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  سيميولنك–م بواسطة ماتلاب  –نمذجة خصائص متتاليات      

 آفاق احمد ، مفيد المشرفي و سمير البوسعيدي 

م -م تم تطوير وسيلة لاستخدامها من قبل المهندسين لتوليد متتالية         –اعـتمادا علـى دراسة تحليلية لنظرية متتاليات         : خلاصـة 
 .رضينم أو لكلا الغ-لتطبيقها في مجال ما ، او لفحص متتالية

 
م من عدد الوحدات والأصفار ، طول المتتالية ، زمن دورة النبض ن             -ان مجمـوع البرامج المطورة تمثل كل خواص متتاليات        

سيميولنك للرموز المطلوبة - ان هذه المجوعة المبسطة للبرامج طورت باستخدام ماتلاب. وكذلك خواص الارتباط الذاتي لمتتالية
 النموذج المطور كفؤ من ناحية الكلفة ، كما ان الملفات الخارجة من نماذج سيميولنك فان استخدامها ان. وكذلك القوالب المطلوبة

 . من قبل أي برنامج أو طريقة نمذجة
   

ABSTRACT: Based on an analytical study of the theory of m-sequences, a tool is developed to 
facilitate practicing engineers to either generate m-sequence for its application, or to test applied m-
sequence, or both. The developed test–kit simulates all the properties of m-sequences including 
number of 1s and 0s, the run lengths, pulse periods as well as autocorrelation properties.  This 
simplified tool is developed using MATLAB–SIMULINK with required codes as well as desired 
blocks. The model is cost-effective and the output files of the generated SIMULINK models can be 
utilized in any software program or simulation procedures. 

 
KEYWORDS: LFSR, M- Sequence, PN Codes, Stream Cipher, Run Length 

1. Introduction 

The m-sequences are of great importance in many fields of engineering and sciences. 
Cryptography is the most prominent of these applications. One important way of generating 

such sequences is via Linear Feedback Shift Registers (LFSRs).  
In cryptography, m-sequences are used in two ways; one for designing simple forms of 

encrypting systems and, the other for selecting cryptographic keys (Pless, 1977; Konheim, 1981; 
Meyer and Matyas, 1982; Barker, 1984; Siegenthaler, 1985;  Rueppel, 1986 and 1991; Davis et. al, 
1994; Schneier, 1996; Diffie and Hellman,1996; Golic, 1998 and 2000; and Ahmad et. al, 2001). 
Apart from the use of m-sequences as stream ciphers, in crypto-security, they have also found a 
wide range of applications including error control, coding and spread spectrum communications 
(Shannon, 1963; Neumann, 1963; Massey, 1969; Newbridge Microsystems, 1992; Glaise, 1997). 
Table1 below shows a few of such practical applications of m-sequences. The table also depicts 
the used lengths of the m-sequences and the sizes of the corresponding LFSRs which generate 
them.  Besides these, there are numerous other applications of m-sequences as briefly summarized 
below: 
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1. m-sequences have shown more effective probing signal than traditional Gaussian 
white noise for studying nonlinear biological systems (Chen et. al, 1996). 

2. For computer and video games, the m-sequence generator is a central component (Meyer, 
and Matyas, 1982; Newbridge Microsystems, 1992 ; and Moore, 1994). 

 
Table 1: Specifications of systems using m-sequences 

 
System Application Model Length of m-sequence Size of LFSR 

CRC-12 4095 12 
CRC-16, CCITT 65535 16* 

 
Cyclic Redundancy 
Check AUTODIN-II 4294967295 32 

SS-7 127 7 
SS-13 8191 13 

 
Radio Amateurs 
(Spread-spectrum) SS-19, A5 - I 524287 19* 

A5 - II 4194303 22 
A5 - III 8388607 23 

Cellular Telephone 
(European)

A5 - IV 131071 17 
ATM Networks CRC-32 4294967295 32 
GPS Satellite GPSS – I, GPSS - II 1023 10* 

 
* The LFSR sizes are same but each has different structures. 
 
Furthermore, many fields of research (e.g. physics and even finance) are increasingly relying 

on large computer simulations to study phenomenon that cannot be observed directly for obvious 
reasons. In these circumstances, the use of m-sequences is an alternate validation methodology to 
avoid an unforeseen subtle statistical interaction between the m-sequence generator and the 
properties of simulated phenomenon (Brillinger, 1981; Vattulainen et al., 1994; and Brotherton-
Ratcliff, 1995). 

As it is evident from the above-mentioned facts that the study of the art and the theory of the 
generating and applying of m-sequences are becoming essential for engineers and scientists in this 
era of information technology. Moreover, the testing of m-sequences is rather becoming an 
updated task of system engineers and scientists rather than acquiring the knowledge of simply 
using the m-sequences. A lot of research papers are available in the literature which deals with the 
state of art of generating and testing of m-sequences by adapting different approaches (Moore, 
1994; Brillinger, 1981; Vattulainen et. al., 1994; Tausworthe, 1965; Geffe, 1973; Blum et. al., 
1986; Micali and Schnorr, 1991; Krawczyk, 1992; L’Ecuyer, 1992; Entacher and Leeb, 1995; 
Golomb, 1982; Knuth, 1982). 

This paper presents a new, simple and systematic procedural study of properties of m-
sequences. The state of generating as well as testing of such sequences is also considered in this 
paper. Further, based on the study of the properties of m-sequences a simplified tool is developed 
using MATLAB-SIMULINK for generating and testing of such sequences. The model is cost-
effective and the output files of the generated SIMULINK models can be utilized in any software 
program or simulation procedures. The developed test-kit has an attribute of either generating and 
testing a generated sequence and declaring it as m-sequence or failing to be m-sequence and 
suggests the change of the LFSR structure. It can also load / read / register the so-called m-
sequence and then tests it for its pass / fail of being m-sequence. 

2.  Theory of LFSR - The m-Sequence Generator 

The idea of randomness reflects the impossibility of predicting the next bit of the sequence. If 
a generated sequence, ((s of symbols, ; .....),...s,ss) iNi 21=∈ is Ni∈  from the finite field GF (2n-1), 
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is not matching all the previous ones, it is called a pseudo-random or pseudo-noise (PN) sequence, 
the other name of the m-sequence. Pseudorandom sequences are the only known sequences that 
satisfy these properties and are generated by LFSRs, (Golomb, 1982; Knuth, 1982). 

The LFSR most often implemented through hardware designs, is the basis of stream ciphers 
and other applications. In an LFSR a string of bits is stored in a chain of memory cells, where the 
clock pulses advance the bits towards its next succeeding memory cells. The XOR of certain 
positions of the cells is used to produce the new bit in the string for each clock pulse with the 
condition that the last cell position is always used in the XOR process. If each of the memory cells 
are initially not loaded (initial condition) with 0s, the produced sequence will cycle through a 
period of more than one. The produced sequence could be cycled through its maximum periodicity 
of 12 −= nT , where n is the number of the memory cells used in the LFSR. This maximum 
periodicity of the sequence can only be achieved through XOR-ing only some combinations of a 
few particular positions of memory cells of the LFSRs. A diagram shown in Figure 1, illustrates an 
LFSR consisting of 11 memory cells, where a combination of the memory cells 2nd and 11th is 
XOR-ed to produce the new bits in the string of the sequence at each clock pulse. The sequence 
produced by this particular structure of the LFSR of Figure 1 has periodicity of 2047. To make it 
more readable the following definitions and illustrations are given below: 

Definition 1 
The structure of an LFSR described by its XOR-ed positions in polynomial form is termed as 

characteristic polynomial of the LFSR. For example the structure of LFSR of Figure 1 is described 
by characteristic polynomial C11(x) = 1 + x2 + x11. 

 

1  2  3  4  5  6  7  8  9  10  11  

X O R  

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 1 0 x 1 1 
 

 
 

 m-  sequence  (binary form) 

                    Scope (wave form of m-sequence)

XOR 

 
 

Figure 1.  An 11-bit LFSR. 
 

Definition 2 
The characteristic polynomial of a structure based on an n - memory cells LFSR, which 

generates a sequence of maximum periodicity ( 12 −= nT ), is termed primitive polynomial. 

Definition 3 

If the produced sequence generated by an LFSR has maximum periodicity  ( 12 −= nT ), then 
that sequence is known as m-sequence. 
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Example 1 
Let us consider a 3-bit LFSR, described by a characteristic polynomial, C3(x) = 1 + x2 + x3. 

Have the initial loadings as all 1s. Then the generated sequence by this LFSR will be 0100111, 
which is of length 23 – 1; thus, the generated sequence is an m-sequence, whereas the characteristic 
polynomial C3(x) = 1 + x2 + x3 is primitive. 

3.  Properties of m-sequences 

Statistical tests on m-sequence can be performed to provide a quantitative measure of 
randomness.  They measure the relative frequencies of certain patterns of 0s and 1s in the sequence 
si (Golomb, 1982; Knuth, 1982). We give below, the systematic study results of the properties of 
m-sequences. 

Property 1 
In every period of m-sequence generated by an n-bit LFSR, the total number of 1s will be 

equal to .  12 −n

Property 2 

In every period of m-sequence generated by an n-bit LFSR, the total number of 0s will be one 
less than number of 1s i.e. number of 0s will be equal to 12 1 −−n .  

Property 3 

A period of m-sequence generated by an n-bit LFSR, has an occurrence of 1s in succession. n

Property 4 

A period of m-sequence generated by an n-bit LFSR, does not have any occurrences of ( )1−n  
1s in succession. 

Property 5 

A period of m-sequence generated by an n-bit LFSR, has an occurrence of , 0s in 
succession. 

)1( −n

The term run may in general be defined as a succession of items of the same class. In a period 
of m-sequence the distribution of sequential occurrences of groups of 1s, and 0s (runs property 
for1 ), is governed by a rule presented in the form a following theorem:  2−≤≤ nx

Theorem 1 

In a period T of m-sequence generated by an n-bit LFSR, there will be runs of (12 −x 1−− xn ) 
1s, as well as 0s, for1 . 2−≤≤ nx

Example 2 

Figure 2 shows a LFSR simulated using SIMULINK – MATLAB, whose degree of 
polynomial is n = 5, has characteristic polynomial (1 , initial condition (11111), and 
generates the m-sequence [s] that has period 31 (i.e. 2

)53 xx ++
5- 1). The output file of m-sequence in binary 

form is given as below (Equation 1) whereas the oscilloscope waveform is shown in Figure 3.  
 
 

1111100011011101010000100101100                                          (1) 
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1  2  3  4  5  6  7  8  9  10  11  

X O R  

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 1 0 x 1 1 
 

 
 

 m-  sequence  (binary form) 

                    Scope (wave form of m-sequence)

XOR 

 
 
Figure 2. An implementation of a 5-bit LFSR with characteristic polynomial (1 + x3 + x5) using 
MATLAB – SIMULINK. 
 
The Properties 1 – 5, and Theorem 1 can be tested for the above sequence of Equation (1). For 
better explanation, the test result is presented below in the form of the Table 2. 
 

Table 2: Run counts / total number of 1s and 0s. 
 
Frequency of Runs 1 0 0 1 1 1 2 2 4 4 Total of 1s Total of 0s 
Succession of Groups of 
1s and 0s 

5 
1s 

5 
0s 

4 
1s

4 
0s 

3 
1s

3 
0s 

2 
1s

2 
0s 

1 
1s

1 
0s 

 
16 

 
15 

 

Property 6 

The Property of m-Sequences – To Function As Pulse Generator: 
It is also interesting to note that the m-sequence generates pulses of different frequencies. The 

study also, reveals that the pulse width and frequency of different pulses have definite relation with 
the others (see Figure 3). Table 3, describes this property for an m-sequence of periodicity 2n-1 
with assumption that the clock pulse of LFSR has time period T. 

 
Table 3: Pulses generated in m-sequence. 

 

Number 
of Pulses 

1 1 2x-1 ; for 

21 −≤≤ nx
 

2x-1 ; for 
21 −≤≤ nx

 

Pulse 
Width 

nT (n-1)T (n-x-1)T (n-x-1)T 

Nature of 
Pulse 

Active 
high 

Active 
low 

Active 
high 

Active 
low 
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Property 7 

The Property of Auto-correlation of m-sequences: 

To study the statistics and behaviors of m-sequences, it is important to analyze them through 
their correlation functions. Correlation function of two sequences can be described as the 
comparison of two sequences to see how much they correspond with one another. Various 
parameters effect the correlation of two sequences including the length of sequence, phase between 
the sequences, and clock rate of LFSR. The act of correlating a signal through all variations of 
itself is known as autocorrelation. The autocorrelation function, AC (k) of an m-sequence 

where, N = 1 to 2.....),...,)(( 21 iNi ssss =∈
n-1 can be given for its kth shift as: 

 

ki

N

i
i ss

N
kAC +

=
∑=

1

1)(  ; 0 1−≤≤ Nk                                          (2)                       

 
Where, si is the value of the ith - position of the m-sequence. 
 

 
Figure 3 (a).  Continuous waveform of generated m-sequence of Figure 2. 

 
Figure 3 (b).  Discrete waveform of generated m-sequence of Figure 2. 

 

Theorem 2 

The autocorrelation function of an m-sequence reaches a maximum of 2n-1 at zero shifts. For 
other shifts (1 ) its value will be equal to –1. 2−≤≤ Nk

4.  A Test–kit for m-Sequence Generator 

Using the SIMULINK - MATLAB (Weizheng wang, 1997), a test – kit, shown in Figure 4 is 
developed to test the Properties 1- 7, and Theorems 1 – 2. The developed kit consists of two 
separate counters one which monitors the counting of total numbers of 1s and 0s. The second 
counter monitors the run length properties of the m-sequence. There are two scopes provided in the 
model of the test–kit. They are dedicated to provide the waveforms of the autocorrelation function 
and of m-sequence itself. A provision is also made to load the binary form of the m-sequence. All 
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the counters are simulated based on the algorithms to check the desired counts of runs.  The 
developed kit reads the outputs of the second counter as in Table 4.  

 
Table 4: Outputs of second counter 

 
Output number (Function) Output number (Function) 
OUT1 - runs of 1 – 1s;  
OUT3 - runs of 2 – 1s; 
OUT5 - runs of 3 – 1s; 
OUT7 - runs of 4 – 1s; 
OUT9 - runs of 5 – 1s; 

OUT11 - runs of 1 – 0s;  
OUT13 - runs of 2 – 0s; 
OUT15 - runs of 3 – 0s; 
OUT17 - runs of 4 – 0s; 
OUT19 - runs of 5 – 0s; 

 
 

In1
no. of 0's

no. of 1's

counter for counting number of 1s and 0s 

m-sequence (binary form)LFSR` s output 

Scope (wave form of m-sequence)

In1 

Out1
Out2
Out3
Out4
Out5
Out6
Out7
Out8
Out9

Out10
Out11
Out12
Out13
Out14
Out15
Out16
Out17
Out18
Out19
Out20

Run length measurement countert

1

2

4

1

1

2

4

0

1

16

15

0

 
Figure 4.  A implementation of test-kit using SIMULINK- MATLAB 

 
5.    Results and Discussions 

We run the developed MATLAB-SIMULINK model for the generated sequence of Figure 2. 
The results for the counts of number of 1s and number of 0s as well as run lengths can be observed 
(according to Table 4); as it is monitored through Figure 4. The observed values are identical as 
demonstrated in Table 2, which verifies the properties 1-5 and Theorem 1. Figure 3 is the output of 
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the scope, which is nothing but the wave–form of the generated m-sequence. The study of this 
wave–form reveals that the pulse properties are according to the rules stated in Table 3. The output 
of another scope is shown in Figure 5. It can be visualized through Figure 5 that the peaks of 
autocorrelation values (AC (k); Equation 2) are 31 at zero shifts, and for other shifts the values are 
–1, which verifies the Theorem 2. Further, it can be seen that it repeats in each cycle of the 
generated m-sequence. The result is satisfying the autocorrelation property of the m-sequence as 
given in Equation 2. 
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Figure 5. Autocorrelation property of m-sequence of Figure 2. 
 
Thus, based on a systematic and procedural study of the theory of m-sequences we developed 

a tool to help the practicing engineers to either generate m-sequence for its application or to test 
applied m-sequence or both. The study presented in general in Section 1 and in particular in Table 
1, reveals how important an m-sequence is. We tried to provide the knowledge of generating and 
testing of m-sequences with the least mathematical involvements to make the paper more suitable 
for general readers and especially for practicing engineers in the area of computer and 
communication. Since the security is a vital issue in this age of information technology, and finally, 
it seems that the security responsibility has to come in any form on the shoulders of practicing 
engineers of all fields to avoid the litigations. 
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