many steady states the system can
asymptotically assume. The value o/ & measures the rate of increase of the density of the effector cells and «
measures the rate of increase of the tumor cells. Thus if (o/0) > «a , this biologically means that the effector cells will
take over the tumor cells, which as a result, are bound to die in the long run. On the other hand, if (o/J) < « , the
tumor cells will always exist.

Now, we turn to the stability analysis of the steady states E0 and E,.

5. Stability analysis

We know that a steady state is locally asymptotically stable if all the eigenvalues of the Jacobian matrix of the
system at the steady state have negative real parts.

Before we continue, we recall an important stability criterion known the Mikhailov criterion [9]:

Mikhailov criterion: Let P(S) and Q(S) be two polynomials with deg(P )=N and deg(Q )< N . If the

quasi-polynomial R(s) =P (s)+Q(s)e ™ has no roots on the imaginary axis, then all roots of R(S) have negative

real parts if and only if the argument of R(js), j =+/—1, increasesby N 7 /2 as S — 4.
For the system (5) under consideration, the Jacobian matrix at a steady state (X, Yy) is given by

—5+wye wxe
J = _ R (20)
-ye a—2apy —xe "
The characteristic polynomial is
W (2) =P (4)+Q (1), (L)
where
P(A) =22 +(5+A)A+6A, A =2afy —a, (11)
Q(A) = (X —wyA) + A(X —wy). 12)

22



NUMERICAL SIMULATIONS OF A DELAY MODEL

Stability of the tumor-free steady state E0
For the steady state E, = (015,0) , the characteristic polynomial reduces to
W (1) =(A+0)(A-a+oclde™). (13)

We have the following proposition.
Proposition 1

(i) If >0l , then E0 is an unstable saddle point.
(i) If @ <ol , then there exists a 7, > 0 such that E0 is locally asymptotically stable for 7 € [O, TO) and unstable
for T > 7, where

. = Cos (ad/0)
NP

Proof. From (14), we see that one eigenvalue is 4 =—0 <0. Next, we need to analyze the roots of the quasi-
polynomial

(14)

R(A)=A-a+clde™. (15)
It is clear that if a>0old, R(A) in (5.7) has a positive root, since the functions f(1)=a—A1 and
g(A) = oloe™ satisfy f(0)=a>g(0)=0/5 and f(1)—> - and g(1) > 0, as A —>c0. This proves
().
For (ii), assume that & < of & . According the Mikhailov criterion, if R(A) has no imaginary roots, then all its
roots have negative real parts if and only if

[Arg (RG] = w12
Let A=js,seR", j= J=1.Then (16) becomes

R(js)=[-a+oldcos(s7)]+ j[s —olsin(s7)]. (16)

Let @ = Arg(R(js)). Thenas S—> 00, we have
cos(8) >0 and  sin(@) —> 1. 17)
This implies that [im Arg(R(js)) = 42 . We have R(0) = —a+0a/d >0 (for « <old)and Arg(R(0)) =0.

S—»00

Thus

[ArgR(iNLS = w2
which implies, according the Mikhailov criterion, that all roots of R(A) have negative real parts, provided that
R(A) has no imaginary roots. Now let us see under what condition R(A) has imaginary roots. If R(js)=0 for
some S€ R™, then

a—olocos(st) =0, (18)

s—olosin(st) =0. (19)
Squaring and adding (19) and (20) gives

s’+a’=0%6* =>s=c?15"-a’.

Conversely, if s=s, =+ o?/5% —a? , the first value of 7, say 7, that satisfies both (19) and (20) is

1 4 cos (ad /o)
7, =—cos (ad/ o) = ————xo=.
’ So No? 182 —a?

This implies that for 7 <7, R(A) has no imaginary roots, and E0 is locally asymptotically stable. This completes

(20)

the proof of Proposition 1. |

Stability of the steady state E, = (X, ;)

For E, = (X, Y,) . from equations (11)-(13), the characteristic polynomial takes the form
W (1) =P(2)+Q (e, (21)
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where

P(A)=A+(0+A)A+5A, QA1) =(C,—-0A)+A(x,—wy,), (22)
where

A=2a0py, -, C, = A+ —wy, A
Before we proceed, we state and prove the following Lemma about the positivity of C0 , which will be used later.
Lemma2 C, = A+ X —wy,A= ylx/X >0.
Proof. From the expression of A=2af}, —a and X =a(l-/py,), we can writt A as A=afy,—X.
Substituting this into C, we get
Co = YilaBo —w(apy, —x)]-

Now, from the expressions of X, and y, (Eq. (8)), we have

_a(B5+w) VA —a(B5-w)+vA _aps-~/A

a - X
= 2w 2w w
It follows that
Co = Valaps —W(epy; —x)] = y;/A >0.
We have the following proposition for the stability of E, . O

Proposition 3. Assume that Co > 20A. The steady state E, =(X,,Y,) is locally asymptotically stable, for
7€[0,7,) , where 7 isgiven by (24).
Proof. Let A = |S,S€ R". We have

W (js) =P (js)+Q(js)e™™ =X (s)+]jY (s) (23)
where
X () = (=8 +5A) + (6%, —wy,A)cos(st) +s (X, —wy,)sin(s7), (24)
Y (s)=s(0+A)+s(x,—wy,)cos(sz)—(Sx, —wy,A)sin(s7). (25)
If &= Arg(W (]s)), it can be easily verified that
cos(0) = X—(S) - -1, sin(@) = & — 0. (26)
W (j @) |7 W (j @) |7
This implies that Jim Arg(W (js)) = z.For s=0, we have
W (0) = ox, —-wy,A+5A =C, >0, 27

which implies that Arg(W (0)) = 0. Hence, [Al’g(\N(JS))E:OOO =7, and E, would be locally asymptotically
stable, provided that W (A1) has no roots on the imaginary axis.

Now, we check for pure imaginary roots of W (). If there exists S€ R™ such that W (js) =0, then
X(s)=Y(s)=0,or

ay, Cos(s7) +say, sin(sz) = (s* —5A), (28)
sa,, CoS(s7) —ay, Sin(s7) = —s (0 +A), (29)
where
a, = 5)(1 _WylA’ Ay = X — WY,
Squaring both sides of (29) and (30) and adding, we get
s*+as’+a, =0, (30)
where
a, =5 +A —al,  a,= () -ah=-Cy(C,—2R)

The solutions of (31) are formally written as
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[
2
It is clear that a sufficient condition for the right hand side of (32) to be positive is @, <0, i.e., Cy > 20A, since

C, > 0. In this case, the positive solution of (32) is

S RENR .
0= > (32)
Therefore, if CO > 20A, then W (A1) has only two pure imaginary roots + jS0 , Where S is given by (33). With §,
as in (33), the first positive value of 7 suchthat X (s) =0 and Y(s) =0 is
— 1 1[(311—812(5+A))S§—3115Aj
To = COS 2 2.2 '
ail +50a12

SO
Therefore, if Cy > 20A, then for 7 <7, W (A) has no imaginary roots, and E, is locally asymptotically stable. O

(339)

6. Numerical simulations

In this section, we perform a humber of numerical simulations to reveal the dynamics of system (5). We consider
the two cases (i) & < oS where only E, exists, and (ii) & > o/S where both E; and E, exist.

Case 1: For the case o <old, we simulate the system with the values of oz =0.1 and o =0.3. The other
parameters are fixed as in (6). In this case, the only equilibrium state is E, = (o /¢, 0) = (0.315522,0) which was
proved to be asymptotically stable up to an upper bound for the delay 7 (see Proposition 1 and Eq. (21)). The
calculated upper bounds according to (21) are 7, = 4.17134 and 7, = 3.22237 for « = 0.1 and 0.3, respectively.
We remark that these upper bounds are valid only when the solutions X (t) and y (t) remain non-negative. In fact,

simulations reveal that the solutions become negative for much smaller values of 7, 7 ~0.05. The outcomes of the
simulations for this case are displayed in Figures 2, 4, and 5. In Figure 2, we display the phase portraits of system (5)
for « =0.1 and ¢ =0.3 and 7 =0 and 7 =0.05, each with 5 differential initial conditions. They all confirm the

stability of E,, as the solutions X(t) and Yy(t) asymptotically tend to E,,. In Figures 4 and 5, the solutions of system
(5) are displayed with & = 0.1 and o = 0.3, respectively, each with z = 0.05. Both figures confirm the convergence
of the solutions to the steady state E ;.

It is important to mention that for = > 0.05, under certain initial conditions, the solutions become negative at
some time t~ at which the system becomes biologically invalid.

Case 2: For the case o > ol & , we fix all parameters as in (6) and simulate the system with different delay values 7 .
In this case, we have two steady states, E, =(o/06,0)=(0.315522,0) which is unstable and
E =(x,Y;) =(1.61138,7.52522) which was proven to be locally asymptotically stable for up to 7 < 7,. From

Eq. (34), 7, is calculated to be 7, =0.0880838. To confirm these results, we simulated the system for

7=0,0.01,0.05,0.08,0.09 and various initial conditions. The results are displayed in Figures 6 and 7, where Figure
6 displays the phase portraits for z =0,0.01,0.05,0.08,0.09 and Figure 7 displays the solutions of the system for
7=0.05,0.08,0.09 and initial condition X (0)=1,y(0)=30. It is to be noted that for

7=0,0.01,0.05,0.08 < 7, the solutions converge to E,, confirming the local asymptotic stability of E,. However,
in the case 7 =0.9 > 7, we notice the formation of the closed orbit around E,. This also can be seen in the right-
most plot in Figure 7, where the effector and tumor cells oscillate around E,. This confirms the existence of a

bifurcation with respect to the parameter 7 as it crosses 7, = 0.0880838.

It should be also mentioned that for certain initial conditions the solutions of the system become negative in finite
time.
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Figure 2. Phase portraits of system (5) with different initial conditions (X (0),y (0)) = (0,1), (1,5), (2,10), (4,15)
and (5,20): (@) «=0.1and 7 =0, (b) «=0.1 and 7z =0.05. The equilibrium pointis E = (0.315522,0).

tumor cells

Figure 3. Phase portraits of system (5) with different initial conditions (x (0),y (0)) = (0,1), (1,5), (2,10), (4,15)
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and (5,20): (@) «=0.3, 7 =0, (b) @ =0.3 and 7 = 0.05. The equilibrium pointis E, = (0.315522,0).
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a=0.1, 1=0,05, x(0) = 0,, y(0) = 1,

a=0.1, 1=0.05, x(0) = 1., y(0) = 5.

L I L L L L L EL L L L L L L L L | L L L R
----- () 1

—(t)
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1 | 1 IR N 1 1 1 | | T | Il
5 10 15 20 25 30 5 10 15 20 25 30
Time Time
a=0.1, =005, x(0) = 2., y(0) = 10. a=0.1, =005, x(0) = 4., y(0) = 15.
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k \..
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ob M T
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Figure 4. Solutions of system (5) with & = 0.1 and z = 0.05 and different initial conditions: (a)
x(0)=0,y(0)=1;(b) x(0) =1 y(0)=5;(c) x(0) =2, y(0)=10; (d) x (0) =4, y (0) =15.
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Figure 5. Solutions of system (5) with & =0.3 and z =0.05
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and different initial conditions: (a)
x(0)=0,y(0)=1;(b) x(0) =1, y(0)=5;(c) x(0) =2, y(0) =10; (d) x (0) = 4, y (0) =15.
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a=1,638, =0
80 T T T LA B T
a +,
60 - J
2 e
3
5 40+ N J
E ~
2 e .
LY
N \
2 . i
. A
:.J: ‘I
- ’
Ot A L A R AR R TR R
0 1 2 3 4 5 6
effector cells
a=1.636, 1=0,08
80 L L T
C ",
60 - J
2 e
I o
. 40t 1
]
E
2
20+ .’\\ _
o
)
. o
Lt gt o
U ________ P?‘F'h\.ri—'n"|"|"|"I"; [ |
0 1 2 3 4 5 6
effector cells

Figure 6. Solutions of system (5) with different initial conditions: (a) ¢ =o' /6 =0.1636 and 7 = 0;
(b) a=0c/6=0.1636 and 7 =0.05;(c) « =oc/6=0.1636 and 7 =0.08; (d) o = o/ 5 =0.1636

and 7 =0.09.
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Figure 7. Solutions of system (5) with initial conditions: X (0) =1,y (0)=30: () a=0/6=0.1636 and
7=0.05;(0) a=0c/56=0.1636 and z =0.08;(c) a = o/ 5 =0.1636 and = = 0.09.

7. Conclusion

A mathematical model for the interaction between the immune system cells and tumor cells was proposed and
studied. The model was derived from Kuznetsov and Taylor’s model [1] by introducing a delay term which reflects the
slow response of the immune system cells to the presence of tumor cells. The importance in studying this delay model
is in determining the effect of the delay term on the dynamics of the system. A stability analysis of the equilibrium
states was carried out. Numerical simulations of the system were done for a number of different initial conditions. The
simulation results confirm the theoretical stability results. Numerically, it was also observed that as the delay term 7

crosses the upper bound 7, the steady state E, loses its stability, resulting in the formation of closed orbits around

E,. This is an important result in the sense that as the IS gets weaker (slower response, i.e., larger delay), the size of
the tumor cells persists in an oscillating fashion (closed orbits).
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