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ABSTRACT: We propose a generalized theory to construct higher order Griinwald type approximations for fractional
derivatives. We use this generalization to simplify the proofs of orders for existing approximation forms for the
fractional derivative. We also construct a set of higher order Griinwald type approximations for fractional derivatives
in terms of a general real sequence and its generating function. From this, a second order approximation with shift is
shown to be useful in approximating steady state problems and time dependent fractional diffusion problems. Stability
and convergence for a Crank-Nicolson type scheme for this second order approximation are analyzed and are
supported by numerical results.
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1. Introduction

ractional calculus has a history that goes back to L’Hospital, Leibniz and Euler [1,2]. A historical account of early

works on fractional calculus can be found, for example, in [3]. Fractional integral and fractional derivative are
extensions of the integer order integrals and derivatives to a real or complex order. Various definitions of fractional
derivatives have been proposed in the past, among which the Riemann-Liouville, Grinwald-Letnikov and Caputo
derivative are common and established. Each definition characterizes certain properties of the integer order derivatives.
Recently, fractional calculus found its way into the application domain in science and engineering. The field of
application includes, but is not limited to, oscillation phenomena [4], visco-elasticity [5], control theory [6] and
transport problems [7]. Fractional derivatives are also found to be suitable to describe anomalous transport in an
external field derived from the continuous time random walk [8], resulting in a fractional diffusion equation. The
fractional diffusion equation involves fractional derivative either in time, in space or in both variables.

Fractional derivative is approximated by the Griinwald approximation obtained from the equivalent Grinwald-
Letnikov formula of the Riemann-Liouville fractional derivative. Numerical experience and theoretical justifications
have shown that application of this approximation as it is in the space fractional diffusion equation results in unstable
solutions when explicit, implicit and even when the Crank-Nicolson (CN) type schemes are used [9].
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The latter two schemes are popular for their unconditional stability for classical diffusion equations. This peculiar
phenomenon for the implicit and CN type schemes is corrected and the stability is restored when a shifted form of the
Griinwald approximation is used [9,10].

The Griinwald approximation is known to be of first order with the space discretization size h in the shifted and
non-shifted form and is, therefore, useful only in first order schemes such as explicit Euler (forward) and implicit Euler
(backward) for the fractional diffusion equation.

Since the CN approximation scheme is of second order in time step 7, Tadjeran et al. [11] used extrapolation

improvement for the space discretization to obtain a second order accuracy. Subsequently, second order
approximations for the space fractional derivatives were obtained through some manipulations on the Griinwald
approximation. Nasir et al. [12] obtained a second order accuracy through a non-integer shift in the Griinwald
approximation, displaying super convergence. Convex combinations of various shifts of the shifted Grinwald
approximation were used to obtain higher order approximations in Chinese schools [13, 14, 15, 16, 17], some of which
are unconditionally stable for the space fractional diffusion equation with CN type schemes. Zhao and Deng [18]
extended the concept of super convergence to derive a series of higher order approximations.
Earlier, Lubich [19] obtained some higher order approximations for the fractional derivative without shift for orders up
to 6. Numerical experiments show that these approximations are also unstable for the fractional diffusion equation
when the methods mentioned above are used. Shifted forms of these higher order approximations diminish the order to
one, making them unusable as Chen and Deng [20,21] noted.

In this paper, we construct a new second order Griinwald type approximation which can be used with shifts
without reducing its order. We apply this second order approximation in steady state problems and time dependent
fractional diffusion problems. A CN type scheme is devised for this approximation and a justification for stability and
convergence is given.

The rest of the paper is organized as follows. In Section 2, definitions and notations are introduced. In Section 3,
the main results of generalization are presented. In Section 4, approximations of order one and two with shifts are
constructed. In Section 5 the constructed second order approximation is applied to devise numerical schemes for steady
state and time dependant space fractional diffusion equations. Stability and convergence for the scheme of fractional
diffusion equations are analysed in Section 6. Supporting humerical results are presented in Section 7 and conclusions
are drawn in Section 8.

2. Definitions and notations

Denote by L, (€2),QQ <R, the space of Lebesgue integrable functions: L, (€2) = {f | IQ| f(x)|dx< oo}. Let
f (x) € L (R) and assume that it is sufficiently differentiable so that the following definitions hold. The left and right
Riemann-Liouville fractional derivatives of order & € R are defined respectively as

P S A LR L /)
RLDZ f (x) = dn, 1
R [ Tl &)

and

RLpe _ (DY dY e f(m)
R T e e i, x4 @

where N =[ & | isan integer with N—1< @ <n and I'(-) denotes the Gamma function.
The corresponding left and right Grinwald-Letnikov (GL) fractional derivatives are given respectively by

GLD"‘f(X)—hm—Z( 1 ( Jf(x kh), 3)

GLD”’f(x)—llm—Z( 1 ( jf(x+kh) ©)

[aJ (o +1)
where I —
k) T(a+1-k)k!'

It is known that the Riemann-Liouville and Griinwald-Letnikov definitions are equivalent [22]. Hence, from now
onwards, we denote the left and right fractional derivatives as _, D f (X) and , D f (X) respectively.
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The Fourier transform (FT) and inverse FT of an integrable function f(X)e L () are given by

F(f () () = f () = j_‘:f (x)edx and F(f (n))(X) = j":f (me™dn = f(X) respectively. The FT is
linear: F(of (X)+ £g(x))(n7) = of (m) + B4(n). For afunction f atapoint X+ €Q,B R, the FT is given
by F(f (x+ B))(7) = e f ().

It f(x), Dy f(x) and ,DIf(X)eL(Q), the FTs of the left and right fractional derivatives are given by

F(_.D F00)07) = (im)* £ (1) and F( D2 £ (x))(7) = (=i) f (17) respectively [22].

For a fixed h, the Griinwald approximations for the fractional derivatives in (1) and (2) are obtained by simply
dropping the limit in the GL definitions (3) and (4) as

50 f (x)——Zg(“)f (x —kh) and §“f(x)——Zg(“)f (x +kh)

o
respectively, where g(* = (—1)* (k] :

When T (X) is defined in the intervals [@,Db], it is zero-extended outside the interval to adopt the definitions of
fractional derivatives and their approximations. The sums are restricted to a finite up to N which grows to infinity as

X —a b —x
h—0. often, N is chosen to be N = [T} and N = {T} for the left and right fractional derivatives

respectively, to cover the sum up to the boundary of these domain intervals, where [Y] is the integer part of Y. The

left and right fractional derivatives, in this case, are denoted by ,Dy f(X) and Dy’ f(X) respectively.

The Griunwald approximations are of first order accuracy and display unstable solutions in the approximation of
fractional diffusion equation by implicit and CN type schemes [9]. As a remedy, a shifted form of Grinwald formula
with shift r is used:

N+r

th(X)——Zgé")f(X (k-nh), x>a, ©)
N+r
57 rf(x)-—Zgﬁ“)f(x+(k—r)h) x<b, (6)

where the upper limits of the summations have been adjusted to cover the shift 1.
Meerchaert et al. [9] showed that for a shift I =1, the shifted approximations &, ,, f (X) are also first order

approximations with unconditional stability restored in implicit Euler and CN type schemes for space fractional
diffusion equations.
As for higher order approximations, Nasir et al.[12] derived a second order approximation with a non-integer

shift, r = af2 , displaying super convergence.
Speatz T (¥) = .DF T (x) +O(h?). )

Tian et al. [13] used convex combinations of different shifted Grinwald forms to obtain two second order
approximations:

A8, o T OO+ 4,6, .4 F(x) = DY f(x)+0O(h?) ®)
—-2q a—-2p
wi = 2,2 — T10r 10 l 1
o = 0= and Ay =t for () = (L) (D).

Hao et al. [14] obtained an quasi-compact order 4 approximation.
All the above approximations are based on the shifted Grinwald approximations 5h,1rr' The weights gﬁ“) are
the coefficients of the Taylor series expansion of the power function (1—2z)*.
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Higher order approximations were also obtained earlier by Lubich [19], establishing a connection with the
characteristic polynomials of multistep methods for ordinary differential equations. Specifically, if p(z),o0(z) are

o(Uz)Y
the characteristic polynomial [23] of a multistep method of order P , then (%} gives the weights for the
z

Griinwald type approximation of the same order for the fractional derivative of order ¢ . From the backward
multistep methods, Lubich [19] derived higher order approximations of up to order six in the form

v 1 i
W, (z) = (Zjﬂi (1—2)")“. The generating functions W, (z) given in Table 1 are of order v for 1<v <6.

Table 1. Lubich approximation generating functions.

W, (z) = (1_ Z)a
W, (z) = §—22+£zzj
2
W,(z) = E—3z 322_E23J
3

W, (z) = i—§—4z+322——23+—z4j
W, (z) = 13—7—52+522—Ez3+§z4—125

60 4 5
W, (2) = R P P PR PN,

20 2 4 5 6

3. Generalization of Griinwald approximation

In this section, we generalize the concept of shifted Grunwald approximation to an arbitrary sequence of weights
and analyse its properties. This generalization is then used to construct higher order approximations for fractional
derivatives.

For a sufficiently smooth function f (X) , denote the left Griinwald type operator with shift I and weights W, ,
as

1 o0
K £ 00 = W, £ (x= (k=) ©)
k=0

Definition 1 A sequence {kar} of real numbers is said to approximate the fractional derivative _,D; f(X) at X
with shift 1 in the sense of Grinwald if

LD (x) = lim A L F(X).
Dy F(X) at X

Definition 2 A sequence {kar} of real numbers is said to approximate the fractional derivative

with shift r and order p =1 if
DY (X)) = A

her F () +0O(DP). (10)

We consider the generating function W (z) = Z:J:Okaer of the weights W, . which will play a central role in

constructing approximations.
Remark 1

1. Analogous definitions hold for the right fractional derivative with the same weights W, .. We denote the right

Griinwald approximation as A} _, f(X).
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2. The property (10) is the consistency condition for the Grinwald type approximation operator Ah .r to the
fractional differential operator. This consistency condition tells that the order of approximation is at least one.
3. For convenience, we do not distinguish the sequence of weights W, . and its generating function W (z) in the

above definitions, and in the discussions and results that follow.
The following theorem establishes an equivalent characterization of the generator W (z) for an approximation

of fractional differential operator with order P >1 and shift r .

Theorem 1 Let N—1< @ <n,m be a non-negative integer, f(x) eC™"*(R) and ,D!f(x)eL'(R) for
0<k <m+n+1. Then, the generating function W (z) of a real sequence {kar} approximates the left fractional
differential operator for f (X) with order P and shift r, 1< p <m, if and only if

1 -
G (2)= z_"‘W(e e =1+0(z"). (11)
Moreover, if G, (z) =1+ Zqi a,(r)z', we have for the left fractional derivative

AL L T ()= DY f(x)+hPa (r) DY f(x)+---+O(h™). (12)
Proof. Taking the FT of A} , . f(X) in (9), with the help of linearity, we obtain

F(A . FOO)0) = 2 30, F(F (X (k=)o)

13 —(k-r)ihy £
— 8 f
= Z ()

ER:
-—Q{Zwk,meq)k}(in)“ f)

iwk e (i) £ (n)

= ‘;—w € )in)* f(n) =G, (2)in)" f ()

0

= Ya 0z ) = Yamn'n" f o),

1=0
where we have used Z = i7h . Taking the inverse FT, we have

AL T = Za,(r) D, f(x)h' +O(h™). (13)

Now, (11) holds if and only if a,(r) =1,a,(r) = O for | =12, ---, p—1. Equation (12) holds immediately. O
Remark 2 The equivalent condition (11) for order P approximation in Theorem 1 holds for the right fractional
derivative as well. In fact, the condition on the generating function W (z) for the right fractional derivative is

G (-2)= LW(e e =1+0((-2)")

(-2)*
which is equivalent to (11).
One of the consequences of Theorem 1 is the following consistency condition.

Corollary 1 If the generating function W (z) gives a consistent approximation of the left and right fractional
differential operators, then
W (1) =0, and hence,Zkar =0
k=0
Proof. By Remark 1 and 2, the order P is at least one. When Z#0, the condition (11) becomes

W(e?)e™ =z%(1+0(z")) . Take the limitas Z — 0.
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Using Theorem 1, one can check algebraically the following propositions for the generating function of
approximation operators known previously in [12, 13, 19, 20].
Proposition 1 The approximation given by (7) is of second order.

Proof. The coefficients g,ﬁ“’ have the generating function (1—z)“. Since the shift of the approximation is

1 .
r =« /2, itisenough to check the function G(z) = —aezalz(l—e ). Taylor series expansion gives that
Z

2
a
G(z) =1+ e 2% +0(z*) which confirms the second order. i

Proposition 2 The approximation given by (8) is of second order accuracy.
Proof. Since 5h,+p and 5h,+q have the same generating function (1—z)* with shifts P and Q respectively, check

e

the Taylor series of G(z) = A e”(1-e )" +—2e%(1—e*)” which gives

7 2
2
G(z):1+(—a—+a—p+a—q+ﬁ—ﬂjzz+0(zs). O
8 4 4 24 2

Proposition 3 The Lubich generating functions Wp(Z), p=12,---6, inTable 1 are of order P accurate without
shift. Moreover, if a non-zero shift I is introduced to the approximation, the orders reduce to one.
Proof. When there is no shift (I = 0), Taylor expansion gives W (e™*)/z* =1+0(z") . When r # 0, the order

is determined by e"W (e™*)/z* = (1+0(2))(1+0(z")) =1+0(z), for 1< p <6 reducing the orders to 1. O

4. Construction of higher order approximation

We construct higher order approximation generating functions for fractional derivatives with shifts by the use of
Theorem 1. The importance of Theorem 1 is that the construction process is entirely confined to algebraic manipulation
with the aid of Taylor series expansion.

In this paper, we choose the form

W(2) = (By+ Bz + 2" +++ B,2°)° (14)

for the generators.
Consider the Taylor series expansion

G,(2) = Ziaw (e1)e™ = Ya, ()7 (15)
1=0

For an order [0 approximation, we set the first P coefficients &, (r) to satisfy (11) in Theorem 1. That is, we impose

conditions a,(r)=1,a,(r) =0 for k =1,2,---,p—1.
First and second order shifted Griinwald approximations have been constructed by the above algebraic method

and we have the following.
Theorem 2 The first and second order shifted Griinwald approximations with shift r are given respectively by

W, (z) = (1-2)" and
a 3 r 2r 1 r ‘
W, (2) =B, + B2+ B,2°) =|| =+— |+| -2-=—|z+| =+— |7?] . 16
@)= (B + fz+ B2 ([2 pj( aj (2 pj ] (16
The generating function W, () corresponds to the shifted Grunwald formula &, ., f (X) in (5) and (6) for the

left and right fractional derivatives respectively, and is independent of the shift .
W2,r (Z) gives the second order Griinwald type approximations given by (9) with coefficients W, . obtained from the

Taylor series expansion of W, (Z) .
Note that when there is no shift W, ;(Z) gives the Lubich approximation W, (z) in Table 1.

We denote the Grinwald approximation of order P by Apyi,u (X), P =1,2, for left and right fractional
derivatives respectively.
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The Grinwald weights W, . can be computed by a recurrence formula [24,25].
Lemma 1 Let W(2) = ZTZO,BJ-Zj . where B, €R, a>0 and W(2))" = z::owmzm . Then, the coefficients
w,, satisfy the recurrence form

1 &,
Wy = A5 Wy = D (ila+)-mw,_;B;, m=1 (17)
0 j=1

For the generating function Wzy,(Z) , being the power of a polynomial of degree 2, the upper limit of the

summation in (17) goes up to only min (m,2) =2 for m>2.

5. Applications to fractional differential equations
In this section, we apply the fourth order Grinwald type approximation derived in the previous section to
fractional differential equations.
5.1 Steady state problems
Consider the steady state problem
Dou(x) = f(x), as<x<b, (18)

u@=g¢, ub)=4,

Consider a uniform partition @ = X, < X, <X, <---< X, =b of the problem domain [a,b] with subinterval
sizeh=x_,—%, 1=012, ---,N—1.Problem (18) at X; is approximated by
AG L= +0(h?), i=012, ---,N,
where U, =u(x;) and f, = f(x), 1=012 ---,N.
In order to keep the discrete values U; within the computational domain, we choose the shift I' = 1.
Neglecting the O(h?) remainder term, we get the approximation scheme
AG 0 =1, 1=012 ---N, (19)
where U, are the solutions of (19) and hence the approximation of the exact solution u, for i=12,---,N-1.
Let U =[u,,0,,0,,--+,0y_,,u 1", F=[f,, f,, f,,--, f,]" with the boundary conditions incorporated in
U as u, =¢,(a) and uy = ¢,(b). Then, the matrix formulation of (19) is given by A, ;U =F, where A, isan
(N +1) x(N +1) Toeplitz matrix given by
A ) = {W =1
0, elsewhere,
where Wi_;;
After imposing boundary conditions, we obtain the ready-to-solve second order scheme as
'8‘2,1Lj = 'f _Abuo _ANUN’
where Az'l is the reduced matrix of size (N —1) x (N —1) obtained from A, by deleting the first and last rows

A A

and columns, U, F are obtained from U, F respectively by deleting their first and last boundary entries. Ay Ay

1 are the coefficients of the Taylor series expansion of the generating function Wzyl(Z) .

are the first and last column vectors of the matrix AQ’1 reduced at both ends as above.

5.2 Approximation of fractional diffusion equation

We consider the numerical approximation of the space fractional diffusion equation defined in the domain
[a,b]x[0,T]:

au(x,t) _ K, .Dfu(x,t)+K, Dru(x,t)+ f(x,t), (20)

with the initial and boundary conditions
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u(x,0) =s,(x),xe[a,b]
ua,t) = 4 (t),ub,t) = 4,@),t [0, T],
where U(X.t) is the unknown function to be determined; K, K, are non-negative constant diffusion coefficients
with K, +K, #0, i.e, not both are simultaneously zero, and f(X,t) is a known source term. The boundary

conditions are set as follows: If K, #0, then ¢ (t)=0 and if K, =0, then ¢,(t)=0. We assume that the
diffusion problem has a unique solution.
The space domain [@,b] is partitioned into a uniform mesh of size N with subintervals of length

h=(b—-a)/N, and the time domain [0, T] into a uniform partition of size M with subintervals of length
7 =T/M . These two partitions form a uniform partition of the 2-D domain [a,b]x [0, T] with grid points (x;,t,.),
where X, =a+ih and t, =mz, O0<i<N, 0<m<M. We use the following notations for conciseness:

1 .
= U(XH m) ' tm+1/2 2 (tm+1 +tm) and fim H2 = f (Xi ’tm+1/2) '

We present the CN type scheme with the order 2 approximation in space using szl.

Using the approximations A,,'= K\A7 , +K,AY | of order 2, the Crank-Nicolson type scheme at
(%,£,)0<i<NO<mM<M-1is

u_m+l _ u_m 1

A=A S U™ u™) + Y2 0(22 +h?). (1)
T T2
Let U™ be the solution of (21) after neglecting the O(z? +h?) terms with

U™ =[a47,a",a5 -, 47,671, where G™ becomes the approximation of the exact values U" with GJ' = U]’

and UN = uN . Then, (21) becomes

@t —amy == Au(”‘“l ") +4" 0<i<N, 0<m<M-L

Thus, the Crank-Nicolson type scheme in matrix form reads
Um™-Um=B,U™+UM)+F"0<m<M -1, 22)

where F m+1/2 — [f m+1/2 f m+l/2 f m+1/2]

L T .
The matrix B, corresponding to the operator A, ," is given by B, = E(KlAz'l +K,A},). Re-arranging for

U™ and U™, we have
(1-B)U™ = (1 +B,)U" +F™2, m=012, - M -1 23)

lf m+1/2 F m+1/2

Let éa be the reduced matrix from B, and be the reduced vector from as was in Section 5.1.

After imposing the boundary conditions, equation (23) reduces to the ready-to-solve form
(1-BIU™ =(1+B U™ +4"24+b", m=012, ---,M -1,
where b™ = B (U +ug) + By (U™ +uy) and By, By, are the first( 0™ and last( N™) column vectors of the

matrix B, reduced again as before, and | is the unit matrix of appropriate size.

6. Stability and convergence

We establish the stability of the Crank-Nicolson type scheme (23). We closely follow the analysis in [14] and
present some required results.

Let V,, ={V|v=(Vy,V;, -,V )V, €R,V, =V, =0} be the space of grid functions in the computational
domain in the space interval [&,Db].
Forany U,V €V, , define the discrete inner product and its corresponding norm respectively as
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(u,v) = hh_lzluivi and |ull=+/(u,u).

Then, we have the following:

Lemma2 Let {t., }i-, beadouble sided real sequence such that
. O
(i)t +t, >0 for k=0, (ii) ijthi <0 for N>0.

Then, the Toeplitz matrix Ty, = [ti_j] of size N +1 is negative definite for N >0.
Proof. For N =0, t, < 0. This matrix of size 1 is negative definite. For any positive integer N and for any non-
zero (N +1) -dimensional vector V= [VO,Vl,VZ,---,VN ]T , consider the quadratic form

VTTNV = Z _OZ _OtJ ViV - Summing the terms diagonally, we have

TT V= Zt ikv Vi =t ZV +Z(t +t,) ikv iVics j
-N

N-1-k

<ty v’ +Z(t +tk)Z(1/2)(|V *+ Vi )

<t vl +Z(t +t ) IvIP= Zt MR
k=-N
which completes the proof. O

Lemma 3 The matrices AM and A;’l and hence their corresponding operators A 241 and A2 _, respectively are
negative definite for 1< o < 2.

Proof. The matrix AM of size (N —1) x (N —1) has the form
Wl,l WO,l

W2,1 Wl,l WO,l

N 1 Ws ;. W, 4 Wi 4 Wo 1

Az'l_h_“ . . . .
WN—Z,l WN—S,l WN—4,1 W1,1 Wo,l
WN—l,l WN—Z,l WN—S,l Wz,l W1,1

By virtue of Lemma 2, it is enough to prove that the coefficients W, ; of the generator W, ,(z) = zrzowkllzk

satisfy the following properties for 1< ar < 2.
N -1
Wy, 20, wy,+w,, >0, t +t =w_ >0 for m>3 and Zwk,l <0 forallN >2.

Leth'l(z):((g_%j+(_2_§jz+(%_%j J =(B,+ B2+ B,2°)".

Then, ﬁozg—%zo, ,31:—2—2S0 and ﬂZZ%—ééomrlSaSZ.

Now, Wy, =35 20 and W, , = a8y 3, < 0. Also,
a 1 o —
W, +W,, = +§aﬁo 2[(05 _1):812 + 2130:82]
2lata-1) 5 +25,(ap, + )]
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,Boa_zl:a(a _1)1512 +2/4, w} >0,
2a

N |-

1 .
Wy, = fiala VB [@~2) 5 +64,5, |20
We show that W, ; =0 forall m >4 inductively.

W, = ala-Wa-Da-9 5 +12a-2 A + 120520

IC —1)(0; - AL [ -3 4) i+ 20,52 ,) + 6052522 0.

Assuming that W, is non negative for 3<k <m-—1, we have for m>6,

1
=—(a+1-mw, B +QRa+2-mw, ,,5,)=0 for 1<a<2, since Wy, Wy o5,

m,
0

(a+1-m),(2a+2—m), B, and S, are all non-positive for m>6.

From Corollary 1, we have the consistency condition Z;O:owk =0 in general which is true for Wz'l(Z) as well.
Since Zf:Nkal >0 for N >3, the last inequality follows from the consistency condition. ]

Lemma 4 The approximation operator A2,1' is negative definite.

Proof. Forany v €V, , since the diffusion coefficients K, K, are non-negative, we have

(A,,'V,V) = Ky (A .V, V) + K, (A v,v)<0. o
Theorem 3 1f V" = (V;",V;,-+,Vy_;) be the solution of the problem
SV A, M =8M 1<i<N-1, 0<m<M-1 (24)

vy =0, vy =0
V) =v,(x), O0<i<N.

m-1
Iv™ I (II v+ IS IIJ-
1=0

Proof. Taking the inner product of (24) with Vmﬂ/2 we have

(é}v_m+1/2’vim+1/2) (A Vm+1/2 m+1/2) (S m+1/2)

Then,

since — (A, ,'V"™?,v"?) > 0 from Lemma 4, we get

(5 Vm+1/2’ m+1/2) < (S| ’ Im+1/2)

1
since S.V™2 == (V™ —v™) and V™2 = 5 (Vm+l +Vv™), we have
T

T

(5 Vm+l/2,vm+1/2) — (i (Vm+1 _Vm)’ 1 (Vm+1 _I_Vm)j
T 2
1 m+l | ,m+l m .,m
=—Wuw Vv —(\vV,V
- )= (" .v™))

- . i _—
e i WA R CISS E R
T
1 m m-+ m
<SISTH0v v )

The inequality in the last two lines reduces to
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I v IIv® [+ IS™, 0<m<M -1
Summing this for the first M inequalities, we have

m-1
IV I<IVO+2) IS' ], 0<m<M.
1=0

From the above estimates, we have the following stability result. O

Theorem 4. The CN type difference scheme (23) of order 2 is unconditionally stable for 1< ar < 2.
For the convergence of the approximate solution from the CN type scheme, we have the following.
Theorem 5. The approximate solutions of the CN type scheme (23) with the given initial and boundary conditions are

convergentfor 1< <2.

Proof. Let €™ =u™—U™ be the error vector of the exact and approximate solutions Um,lj ™ of the diffusion
problem (20) respectively. Then the error of the internal grid values €™ satisfy the system

SeM—A, e =R", 1<i<N-1, 0<m<M -1,

e =0, ey =0,

e’ =0, 1<i<N-1,

where R™ are the remainder terms in (21) with || R" ||< (2% +h?*) for some constatnt ¢ > 0. Theorem 3 gives the

estimate

m-1
lem <) IR [<caN(z +h?).
1=0
The convergence is then established as h,7 — 0. O

7. Numerical results

We test the approximation scheme devised in Subsection 5.1 using the steady state test problem
10I"(n+1
Dfu() = SN e
I'n+l-«)
u@) =0, u(l) =10
with the exact solution u(x) =10x". We set N =8 and test for values of the parameter & with & =1.1,1.5 and
1.9.

, 0<x<1,

The number of grid subintervals N corresponding to the discretization size h = (1—0)/N was considered for

values N =16,32,---,1024. The maximum error PUu—UP, and the computed convergence orders are listed in
Table 2.

Table 2. Second order approximation with shift I =1 using W, ,(2).

a=11 a=15 a=19
N [Ju=U, [0 fju-U], [Order [ju-Uj, |ordr
16 [4.8893e-01 — 2.5141e-01 — 1.3365e-01 —

32 |1.1592e-01 2.08 6.4851e-02 1.95 3.3951e-02 1.98
64 |2.7227e-02 2.09 1.6450e-02 1.98 8.5491e-03 1.99

128 |6.3685e-03 2.10 4.1396e-03 1.99 2.1446e-03 2.00
256 |1.4873e-03 2.10 1.0383e-03 2.00 5.3703e-04 2.00
512 |3.5020e-04 2.09 2.5997e-04 2.00 1.3437e-04 2.00

1024 |8.7574e-05 2.00 6.5044e-05 2.00 3.3606e-05 2.00

This test confirms the theoretical justification of second order for the approximation Wzyl(Z) . We consider the
following test example for the fractional diffusion problem (20).
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'(m+1) (x
I'm+l-«)
Diffusion coefficients: K, =1,K, =1.

Source function: f (X,t)=-e7'(5,(x)+G (x,5,a)-5G (X,6,)
+10G(x,7, &) —10G(x,8, ¢) +5G(x,9, &) — G(x,10, 0)).

Initial condition: U (X,0) =s,(X).

Boundary conditions: u(0,t)=0, u(l1,t)=0.

Exactsolution: U (X,t)=s,(X)e™.

Let G(X,m, ) = M (1-X)") and S,(X) = X°(1-X)°.

The test problem was applied to the CN type numerical scheme developed in Subsection 5.2.
All computations were performed using Python Language with Scipy libraries [26] on an i7 notebook computer with
2.7Ghz speed and 12Gb memory and Windows operating system.

The second order approximation Wzyl(Z) was tested for ¢ =1.1,1.5 and 1.9. Table 3 lists the maximum error and

the order of convergence for grid sizes N =M =16,32,---,1024. The partition subinterval sizes are then
7=1/M and h =1/N for time and space, respectively.

Table 3. Second order of convergence for CN type scheme with Wzyl(z) .

a=11 a=15 a=19
N =1/h lu-U]., Order lu-U]|., Order fu=U]|. Order

16 |1.0544e-05 — 9.0719e-06 — 5.6905e-06 —
32 |2.8172e-06 1.90 2.3208e-06 1.97 1.4309e-06 1.99
64 |7.3008e-07 1.95 5.8863e-07 1.98 3.5731e-07 2.00
128 |1.8606e-07 1.97 1.4836e-07 1.99 8.9332e-08 2.00
256 |4.6984e-08 1.99 3.7252e-08 1.99 2.2338e-08 2.00
512 |1.1806e-08 1.99 9.3341e-09 2.00 5.5852e-09 2.00
1024 |2.9592e-09 2.00 2.3362e-09 2.00 1.3964e-09 2.00

The test results show that the second order approximation with W2,1(Z) is justified for its order of convergence
and unconditional stability with the CN type scheme.

8. Conclusion

A new second order Griinwald type approximation for fractional derivative with shift is constructed algebraically
from a generalization of the Griinwald approximation for the left and right fractional derivatives in terms of generating
functions. Numerical schemes for this approximation to solve steady state problems and time dependent fractional
diffusion problems were devised with proof of stability and convergence. The approach of generating functions could
be a useful tool for constructing difference approximation formulas for fractional derivatives.
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