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ABSTRACT: Numerical simulation is performed to explore the convective heat transfer characteristics of Fe3O4-H2O 

nanofluid contained in a right-angle triangular cavity considering three types of thermal boundary conditions at the 

bottom wall. No heat is allowed to escape through the insulated vertical wall, whereas the inclined wall is kept colder 

than the bottom one. A sloping magnetic field whose strength is unvarying acts upon the cavity. The physical model is 

converted to the mathematical form through coupled highly nonlinear partial differential equations. These equations 

are then transformed into the non-dimensional form with the help of a group of transformations of variables. A very 

robust pde solver COMSOL Multiphysics that uses the finite element method (FEM) of Galerkin type is applied to 

carry out the numerical calculation. Heat transfer escalation through middling Nusselt number at the lowermost cavity 

wall is explored for diverse model parameters and thermal circumstances. The outcomes lead us to conclude that a 

higher degree of heat transfer is accomplished by reducing the dimension of nanoparticles and aggregating the 

buoyancy force through the Rayleigh number. It is highest when there is a magnetic field leaning angle of 90
0

 and the 

lowermost wall is heated homogenously.  
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 ماء تحت تأثدر مجال مغناطديي منزلق -كسيد  الح ي لأ حاوية مثلثة تحوي المائع النانويانتقال الحرارة في 

ن  امحم  منصور رحم  

ماء داخل حاوية على شكل مثلث قائم الزاوية  –كييد الحديد لأخصائص انتقال الحرارة الحملي للمائع النانوي  توضيحمحاكاة عددية ل تم تنفيذ :الملخص

الضلع بحيث يبقى  به غير ميموح الحرارة عبر الضلع الرأسيونفترض أن تهريب للضلع الأسفل.  ةالحراري ودأنواع من خصائص الحد ةتتضمن ثلاث

ادلات معبي شكل رياضإلى النموذج الفيزيائي  تم تحويلومجال مغناطييي منزلق ثابت الشدة يؤثر على الحاوية. ووجود . ييفلالمائل أبرد من الضلع ال

تم استخدام   الحيابات العدديةلإجراء  مياعدة مجموعة من المتغيرات التحويلية.ووحدات  دونالمعادلات الى شكل ب ت تلكحولوخطية. غيرو تفاضلية جزئية

صر اطريقة العنب عملي، حيث أن البرنامج حل المعادلات التفاضلية الجزئيةل  (COMSOL Multiphysics) ملتيفيزكس كوميول الحاسوب برنامج

تم الذي جدار الحاوية الأدنى  من خلال (Nusselt number) رقم نيلت اعتدال تصعيد انتقال الحرارة عبرويكون . نوع جالاركنمن   (FEM)ةالمحدود

تجمع حجم الذرات النانوية و في انخفاض هصحبيت النتائج أن انتقال الحرارة بدرجة عالية فحرارية. كشالظروف ال ولمعاملات من امختلف  كشافه لنموذجا

 لجدارل تجانسمن ييختو درجة 09عندما يميل المجال المغناطييي بزاوية  ياعلوتكون  الدرجة ال .(Rayleigh number)  هقوة الطفو عبر رقم ريلي

 .  ييفللا
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Nomenclature 

a  wave amplitude (m) Ra Rayleigh number 

A  dimensional wave amplitude T  temperature (K) 

AR   
aspect ratio ,u v  velocity components (ms

-1
) 

B
  

magnetic field vector ,U V  nondimensional velocity components 

0B  magnitude of the magnetic field (NmA
-1

) ,x y  coordinates (m) 

pc  specific heat at constant pressure (Jkg
-1

K
-1

) ,X Y  nondimensional coordinates 

C
 

nanoparticle volume fraction  Greek symbols 

d  particle diameter (nm)   thermal diffusivity (m
2
s

-1
) 

BD  coefficient of Brownian diffusion (m
2
s

-1
)   coefficient of thermal expansion (K

-1
) 

TD  coefficient of thermophoretic diffusion (m
2
s

-1
)   magnetic field sloping angle ( 

0 
) 

g
  

gravity vector    
heat capacity ratio 

g  acceleration due to gravity (ms
-1

)   nondimensional temperature 

H  cavity height (m)   normalized nanoparticle volume fraction  

Ha  Hartmann number   stream function 

K  wave number   thermal conductivity (Wm
-1

K
-1

) 

L  cavity length (m)   density (kgm
-3

) 

Le  Lewis number   dynamic viscosity (kgm
-1

s
-1

) 

Nb  Brownian diffusion parameter    kinematic viscosity (m
2
s

-1
) 

Nr  buoyancy ratio parameter 
pc  heat capacity (JK

-1
m

-3
) 

Nt  thermophoresis parameter  Subscripts 

Nu  Nusselt number av average 
p  pressure (Pa) c condition at cold wall 

P  nondimensional pressure f base fluid 

Pr  Prandtl number h condition at heated wall 

  p solid nanoparticle 

  

1.  Introduction 

atural convective heat transfer has extensive applications in numerous engineering areas such as air-cooling 

systems, chilling of electronic equipment, insulating buildings, harvesting solar thermal collectors, and the 

extraction of geothermal energy. Natural convective heat transfer may also transpire in buildings’ roofs and attics. 

Many researchers [1–4] have investigated and tested findings both experimentally and numerically for heat transfer 

augmentation, considering natural convection within a square, rectangular, rhomboidal, annular and triangular cavity. 

Flack et al. [5-6] conducted experimental and numerical surveys to simulate convective heat transfer in a base fluid 

confined within a triangular enclosure. Later on many researchers were influenced by this ground breaking work and 

reported results on triangular cavities. The work of Akinsete and Coleman [7] on a pitched roof with a horizontally 

suspended ceiling inside the triangular enclosure showed that the heat transfer rate through the bottom wall escalates in 

the direction of the intersection of the hypotenuse and base. Keeping in mind the possible application of electronic 

components, Ridouane et al. [8] simulated natural convection heat transfer flow of air in a right-angled triangular 

container. They found that heat transfer reduction strongly depends on the decrease of the apex angle and the Rayleigh 

number. Varol et al. [9] conducted a numerical experiment to calculate natural convective heat transfer inside a 

triangular container having a non-isothermal bottom wall inserted in a permeable medium. They confirmed that heat 

transfer is enhanced when the upright and slanted walls are heated isothermally and the bottom wall is heated non-

uniformly. The work of Basak et al. [10] within a triangular enclosure revealed that the heatlines are subjugated by 

conduction for a smaller Rayleigh number, whereas convection overrides conduction for a higher Rayleigh number. 

Yesiloz and Aydin [11] performed both an experimental and numerical study to scrutinize the heat relocation 

augmentation within a right-angled triangular enclosure which was heated from below and cooled from the side walls. 

They concluded that the rate of heat transfer intensifies when the Rayleigh number increases markedly. 

A conducting fluid and an imposed magnetic field in the flow domain interact with each other and create a 

Lorentz force that in turn overwhelms the convection fluxes, and as a consequence fluid velocity diminishes. Exerting 

of such a magnetic field on the flow domain has extensive application in diverse circumstances. For example it could 

be used in metal casting, the extraction of geothermal energy, for controlling flow in fusion reactors, and growing 

crystals in liquids. In practical applications, the slopping of a magnetic field on the flow area is important for the proper 

functionality of the devices. The open literature reveals that a slopping magnetic field has a tendency to alter the fluid 

flow and subsequently the thermal enactment of a cavity (see Ozoe and Okada [12], Pirmohammadi and Ghassemi 

[13]). Sathiyammmoorthy and Chamkha [14] have investigated two-dimensional convective flow together with heat 
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transfer inside a square cavity considering liquid gallium and an inclined magnetic field. They showed that heat 

transfer within the cavity is different for perpendicularly and flatly imposed magnetic fields. They further revealed that 

an applied magnetic field lowers heat transmission rates. Grosan et al. [15] conducted a numerical study on natural 

convective flow inside a rectangular cavity under the action of an inclined magnetic field. It was reported that the 

convective mode of heat transfer was prejudiced by the strength and alignment of the field. It was further shown that a 

horizontal magnetic field more effectively suppresses the flow, when compared to a field operating in an upright 

direction.  

Studies of convective flow within cavities under the action of an imposed magnetic field usually considered 

fluids of low conductivity, which in turn limits the augmentation of heat transmission rates. However, in many 

practical applications, higher conductivity is required to transfer heat efficiently in sophisticated devices. A 

groundbreaking approach to enrich the conductivity is by mixing solid nanoparticles with the low-conductive fluid. 

This new type of engineered fluid is called a nanofluid (Choi [16]) and has substantially higher conductivity compared 

to the base fluid. Wide-ranging literature reviews, reporting the extensive applications of nanofluids are well 

documented by Wong and De Leon [17], Das et al. [18] and Mahian et al. [19], Kakac and Pramuanjaroenkij [20]. 

Uddin et al. [21] carried out an excellent review work on the ultimate features of nanofluids, along with their 

development and applications. They also established novel correlations for Brownian diffusion and thermophoresis in 

nanofluids. Plentiful results on nanofluids are available in different configurations of flow and thermal fields. Although 

there are lots of engineering and technological applications of the flow dynamics of nanofluids in triangular cavities, 

this has attracted far less attention from researchers. A mixed convective study on nanofluids inside a triangular cavity 

by Ghasemi and Aminossadati [22] showed that heat transference is enhanced by an increase of the nanoparticle 

loading. Billah et al. [23] investigated time-dependent buoyancy influenced by heat transfer augmentation of 

nanofluids inside a tilted right triangular cavity. They have shown that average Nusselt number as well as fluid 

temperature varies linearly with an increase of the nanoparticle volume fraction. Recently, Al Kalbani et al. [24] 

explored buoyancy-encouraged heat transmission inside a slanted square cavity occupied with nanofluids under the 

action of an inclined magnetic field. They have reported that Rayleigh number together with nanoparticle volume 

fraction intensifies heat transfer rate significantly. On the other hand, increased Hartmann number reduces the global 

heat transfer rate within the cavity. The critical geometry leaning angle to obtain the optimum heat transmission rate 

significantly hangs on the loading of the nanoparticles as well as on the magnetic field direction.  

The above-stated models are well known one-component models, where the effects of thermophoresis and 

Brownian diffusion of nanoparticles have not been taken into consideration. Buongiorno [25] developed a two-

component model considering these mechanisms of nanoparticles in connection with the relative velocity of the base-

fluid. Sheremet and Pop [26] followed the model of Buongiorno, to study free convective heat transfer and fluid flow 

inside a triangular shaped cavity occupied with nanofluid implanted in a permeable medium. The outcomes of this 

study revealed that Rayleigh and Lewis numbers escalate the average Nusselt number, whereas it is diminished by the 

increase of buoyancy-ratio, thermophoresis, and Brownian diffusion parameters. Taking into consideration the slip 

mechanisms suggested by Buongiorno, Rahman et al. [27] investigated hydromagnetic flow characteristics of 

nanofluids inside an isosceles triangular shaped cavity, considering various thermal circumstances at the bottom wall. 

They reported that adaptable thermal circumstances substantially control the flow and updraft fields.  

In keeping with the literature review, the author found that there remains a potential need to investigate the 

natural convective transport mechanism in Fe3O4-H2O nanofluid inside a right triangular cavity, considering different 

updraft boundary conditions and a sloping magnetic field. Fe3O4-water nanofluid has further high demand in 

technological applications such as in solar thermal collectors because of its upgraded thermophysical properties, 

convenience, and low production cost. In the present study, a finite element method of Galerkin type is used to carry 

out a numerical simulation. The simulated results such as streamlines, isotherms, and isoconcentrations are presented 

graphically, whereas the average Nusselt numbers are tabulated. 

2. Physical and mathematical modeling 

 

 

 

 

 

 
 

 

 

 

 

Figure 1. Diagram of the right triangular cavity with coordinate axes and boundary conditions. 
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We consider the two-dimensional time-independent viscous incompressible laminar flow of Fe3O4-H2O nanofluid 

confined in a right triangular cavity. The flow configuration and corresponding boundary conditions for flow and 

temperature are displayed in Fig. 1. The length of the bottom wall of the cavity is L along the x -axis and its height is 

H along the y -axis. The gravity [0, ]gg  acts along the y -axis in the downward direction. We further consider 

that the temperature of the bottom wall varies uniformly ,hT T  parabolically     / 1 / ,cT T T x L x L     and 

sinusoidally ( / )sin( )cT T T a L Kx    where h cT T T   , a  is the wave amplitude and  2 /K L  is the 

wave number. The inclined wall temperature we consider to be cT T  ( c hT T ), keeping the vertical wall insulated. 

We assume that Fe3O4 nanoparticles distribute uniformly within the base fluid water and their concentration at all 

boundaries is constant such that hC C . So called “slip mechanisms”, thermophoresis and Brownian diffusion are 

taken into consideration in the lack of chemical reaction to construct the mathematical model. Due to the tiny size of 

the nanoparticles, we may assume that Fe3O4 nanoparticles and water molecules are in local thermal equilibrium. A 

slopping magnetic field 0 0[ cos , sin ]B B B  is applied to the flow domain where   is the inclination angle with 

respect to the positive x -axis. The density variation of the nanofluid is tackled through incorporating the Boussinesq 

approximation in the momentum equation.   

 

Following the above-noted suppositions, the governing equations of the model are ([27]-[28]) 

0
u v

x y

 
 

 
                                                                    (1)                                                                                                             

 
2 2

2 2

02 2
( ) sin cos sinf f f

u u p u u
u v B v u

x y x x y
     

     
       

     
                              (2) 

 

     

2 2
2 2

02 2
( ) sin cos cos

                                  1

f f f

c c f f c p f

v v p v v
u v B u v

x y y x y

C T T g C C g

     

   

     
       

     

     
                                

(3) 

 

222 2

2 2
( / )f B T c

T T T T C T C T T T
u v D D T

x y x y x x y y x y
 

                 
                                                        

(4) 

 
2 2 2 2

2 2 2 2
( / )B T c

C C C C T T
u v D D T

x y x y x y

        
       

        
                                 (5) 

where u  and v  are velocity components along the x - and y - axes respectively, p  is the pressure and

   /p pp f
c c    is the heat capacity ratio of nanoparticles and base fluid. For descriptions of other quantities, 

see the nomenclature. 

 

Boundary conditions for flow, temperature and particle concentration are: 

 

(i) At inclined wall ( / / 1x L y H  ):  

0u v  , cT T  , .hC C                                                     (6) 

 (ii) At bottom wall ( 0y  , 0 x L  ):  

   Type 1: 0u v  , hT T , .hC C                                                                                                   (7a)   

 Type 2: 0u v  ,     / 1 /cT T T x L x L    , .hC C                                                         (7b)   

     Type 3: 0u v  ,    a/ sincT T T L Kx   , .hC C                                                                 (7c)                                                                                                                                                                                                                                                                                                                                           

(iii) At vertical wall ( 0x  , 0 y H  ): 

0u v  , 0xT  , .hC C                                                              (8) 

To make equations (1)-(8) dimensionless, we use the following transformation of variables: 

2 2/ , / , / , / , / ,

( ) / ( ), ( ) / ( ).

f f f f

c h c c h c

X x L Y y L U uL V vL P pL

T T T T C C C C

   

 

     


                                  

         (9) 
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Substituting (9) into (1)-(5), we obtain the following non-dimensional governing equations  

  0
U V

X Y

 
 

 
                                                                                (10) 

 
2 2

2 2

2 2
Pr Pr Ha sin cos sin

U U P U U
U V V U

X Y X X Y
  

     
       

     
                                                 (11) 

   
2 2

2 2

2 2
Pr Pr Pr Ha sin cos cos

V V P V V
U V Ra Nr U V

X Y Y X Y
    

     
         

                      
(12) 

2 22 2

2 2
U V Nb Nt

X Y X Y X X Y Y X Y

                        
                            

                      (13) 

2 2 2 2

2 2 2 2
(1/ ) ( / )U V Le Nt LeNb

X Y X Y X Y

             
       

                                    

(14) 

 
The boundary conditions (6)-(8) become 

(i) At inclined wall ( / 1)X Y AR  :  

0U V  , 0  , 1.   
                                         

                      (15) 

(ii) At bottom wall ( 0Y  , 0 1X  ):  

      Type 1: 0U V  , 1  , 1. 
                                                                                                   

(16a) 

       Type 2: 0U V  ,  1X X   , 1. 
                                                                                    

(16b) 

       Type 3: 0U V  ,  sin 2A X  , 1. 
                                                                               

(16c) 

(iii) At vertical wall ( 0X  , 0 Y AR  ):  

0U V  , 0
X





, 1. 

                                                            (17)
 

The dimensionless parameters appearing in equations (11)-(14) are defined as:  

Prandtl number Pr / ,f f  Hartmann number 0 / ,f fHa B L     

Rayleigh number    31 / ,f c h c f fRa g C T T L       

Buoyancy ratio parameter

 

     / 1 ,p f h c f f h c cNr C C T T C          

Thermophoresis parameter

 

  /T h c c fNt D T T T   ,  

Brownian motion parameter

 

  /B h c fNb D C C   ,  

Lewis number
 

/f BLe D ,  

Aspect ratio /AR H L  . 

 

Thermophysical properties of Fe3O4 nanoparticles and H2O are listed in Table 1. 

 
Table 1. Thermophysical properties of Fe3O4 and H2O (Uddin et al. [29]). 

 

Thermophysical properties 
3 4Fe O  2H O  

ρ  [kgm
-3

] 5180 997.1 

μ [kgm
-1

s
-1

] - 0.001003 

 [Wm
-1

K
-1

] 80 0.613 

pc [Jkg
-1

K
-1

] 670 4179 

-5β×10 [K
-1

] 20.6 21 

Pr  - 6.8377 

 



HEAT TRANSFER IN Fe3O4-H2O NANOFLUID 

 

61 

 

The nanofluid motion is exhibited in terms of stream function   that is obtained from the x - and y -components of 

the fluid velocity as follows: 

U
Y





and .V
X


 


  

                                     
                                (18) 

To measure the heat transmission rate for engineering and technological applications it is essential to calculate the 

average Nusselt number. The Nusselt number at the bottom heated wall can be defined by   

 
0

/ .f f h c

y

T
Nu Lk k T T

y


 
   

 
                                                              (19) 

The average Nusselt number in dimensionless form at the bottom heated wall is obtained as  

1

0
0

.av

Y

Nu dX
Y





 
   

 
                                                                    (21) 

3. Numerical procedure 

The dimensionless model equations (10)-(14) are highly nonlinear and coupled. It is difficult to solve them 

analytically for the closed form solutions. Thus, we solve them numerically for the approximate solutions. The finite 

element method of Galerkin type is a very powerful tool to handle these kinds of nonlinear equations. The details of 

this method can be found in the textbook by Zienkiewicz and Taylor [30] and in the work of Al Kalbani et al. [31]. The 

numerical simulation is carried out through the very robust pdf solver COMSOL Multiphysics. For grid independent 

results a widespread mesh testing is piloted for 
510Ra  . Here, we examine five different non-uniform grids, named 

normal, fine, finer, extra fine, and extremely fine, consisting of 688, 1075, 1643, 7435 and 29157 elements in the 

resolution field respectively. To obtain convergent solutions, we calculate the average number at these grids to 

apprehend the grid refinement. Table 2 shows that Nuav for 7435 elements differs slightly from the value obtained for 

14835 elements. To limit the computational time, it is sufficient to consider an extra fine grid consisting of 7435 

elements for grid independent solutions. 

Table 2. Grid sensitivity for Fe3O4-H2O nanofluid when 
510Ra  . 

 

Nodes 374 588 884 3850 14835 

Elements 688 1075 1643 7435 29157 

avNu  7.0056 7.35383 7.65316 8.65204 8.66150 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Judgment of isotherms (left column) and streamlines (right column) between Yesiloz and Aydin [11] (top 

row) and the present work (bottom row) when 
510Ra  . 

 

So as to check the correctness of our numerical scheme, we have validated it against the work of Yesiloz and 

Aydin [11] for a special case. Judgment of streamlines and isotherms between Yesiloz and Aydin [11] and the present 

work for 
510Ra   are depicted in Figure 2. The simulated results match each other profoundly which supports the use 

of the present numerical scheme.  
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4.  Numerically simulated results and discussion 

Here we present FEM generated numerical outcomes for convective flow of Fe3O4-H2O nanofluid confined in a 

right angle triangular enclosure under the accomplishment of a sloping magnetic field of varying updraft conditions at 

the bottom wall. Isotherms and average Nusselt number are calculated for a large assortment of the regulatory factors 

for three dissimilar cases as mentioned in section 2. Precise exertions were given to identify the role of the influential 

model parameters: Ra , Ha ,   and d  on the flow and thermal fields. An enhanced heat transmission rate is 

predicted for homogeneously dispersed nanoparticles within the base fluid, but in reality the Brownian diffusion of 

nanoparticles and thermophoresis can create a tiny concentration difference ( 0.01C  ) within the flow domain. 

Following Uddin et al. [21] we obtain 
128.7591 10BD   , 

123.9597 10TD   , 
74.9591 10Nb   , 

77.5229 10Nt    and 16795Le   for Fe3O4-H2O nanofluid considering 1% nanoparticle loading when 

50nmpd  , 300 K
c

T  , and 10KT  . The other model parameter values are taken as Pr 6.8377 , 1AR  , 

0.01Nr   50Ha  , /12  , and 
610Ra   if not otherwise quantified. 
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Figure 3. Distributions of isotherms for diverse Ra  and three different updraft conditions. 
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To measure the efficiency of heat transfer in Fe3O4-H2O nanofluid and determine the conductive to convective 

mode of heat transfer it is extremely useful to plot the isotherm contours. Figure 3 displays isotherm delineations for 
410Ra  , 

510 , 
610  and 

710  (top to bottom) for three different (Type 1, Type 2 and Type 3) updraft boundary 

conditions. These figures reveal that isotherm delineations are further compressed adjacent to the right junction of the 

lowermost wall of the cavity. The close concentration of isotherm contours in a region indicates that conduction is the 

key mode of heat transfer. As Rayleigh number increases, the compactness of the isotherm contours at the middle plane 

of the cavity decreases, which indicates a weaker mode of convective heat transport. A type 1 updraft boundary 

condition at the meeting point of hot and cold walls results in a finite discontinuity in the temperature distribution, as 

can be observed from Figure 3. Mathematically, it is a singularity, but in reality at this point the fluid temperature will 

converge towards the average value of the temperatures of hot and cold walls. Thus, in the simulation we have 

considered the average value of the temperatures at the right bottom corner point of the cavity for the Type 1 boundary 

condition (for a detailed discussion see Rahman et al. [27]). In contrast the implication of non-uniform updraft 

boundary conditions (Type 2 and Type 3) eliminates the thermal singularity, as evidenced from Figure 3. For all three 

types of thermal boundary conditions an increasing value of Ra  results in more distortion to the isotherms due to the 

resilient convection effect. Overall, an increase in Ra  enhances the heat transmission rate. 
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Figure 4. Distributions of isotherms for different Ha  and three different updraft conditions. 
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Meanwhile, Figure 4 depicts the impact of Hartmann number on the distributions of isotherms for various updraft 

boundary circumstances. These figures demonstrate that advanced temperature domain and clustered isotherms appear 

with a Type 1 thermal condition near the lowermost wall of the enclosure. This is due to the presence of a sharp 

temperature gradient along the vertical direction within the region. In contrast, in the upper region of the cavity, the 

temperature gradient is found to be quite weak for Type 2 and Type 3 thermal conditions. Nevertheless, in all cases of 

thermal boundary conditions an increased Ha , i.e. a stronger Lorentz force, pushes the densely distributed isotherm 

contours away from the hot wall. It signifies the decrease of the temperature rise within the enclosure. Thus, by using a 

magnetic field within the nanofluid flow domain we can control the heat transfer rate. In Figure 5 we display the 

influence of the magnetic field slopping angle   on the isotherm contours for Fe3O4-H2O nanofluid when Ha is fixed. 

Figure 5 demonstrates that the influence of   on the temperature field is less pronounced. The isotherm contours are 

distributed quite evenly between the hot bottom and cold inclined walls of the cavity. The thickness of the thermal 

boundary layer is higher and the isotherms become more packed for a uniformly heated bottom wall compared to a 

non-uniformly heated one.  
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 Figure 5.  Distributions of isotherms for different    and three different updraft conditions. 
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To determine the heat transfer rate at the hot wall of the cavity filled with Fe3O4-H2O nanofluid for engineering 

applications we calculated the average Nusselt number varying Ra , Ha , 
 
and pd  in Table 3. This table reveals 

that average Nusselt number drops with the rise of Ha  i.e. a stronger magnetic force reduces the heat transfer rate. It 

also confirms that heat transmission in a nanofluid can be intensified by decreasing the nanoparticle size and increasing 

the buoyancy force. Table 3 further confirms that the highest heat transmission is achieved when the magnetic field 

sloping angle is 
090 and the bottom wall is heated uniformly.  

 

Table 3. Values of avNu for different model parameters and thermal boundary conditions (TBC). 

 

pd  Ra  TBC ( 0)avNu Ha                                  ( 100)avNu Ha   

00   
045   

090   

 

 

 

 

 

1 

 

10
5 

Type 1 7.94847 6.71352 6.69363 7.27715 

Type 2 6.98167 5.81245 5.21564 6.45643 

Type 3 5.99345 3.93245 4.89654 5.34562 

 

10
6 

Type 1 11.11553 8.96572 7.97159 9.69044 

Type 2 10.23421 7.43562 6.34521 8.43563 

Type 3 8.43567 5.23421 5.23456 6.34521 

 

10
7 

Type 1 14.99211 15.10939 12.77243 14.93098 

Type 2 12.67543 14.23475 10.45638 12.43521 

Type 3 11.45632 10.45632 9.23451 11.21532 

 

 

 

 

 

50 

 

10
5 

Type 1 6.98567 5.76543 5.45678 6.54321 

Type 2 5.99521 4.23421 4.12584 5.67543 

Type 3 4.99325 3.21456 3.02543 4.87654 

 

10
6
 

Type 1 10.45678 7.45632 6.78654 8.76549 

Type 2 9.45678 6.23457 5.67543 7.98654 

Type 3 7.34521 4.56743 4.12743 5.98765 

 

10
7
 

Type 1 14.97743 13.34563 11.34321 12.98765 

Type 2 11.97674 12.32156 9.76543 11.32854 

Type 3 10.96789 9.78654 8.98765 10.23784 

5.   Conclusion 

The convective heat transfer mechanism in Fe3O4-H2O nanofluid confined in a right angled triangular cavity 

under the action of a slopping magnetic field has been investigated considering three types of thermal boundary 

conditions at the bottom wall of the cavity, following the mathematical model of Buongiorno. A very robust computer 

pde solver COMSOL Multiphysics which uses the FEM of Galerkin type was used to simulate the transformed non-

dimensional equations governing the problem. An excellent agreement has been found among the data produced by the 

present code and those experimental data presented in the open literature. The simulated results were interpreted from a 

physical viewpoint. From the studied results we conclude that Rayleigh number is a key parameter that determines the 

mode of heat transfer. Lower Ra  determines conduction, whereas higher Ra ( critRa ) corresponds to convection. 

An increased value of Ra  induces a heat transfer rate. The applied magnetic field eases aveNu  considerably through 

the Lorentz force.  The magnetic field slopping angle regulates the flow configuration of Fe3O4-H2O nanofluid inside 

the cavity. A smaller particle size increases the heat transfer rate efficiently. The values of aveNu  are higher for a Type 

1 condition compared to the Type 2 and Type 3 conditions. The highest rate of heat transfer is found when / 2   

and the bottom wall is heated uniformly.  
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