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ABSTRACT: The problem of joint symbol and frame synchronization in direct-detection optical
PPM communication systems under the assumption of known slot timing is considered here. The
optimum maximum-likelihood (ML) and sub-optimum rules for this joint symbol and frame
synchronization problem are derived. The reason of Georghiades's (1985) incorrect ML rule is
discussed in this paper.
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1. Introduction

Unfortunately, as will be discussed in this paper, Georghiades' derivation and his reported ML
rule (Georghiades, 1985) is not correct. This is because that derivation did not consider the
end effects of each frame properly and also invoked an invalid symmetry assumption to simplify
the structure of the reported decision rule. In this paper, the correct optimum ML rule is derived.
Simulation results presented here shows a significant improvement in correct synchronization
probability performance of the correct optimum ML rule over Georghiades' incorrect ML rule. In
particular, for high signal-to-noise ratios, the synchronization probability performance of the
correct ML rule tends to the random data-limited upper bound while the performance of
Georghiades' incorrect ML rule pre-saturates at a significantly lower level. We shall also consider
a sub-optimum ML rule that accounts for the end effects of each frame, but also assumes the
invalid symmetry assumption. This sub-optimum rule has a performance intermediate between that
of the optimum ML rule and Georghiades' incorrect ML rule.

2. Joint Symbol and Frame Synchronization Problem

We consider PPM modulation over the direct-detection optical Poisson channel in which each
M-ary symbol duration is divided into M time-slot divisions, and a rectangular light pulse is sent in
the time slot associated with the transmitted symbol. The channel output is a Poisson process with
intensity rate A, + 4, when a light pulse is transmitted and A, otherwise. Here A, is the photo-

157



EESA M. BASTAKI and HARRY H. TAN

detector count rate due to the light pulse and A, is the count rate due to dark current and

background noise. Data transmission is formatted in successive frames with periodically inserted
fixed synchronization patterns. Each frame is assumed to consist of N data symbols composed of a
fixed L-symbol sync pattern and N-L random data symbols. No assumption is made to preclude
the presence of the sync pattern among the random data symbols. We shall represent each M-ary
symbol as a M-dimensional vector d = (d,,...,d,, ;) where

g - {/15 ; if the light pulse is the i - th slot,

0 ; otherwise.

Let the sync pattern be given by

S=(80,8,8,) (1)
where for 0<i< L -1,

S, =(S),S!,...8" ™). 2)

In the joint symbol and frame synchronization problem, the channel output corresponding to N
transmitted symbols are observed. Since the pulse slot timing is known, the sufficient statistics are
the photon counts in the NM time slots corresponding to the selected N transmitted symbols. Let

K = (Kyseoos Ky s Koo Koy pseees Ky ayagseees Ky 1) 3)

denote this vector of NM photon counts. There are NM possible starting positions for the sync
pattern S. The joint symbol and frame synchronization problem is to estimate this starting position.
We consider the maximum likelihood approach here. The optimum ML rule estimates the sync
pattern starting position as m, where 0 <m < NM —1 is chosen to maximize the likelihood that
(K,,....K . ;) are the ML photon counts corresponding to the transmitted frame sync pattern S .

2.1 ML Rule

Consider a candidate position m, 0 <m < NM —1. The starting position of S corresponds then
to the count K, . So (K,,...,K, ;) are the counts corresponding to random data symbols preceding
S, (K

corresponding to random data symbols following S. In order to consider all NM-candidate

K, ..u) are the counts corresponding to S, and (X,,,,, ,-..K,,_;) are the counts

moeees

starting positions, we need to consider the (N-L) random data symbols preceding and following S .

Hence denote
d: (iL""’iN—l) (4)

to be the N-L random data symbols following S and

d=(d,.rdy) )
to be the N-L random data symbols preceding S where

d,=(d],.,d"™", (6)

d,=(d,..,d"™", (7)
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and

dj, J /= As 5 if the pulse for the ithsymbolis in the jthslot. (8)
0 ; otherwise

Table 1 illustrates the relation between K,S,d, and d for N=4, L=2 and M=2 for each of the

NM candidate starting positions m.
The ML rule chooses its estimate to be the value of m that maximizes

Pr(K | m) = Probability distribution of K givenm. )

Similar to the approach taken in [1], Pr(K |m) can be derived by averaging over the random data
d and é,
Pr(K | m,d, é ) = Probability distribution of K givenm,d and é (10)

For the direct-detection optical channel the components of K are all conditionally independent

Poisson random variables given m, dandd. In examining Table 1 it can be seen that there are three
separate cases to consider

a) Casel 0<m<(N-L)M and m (mod M) =0
Suppose m=qM, where 0<¢<N-L. Then Pr(K |m,d,d) depends on (N-L-q) d,’sand q d,’s for a
total of (N-L) i.i.d. random data symbols.

b) Casell (N-L)M+1<m<NM -1
Pr(K | m,d,d)=Pr(K | m,d) depends on (N-L)i.i.d. d,’s.

c)Caselll 0<m<(N-L)M -1 and m(mod M) =k #0

Table 1: Relationship between 5.4,d,k for M=2,L.=2, N=4.

m m(mod M) | KoK K,K;K,KsK¢K,
0 0 S)sisVsldddlaldl
1 1 d3S9SySyS|dldsd]
2 0 d3diSSySisidid;
3 ! dydjdiSgsySysids
4=(N-L)M 0 dldldaldislsisls!
S 1 S\d}d}d)d}sys,s)
6 0 S7s\d)d)d)d}sy s,
7 1 SyS{Sid3d;did}s,

Here Pr(K |m,d,d) is a function of N-L-q-1 entire d, vectors and q entire d, vectors as well
as a function of part of another d, vector and part of another d, vector. The partial vectors are at

the two ends of the NM-vector K. So Pr(K |m,d,d) depends on N-L-q d,'s and q+1 d,'s for a

total of N-L+1 i.i.d. random data symbols. This case then differs significantly from the first two
cases above.
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Georghiades' incorrect derivation (Georghiades, 1985) of the ML rule makes the mistake of
assuming that only cases I and II hold and does not consider case III. In order to derive Pr(K |m),

let us first consider Pr(K | m,d,d)for each of the above three cases.

a) Casel 0<m<(N-L)M andm(modM)=0

Assume that
m=qM, (1)

where 0<¢g<N-L. Here

L-1 M-1 i o
; S/ K
PrCk [ mod,d) = [ [ st

i=0 j=0 (KiM+j+m )'

N-1— — f ' K“ +j+m — . 57 ' Ki, +j+m .
qﬁ[(d,.f AT itaor T ﬁ[(d,uz,,)T] I AT (12)

*
(KiM+j+m)! i=N—q j=0 (K1M+j+m)'

*

i=L j=0
where T' is the pulse slot duration. We also adopt the convention here H f@)=1

i=m

whenever n<m. Moreover indices are interpreted modulo NM.
b) Casell (N-L)M+1<m<NM -1
Here

Pr(K | m,d,d) = Pr(K | m,d)

L-1 M-1 i K. . N-1 M-1 11K +j+m A
TSt casonor JTT ML ATV it (13)

i=0 j=0 (Kint 1 jm)! i=L j=0 1M+j+m)!

c)Caselll 0<m<(N-L)M -1 and m(mod M) =k #0
Assume that

m=qgM +k, (14)
where 0<¢g<N-L-land0<k <M —1.
Here
L M e WMty Ty gy Ko
ek (md,d) = [T TLSL 2 ostor s T T el T
- i=0 j=0 (K1M+j+m)! i=L =0 (K1M+j+m)'
—1- j 1 K N-)M +k+ ' K +hk+
*M 1-k [(d]j\/—l—q +A,)T K c—(d,{r,l,qu/l,,)T' i/[_[l [(dN - A, )]k C—(ﬁ,{,,],qul,,)T'
=0 (K n-typ+k+7)! j=M—k (K (v-npte)!
N-1 M-l Kigsjom .
. [ + 20T g (15)
i=N-q j=0 (KiM+j+m)'
Note that
L-1 M-1
e—L(/lﬁ—M/l,,)T (16)
i=0 j=0
and that
N-1 M1 Kivj
ﬂ. Tl M+ j+m
iM+j+m
i=0 j=0
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are independent of m. Also note for the following cases that

a) Case 1
N-1-q( M-1 ; N-1 _
He—(d,- +4,)T H ~(d/ +2,)T" | _ ~(N=L)(4,+MA, i (18)
i=L \ j=0 i=N-¢\_j=0
b) Case 11
NM
e—(d,- +A,)T :e—(N—L)(AﬁMAn)T , (19)
i=L j=0
c) Case 111
Ndg-lf M- Nl (M
H ol +ar e 2T | _ = (N=L=D(A+MA)T (20)
i=L Jj=0 i=N-q\_ j=0
Define
N-1 M-1 AM+j+m
_ ~N(A+MA)T' (4,T")
Ci=e [T @1)

i=0 j=0

(C, is independent of m). Then using (16) - (20) in (12), (13) and (15) we obtain for the three cases
the following expressions for Pr(K | m,d, é).

a)Casel m=gM,0<qg<N-L.

. L-1 M-1 ) N—-l-g M-1 ) N-1 M-1 .
Pr(K"n,i,i) — C]HH(1+SIJ /ln)Ki,’l/I+j+m * (1+d1/ /in)KthHm ® (l_l_dl/ /ﬂn)KiM+j+riz (22)
i=0 j=0 i=L  j=0 i=N—q j=0
b) Case Il (N-L)M +1<m<NM —1.
. L-1 M-1 ) N-1 M-1 .
Pr(K |md,d) = C [ [ Ja+S/ /4,05 « (A+d/ | 4,)" mern (23)
i=0 j=0 i=L j=0
c) Case II1 m:qM+k,0Sq£N—L—1,0<k£M—
. . L-1 M-1 ) I-g M-1 ) N-1 M-1 .
Pr(K [m.d.d) =e*"C [ [[ [awsi rap™ e« T [Taxd! 12,)" 0 « (1+df | 2,)"
i=0 j=0 =L j=0 i=N-q j=0
M-1-k M-1 J X
% Hefdv =T (1+dN ~ q/ﬂ/n)K(N—l)M+k+/ % 67 No1—gT (1+dN g n) (V=DM ke (24)
Jj=0 j=M—-k
We next use (22) - (24) to obtain
Pr(K |m)=">"> "MV Pr(K |m.d,d). (25)
d d
In order to do this, define
C2 = ClM_(N_L) N (26)
which is independent of m. Also define for each i, 0<i<L-1,
J(i) = pulse slot position for the i - th symbol of the sync pattern S, (27)
and
x=(1+A1,/4)). (28)
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It then follows that

M-1
(1 + S,'j /ﬂln)KtMJerrm — xKiM+}'(,)+m , (29)
J=0
M-1 ) X M-1 K,
S TIa+d7ra,) x (30)
d, j=0 Jj=0
M-1-k P Mok
ST e rd, 12, s =y e a1
dyag J=0 =0
and
. P E
Z He N-1-gT (1+dN y //1)1) (N-DM+k+j e—i:T Zx (N=1)M +k+j +(M _k) (32)
j=M—k j=M-k

\lq

Using (29) - (32) in (25) then yields a relatively simpler expression for Pr(K | m). We express the
results for the three above cases below in terms of

L(m)=InPr(K | m)-InC, (33)

For the ML rule, it is equivalent to choose m to maximize L(m) since C, is independent of m. The
expressions for L(m) are identical in cases I and II, but different in case III.

a) Case I and Case II Either m(mod M) =0 or (N —L)M <m < NM -1

L—-1 N-1 M-1
L =093 Ky + DI, (34)
i=0 i=L Jj=o

b) Case Il m(modM) =k #0and0<m < (N-L)M —1.

L1 N-1 (M-l X M-1 % A M-1-k X
_ Mjim | (N=-1)M +k+j —Ag (N=1)M +k+j
L(m)—ln(x)E KiM+}(i)+m+§ In E X Inf » x +1In|e E x +k
i=0 j=0

= =0 j=0

+1In

M-1
e—ﬂl\,T'{ ZxK(Nfl)MJrk+j J +(M - k)} + A,T'-In(M) (35)

j=M=k

The ML rule is to choose m, 0<m < NM -1 to maximize L(m), where L(m) is given by (34) for
cases I and II, and by (35) for case III. The expression for L(m) differs in case III from cases I and
IT because of the two partial symbols at the ends of the frame. Note from (34) and (35) that
computation of L(m) for each m uses the counts corresponding to all N symbols in the frame.
Georghiades' incorrect ML rule is based on a likelihood formula which for each m uses only the
counts corresponding to the L symbols of the sync pattern. Since a low sync pattern overhead is
desired for high data rate throughputs, the frame length N is often significantly larger than L in
practice. Moreover, reasonably large values of L are usually employed to reduce the probability of
replication of the sync pattern in the random data portion of the frame. Hence it is meaningful to
consider the case when N becomes large relative to both L and M. In particular, the complexity of
implementing the decision rule should be examined. Table 2 gives the total number of
computations in terms of the number of addition, multiplications, integer power, logarithm and
exponential function evaluations to compute L(m) for all m.
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In this table, there are a total of N+L(M-1) m's for cases I and II and N(M-1)-L(M-1) m's for case
ITII. The total number of computations is evaluated in cases I and II for all N+L(M-1) m's and also
in case III for all N(M-1)-L(M-1) m's.

It can be seen from this table that, asymptotically for large N and fixed L and M, the
complexity of implementing the ML rule based on computing L(m) is of order N>. Georghiades'
incorrect ML instead has an asymptotic complexity of order N. In order to obtain this reduced
complexity Georghiades makes the incorrect assumption that A(m) is independent of m for all
0<m<NM -1, where

A(m) = E ln[Afo"’”*“’” } (36)

Table 2: Total number of computations for ML rule.

Total Number of Computations in Cases I and 1I

Computation Total Number
Addition [NM-LM+L-1][N+L(M-1)]
Multiplication | N+L(M-1)

Integer Power | [NM-LM][N+L(M-1)]

Logarithm [N-L+1][N+L(M-1)]
Total Number of Computations in Case 111
Computation Total Number
Addition [(N-L)M+L+5][N(M-1)-L(M-1)]

Multiplication | 3[N(M-1)-L(M-1)]

Integer Power | [NM-LM][N(M-1)-L(M-1)]
Logarithm [N-L+3][N(M-1-(L(M-1)]
Exponential 2[N(M-1)-L(M-1)]

Suppose this assumption is true. Then the ML rule can be based on choosing m to maximize L(m)
- A(m). The expressions for L(m)-A(m) in cases I, II and III are as follows.

a) Case I and Case II Either m(mod M) =0 or (N-L)M <m< NM —1.

J

L-1 L-1 M-1 p
L(m) - A(m) =In(x)) | Kot sitiym = > ln[ x Mg ] (37)
i=0 =0

i=0
b) Case IIl m(modM)=k#0and0<m<(N—-L)M —1.

L-1 L-1 M-1 —1 M-1-k
L(m) — A(m) = ln(x)z Kt'M+]‘(i)+m _ z ln{z xKix’l/l+_/+m J _ ll’l{ xK(Nfl)M+k+;' J_i_ ln[eﬂsT'[ xK(N—l)MJrkJr/' J_F k]
i=0 =0 =0

=0\ j=0

S

-1

+ h{e‘”[ xKvmoareke ]+ (M - k)] +A,T'—In(M) (38)
j=M-k

i
<
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The asymptotic computational complexity of computing all of the L(m)-A(m) is of order N.
Unfortunately, A(m) is not independent of m for all 0<m<NM -1. Hence the ML rule cannot be
implemented by choosing m directly to maximize L(m)-A(m).

2.2 Simplified ML Rule

Although A(m) is not independent of m for all o<m<nNm -1, it is independent of m for
restricted sets of integers m. Specifically, define for each k, 0 <k <m -1,

B, ={m:0<m< NM —1and m(mod M) = k}. 39)
It can then be seen from (36) that for each k, o<t <m -1, A(m) is independent of m for all

meB,. This property suggests the following approach towards reducing the number of
computations to implement the ML rule. In order to describe this approach define

max {f(x)] (40)

to be the value of x achieving the following maximum:

max{/ (x)} (41)

First note that since A(m) is independent of m for m < B,

m, = mag(1 {Lm)} = ma}gx*1 {L(m)— A(m)} (42)
But
max “{L(m)}= max ~ {mﬁgX{L(m)}} = max "{L(m,)} (43)

Equations (42) and (43) suggest the following two-step implementation of the ML rule.

Step 1
For each k, 0<k <M -1, determine
m, = m%x_l {L(m)— A(m)}. (44)

Step 2
The ML decision rule is the value » given by

A= max _{L(m,)} (45)

0<k<M-1

The advantage of this two step approach is because the asymptotic complexity (fixed M, L
asymptotic in N) of computing the [L(m)-A(m)]'s for all me B, is of order N for each k. So the
asymptotic complexity of step 1 is of order N. The asymptotic complexity of computing each of
the L(m)s in step 2 is also of order N. So the total number of computations involved in
implementing steps 1 and 2 is asymptotically of order N. Table 3 gives the exact number of
additions multiplications, integer powers, exponential and logarithm function evaluations. We
shall call this rule the simplified ML rule.
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Table 3: Total number of computations for simplified ML rule.

Total Number of Computations for Step 1

Computation

Total Number

Addition

(N-L)(M-1)[M(L+2)+L+4]+[N-+(M-1)L](ML+L-1)

Multiplication

[3(N-L)+L](M-1)+N

Integer Power

(N-L)(M-1)M(L+2)+[N+L(M-1)]ML

Logarithm (N-LY(M-1)(L+5)+[N+(M-1)L](L+1)
Exponential 2(N-L)(M-1)

Total Number of Computations for Step 2
Computation Total Number
Addition [(N-L)M+LA45](M-1)+(N-L)M+L-1
Multiplication | 3M-2

Integer Power

[(N-L)M](M-1)+(N-L)M

Logarithm

(N-L+3)(M-1)+N-L+1

Exponential

2 (M-1)

2.3 Sub-optimum Rule

The incorrect Georghiades ML rule is invalid because it does not consider the case III
expression for L(m) and also because it assumes the constancy of A(m) for all m. We next consider
sub-optimum rule which assumes just the constancy of A(m). This rule then chooses m to achieve
the following maximum,

max {L(m)— A(m)}.

0<m<NM -1 (46)
Similar to the above discussion on the simplified ML rule, the asymptotic complexity of this
sub-optimum rule is of order N. It is interesting to consider this rule because it only assumes the
constancy of A(m) for all m and does not also ignore the case III expression for L(m) as does
Georghiades' incorrect ML rule. Hence, in comparing the performance between the ML rule, the
sub-optimum rule and Georghiades' incorrect ML rule, it is possible to access the performance
deteriorations due to these two incorrect assumptions. The section below discusses the relevant
performance results.

3. Simulation Results

Computer simulation was used to evaluate the correct synchronization probability
performance. Figures 1 to 6 give the simulation results on the correct synchronization probability
of the ML, sub-optimal and incorrect ML rules for (N,L,M)=(4,2,2), (8,2,4), (12,2,8), (12,4,8),
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(12,6,8) and (20,4,4) respectively. These Figures give the correct synchronization probability as a
function of the average signal count 47 per slot for an average noise count per slot 4,7'=4

photons. It can be seen that the true ML rule performs from 3 to 5 db better than the incorrect ML
rule. The performance of the sub-optimal rule is intermediate between that of the ML rule and the
incorrect ML rule. In fact the performance of the sub-optimal rule is closer to that of the ML rule
than to that of the incorrect ML rule. This suggests that the constancy of the A(m) is a more robust
assumption than ignoring the case III expression for L(m).
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