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ABSTRACT: To study the aircraft response to a fast pull-up manoeuvre, a short period
approximation of the longitudinal model is considered. The model is highly nonlinear and includes
parametric uncertainties. To cope with a wide range of command signals, a robust adaptive fuzzy
logic controller is proposed. The proposed controller adopts a dynamic inversion approach. Since
feedback linearization is practically imperfect, robustifying and adaptive components are included in
the control law to compensate for modeling errors and achieve acceptable tracking errors. Two fuzzy
systems are implemented. The first system models the nominal values of the system’s nonlinearity.
The second system is an adaptive one that compensates for modeling errors. The derivation of the
control law based on a dynamic game approach is given in detail. Stability of the closed-loop control
system is also verified. Simulation results based on an F16-model illustrate a successful tracking
performance of the proposed controller.
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1. Introduction

Historically, the trend in the flight control industry has been to use classical techniques for
control design (Nelson 1998). Acceptable performance, simple control structure, and
moderate computational burden are the reasons for adopting classical control techniques. The
approach is to design several point controllers throughout the operating region and connect them
using gain scheduling (Adams, ef al 1994). Interpolation or blending point controllers we often use
trial and error with little theoretical guidance. Any performance and robustness guarantees in the
individual operating regions are lost in the transition region between point controllers (Spillman
2000). Dynamic inversion methods avoid the scheduling problem via feedback linearization
(Adams, ef al 1994). Like gain scheduling, dynamic inversion does not guarantee performance and
robustness since cancellation is practically imperfect.

To enhance the robustness of the inverse flight controller, a design based on u synthesis is

proposed by Reiner ef al (1995). The design utilizes a linearized model of the aircraft. Therefore, it
is useful for small uncertainty in the system parameters. A fixed H, controller is proposed by

Chaing et al (1990) for a fighter aircraft with multiple control efforts. One condition along the
manoeuvre trajectory is chosen as nominal and several other conditions along the manoeuvre
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trajectory represent the uncertainty for which the robust controller is designed. Sliding mode
control is another approach that is suggested by Hedrick and Gopalswamy (1990) to achieve a high
g—command and satisfy flying quality specifications. However, control saturation significantly
alters the performance for a high g —command.

To take into account the relation between real-time parameter variations and performance
requirements, linear parameter varying (LPV) control is examined by Spillman (2000) to determine
whether it is practical for large envelop flight control designs. The approach is combined with
L synthesis to ease conservatism. The method is based on linear matrix inequalities and can be

solved using the interior point method (Boyd et a/ 1994). The proposed controller does not allow
parameters’ rates to be modeled nor does it allow the locations of the controller poles to be
constrained.

A robust adaptive controller is proposed by Singh and Steinberg (1996) as an alternative
approach that ensures stability in the presence of parametric uncertainty. To derive the control law,
a hypersurface is designed such that for any trajectory evolving on this surface, the system tracking
error tends to zero. The objective of the control law is to drive the system error to the required
hyper-surface. However, the derivation assumes that the unknown nonlinear terms depend linearly
on the parameters to be estimated. Recently, an adaptive fuzzy logic algorithm was proposed for
flight control systems (Wilson, 2000). An inner loop controller is designed based on a linearized
aircraft model. Then, an outer-loop controller is employed based on fuzzy logic.

We propose here a robust adaptive fuzzy-logic algorithm for flight control during a fast pull-
up manoeavre. The control law is based on feedback linearization. Since feedback linearization can
hardly be exact, the control law is augmented to include adaptive and robustifying components so
that the system can cope with modeling uncertainties and achieve acceptable tracking. In section 2,
an F-16 short-period approximation of the longitudinal model is introduced. The need for a robust
adaptive fuzzy-logic controller is discussed. In section 3, adaptive fuzzy-logic control is reviewed.
Although it does not guarantee robustness, it is used to develop a fuzzy model for the nominal
nonlinearity of the system. The estimate of the nominal nonlinearity is used in the control law of
section 4 for feedback linearization. A complete derivation of the proposed control law is presented
in section 4. In section 5, the implementation details and simulation results are depicted. Section 6
concludes the paper.

2. Modeling equations and design objectives

The aircraft motions can be classified as lateral and longitudinal motion (Nelson 1998). The
rolling and yawing of the aircraft characterize the lateral motion. In the longitudinal mode, one
assumes that the motion is confined in the vertical plane. Our interest here is directed to the
g —command, a fast pull-up manoeavre that takes place in the vertical plane. Hence, we focus on
the longitudinal dynamics. The phugoid and the short period modes characterize the longitudinal
dynamics of an aircraft. The phugoid period is an order or two longer than the short period mode.
To study the aircraft response to the g-—command, it is sufficient to consider a short period
approximation of the longitudinal dynamics. The required model is derived by assuming that the
aircraft horizontal velocity U remains constant and by dropping the pitch angle from the states.

The short-period approximation of the longitudinal model, referred to the aircraft body frame, is
summarized in Lee and Hedrick (1994) as

(Lcosa + Dsina)
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ROBUST LONGITUDINAL AIRCRAFT- CONTROL
a 1s the angle of attack, g is the pitch rate, deis the elevator angle, and uis the control signal. The
angle of attack is defined astana = % , where W is the velocity along the z —axis of the aircraft

body frame, U is the velocity along the x —axis of the aircraft body frame and /, is the pitch

moment of inertia. The aerodynamic forces and moments D, M, and L are defined as

D = q_s(cdaa+cd5e5e) (4)
— chc
L = gs cLaa+7q+cL&,§e (5)
M = g R 6)
= gscdc,,a [
q ma 21/; q moe

V. 1is the aircraft speed, g is the dynamic pressure, and the coefficients c,are responsible for

the lift, drag, and pitch moment of the aircraft. The definitions and typical numerical values of the
variables and parameters used in (1)-(6) are given in Appendix 1.
The output y(t) is the normal acceleration felt at the pilot’s position.

[l .

W) = 4,+=4 (7)
g

A4 = Lcosa+ Dsina )
mg

A 1s the acceleration at the center of gravity of the aircraft. Equations (1), (2), (3), and (7) can be
written as
io= f(x)+bu ©)

y(t) = hx) (10)

wherex=[a ¢ | €R*,ueR, yeR,and b=[0 0 &,
Differentiating (10) once yields

W) = Alx)+ Bla (11)
Define A(x)and S(x)to be

Oh(x)

Alx) = == /() (12)
Oh
Alx) = a(f)lz (13)
It is straightforward to show that g (g) is given by B
Blx) = kenZ—;[cwecosaJrcd& sina]+kel§%cm§€ (14)
yy

As shown in Lee and Hedrick (1994), f (g) is non-zero. Hence, the nonlinear system (9)-(10) has a
relative degree equal to one and admits feedback linearization. Choose the control law as

1
u = ——[-Alx)+V] (15)
B(x)
We select v such that the output y(t) would track a reference trajectory y, . This is achieved by
v = y,—ke (16)
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In the ideal case, the positive constant k determines the location of the closed loop pole of the error
model. The error signal is defined as

e = y-y, (17)
The reference signal y, is assumed to be smooth such that its derivative y,exists.

To adapt to various flying conditions, the nonlinear functions A(g) and ﬂ(&) can be estimated
on-line. Fuzzy logic provides an attractive technique to represent such non-linearity. The power of
fuzzy models stems from the universal approximation theorem (Kosko 1997). From the
implementation point of view, adaptive fuzzy systems are attractive since they depend linearly on
the parameters to be estimated. In section 3, an adaptive fuzzy-logic controller is derived. The
control law becomes

R I

O A =
Ak) = 6,¢() (19)
Blx) = 6,¢(x) (20)

where £ is the vector of fuzzy basis functions to be defined later, é 18 the vector of estimated

parameters used to model A(x), and 0 5 18 the vector of estimated parameters used to model S (x).

According to the universal approximation theorem (Wang 1994), there exist fuzzy systems that
approximate the functions A()_c) and ,[)’()_c) with arbitrary accuracy. However, to avoid the rule

explosion phenomenon, the size of ¢ is kept small. This helps in reducing the rule base and

lightening the computational burden but introduces modeling errors and raises the robustness
issues. In section 4, we redesign the control law such that the effect of modeling error is
accommodated and compensated for.

3. Adaptive fuzzy-logic control of the longitudinal motion

In this section, we design an indirect adaptive algorithm to control the aircraft acceleration so
that it tracks a given g—command. The control law is given in (18). As pointed out earlier, the

estimates A and ,é will have modeling errors when they are compared with their true values
Aand S . In Wang (1994), a supervisory controller is added to the control law to ensure robustness.
The supervisory controller utilizes a sign function and may lead to chattering so it is not used here.
In this paper, we will use the estimates A and ,@ as nominal values of A and f,. In the coming

section, a robust adaptive controller is redesigned based on A, and S, .

Consider the T-S fuzzy system with center average defuzzification. The fuzzy systems are
used to model the nonlinear functions A and £ . Assume for example that A is modeled using M

rules that are denoted as R',R?,---,R" . The i" rule takes the form R'if x, is Fand x, is F, and
x, is Fy then A is 6,.

The linguistic variables x,, x,, and x, correspond to the state variables a, ¢, and oe,
respectively. Each linguistic variable x; is assigned a fuzzy set F' ]’ that is defined using a guassian

membership function x4 ; j=1,2,3. Let x, belong to the universe of discourse U, c R. The
membership function 4, maps U, to the set [0,1]. The consequent of the i” rule is assigned the

singleton value &,. The function A is modeled as
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M
204,
_ =l

Al) = -5 1)
Z H;
i=l1
where g, is the strength of the i™ rule when it is fired and is calculated as
3
o= T]u. (22)

M
It is assumed that the fuzzy system is constructed such that 0 < x <1 and Z,u[ # 0 for all

i=1

x,eU;,j=L23. Equation (21) can be written as

Alx) = 0.¢(x) (23)
where
o, = 1[o 6, 6
'x) = g ¢, $url
é/i = s i=1,-,

M b
z,ui
i=1
The functions ¢,,i=1,---,M, are called the fuzzy basis functions. In an adaptive system, the

values @.,i=1,---,M,, are tuned on-line to ensure the fuzzy model is close enough to match the

actual system. An expression similar to (23) can model the nonlinear function £ .
It follows from (11) and (17) that

¢ = j-y, = Ax)+plak-7, (24)

Using (16) and (18), it is possible to write y,as

Voo = M)+ B+ ke (25)
Substituting (25) into (24), the error model can be expressed as

¢ = Alx)+ Blxu—ke (26)
The error functions Aand ﬁ are defined as

§A = 0, _éA

Oy = 0 _éﬂ

Based on the universal approximation theorem, there are fuzzy systems A"and " that can
approximate Aand £ with arbitrary degree of accuracy. Hence, it is possible to write

Alx) ~ A(x) = 6,¢() 27)
plx) = px) = 0,4k) (28)
Using (19), (20), (27), and (28), the error model (26) becomes
¢ = 0,5(x)+0,¢(x)-ke (29)
The estimation errors, é , and é 5 » are defined as
g, = 0,-0,
O, = 0,-0,

To derive the adaptation laws of QN L and é 4> consider the candidate Lyapunov function
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1 2 IN
V. = —pe +=0
2P

ZA

ra,+0,r,0, (30)

The weighting factor, p, and the weighting matrices, I',and I';, are positive definite. The time
derivative of (30) along the trajectory (29) is
Vo= —pke’ +8,¢(x)pe+8 ¢ (x)peu+8,T,0, +0,T,0, (31)

The adaptation laws are chosen as
0, = -I'¢lx)pe (32)
0, = -T,'¢(x)peu (33)

Equations (32) and (33) force the right hand side of (31) to be negative definite. Hence, equation
(30) becomes a true Lyapunov function and the error model (29) is asymptotically stable. Although
it is possible to argue that adaptive fuzzy logic control ensures that e(t) will converge to zero, we
have to remember that the above discussion overlooks the modeling errors (A - A*)and (,B -p )

These modeling errors are inherent in fuzzy models because of the limitations on the sizes of the
rule bases. In Wang (1994), a supervisory control signal is added to the adaptive fuzzy controller to
ensure stability. However, the supervisory control signal is implemented using a sgn(.) function

and may lead to the well-known chattering phenomenon. This observation motivates the use of the
robust adaptive fuzzy controller that is derived in section 4.

4. Robust adaptive fuzzy-logic control

Consider the input-output differential equation (11). Assume that the nominal values
Ao(g) and S, ()_c) are available. For example, they could be provided by an expert or estimated

based on an adaptive algorithm. The control law is selected as

LA, @)+v,] (34)

AW

The control signal v, is defined below. Its objectives are to ensure tracking of the desired output

u =

trajectory and robustness in the presence of modeling errors. Substituting (34) into (11) leads to

; plx) J plx)
= Alx)+|—5-1 —-—=A, (x 35
Y (—)+[ﬂo (E) Vo +Vn ﬂo (E) 0(—) ( )
Define v, and y as follows
v, = y,—ke+u, (36)
plx) J plx)

= Alx)+| —%-1, - A, x 37
’ (_)J{ﬂo @ )8 ) 7

The control signalu,, defined below, consists of two components; an adaptive fuzzy component

and a robustifying component. Substituting (36) and (37) into (35), it is possible to write the system
error model as
e = —ket+y+u, (38)

Let 7 be a fuzzy system that would approximate y with an acceptable accuracy ¢, i.e.

e, = y—y, ‘5y‘<5 (39)

v

The fuzzy system y"is defined as
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o= 04y d) (40)

where Q;is the optimal parameter vector that satisfies (39) and & (.)is the vector of fuzzy basis
=7
functions. The dependency of ¢ Lo X, and y, follows from (36), (37), and (49). In the special
case where #, = 3, the basis functions ¢ , depend on x only; see (37). It is possible to rewrite (38)
as
é = —kete, tu,+y’ 41
The control component u, is designed such that it cancels the effect of the modeling error y*and

ensures robustness in the presence of ¢, . Let u, be

AT .

u, = _Q;/gy()_cayd’yd)—i_ue (42)
where é , 1s the estimate of Q: and u, is the robustifying component to be defined below.
Equation (41) can be rewritten as

. ~T

e = —ke+Qy£7+ue+8y (43)

where 8, =0 -0,
Noting that &, acts as a disturbance applied to the error model (43), the calculations of é , and
u, will be based on a dynamic game approach (Chen ef al 1998). The objective is to find the
optimal control law u, that minimizes a performance index,/, in the presence of the worst-case
disturbance ¢, € L, [0, i J Consider the following minimax problem
iy

. 2 2 2
min , max I(qe +ru, —PSY)dt
u,eL, 0,1/]876142 O,t/» 0

Define the performance index J as
i

J o= [(ge* +ruZ - p2e?Jar (44)
0
where ¢g, r, and p are positive weighting factors to be chosen by the designer and they have a

standard interpretation in the optimal control literature. Equation (44) can be rewritten as
1 ~7, \~ 1 ~r1 ~
J = pez (0) - pez (tf )+ ;Q}/ (O)Q}' (O) - ;Q}/ (tf )Qy (tf )

+ g ()4 r () pie (t)+di( pe()+Lg" (t)éy(t)jdt (45)
0 t o

Carrying out the derivative inside the integral sign and substituting for é(t) from (43), we can
rewrite (45) as

J = e 0)-pel, )+ 008,08, B, )

+ [(g=2pk)e* (1) +rul (6) = o7&} (6) +- 2 pu, (0)elt)

0
~ 2 ~ ~
+2pa, (0e(t)+2p8, (1) (1)e(t) + ;QZ (c)e, (t)ar (46)
By completing the squares, it is possible to rearrange (46) as
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J = e 0)-pele )28 (08, 0-22 7, B ()

+1[q —2pk +p{%_#j}2(f)+1(me(t)+ pelt))

r
[0~ L)) 20z, 000+ L3, 0 @)

The minimax problem is achieved by selecting
q—zpk+p2(%—l2) =0 (48)
u, = —ge(t) (49)
0, = -ops (0)elr) (50)

et) = Lé,(0) (51)

It follows from (39) and (51) that e(¢) is finite since ‘57 (t)‘ is bounded by &. The error, e(t), can

. 1
be made smaller by decreasing p. On the other hand, » must be chosen such that —>—-to
rop
ensure that (48) has a positive definite solution, p Hence, if p is decreased, » must also be
decreased which may lead to excessive control actions.
In order to further investigate the stability of the closed-loop control system, consider the
following candidate Lyapunov function

1 2 1 ~T ~
V = —e+—80.,6 (52)

2 ZOp e e
The time derivative of (52) along the trajectory (43) is

Vo= e84,
op
, =T 1 ~7 4
= —ke +Q7£ye+uee+8ye+ggygy (53)
Using (49)-(51), it is possible to rewrite (53) as
4
P p r p

It is clear that the right hand side of (54) is negative definite provided that £ >0, p > 0,and

— 2 —. All the previous conditions can be satisfied since &, p,7,and p are the designer’s choice.

rp

So, we conclude that the proposed control algorithm stabilizes the aircraft error model (43). The
implementation details and some simulation results of the proposed controller are given in section
5.
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5. Implementation of the proposed controller

In this section, we illustrate via simulation the performance of the proposed controller. The
implementation steps can be summarized as follows:
1- Obtain the nominal values A, and £, . This can be done based on an expert’s knowledge or on

an identification algorithm. In the present aircraft model, we assume that £ is given by (14)
and A, is estimated based on the adaptive technique described in section 3.

2- Select positive values for the controller’s parameters k,r, p,q,and o . Then, solve (48) for p.

Note that we must select 1 > Lz to ensure that the solution of (48) yields a positive definite
rop
answer.

3- Assume Q; to be locally constant and use the adaptation law (50) to calculate the estimate é /-
Practically, the projection algorithm is implemented, instead of (51), to guarantee a bounded
estimate é ,(Wang 1994).

4- Calculate the control signal u . It follows from (34), (36), (42), and (49), that uzis given by

1 ) AT p
o= AW —ke-dlg Lo 9
B,x r
r=23.33 r=1
6 T - - 6 - -
)} 27 o 2y
£ £
X X
g of g of
B =X
2 2
4 4
0 1 2 3 4 5 0 1 2 3 4 5
secs. secs.
r=0.5 r=0.1
6 T T T 0.01 T T T
4+ 0
S S
(0]
o 2+ 3-0.01
£ S
X X
g 0f @ 0.02
B =X
-2 0.03
4 ‘ s 0.04
0 1 2 3 4 5 0 1 2 3 4 5
secs. secs.

Figure 1. Tracking error performance of the proposed controller for different attenuation factors
2

p-=r.

Two fuzzy systems are included to implement (55). The first fuzzy system calculates the
nominal valueA . The second fuzzy system is an adaptive one and is meant to compensate the
function y*; see (41) and (42). The input to the first fuzzy system is the state vector x . Each state is

assigned three Guassian membership functions corresponding to the linguistic values positive, zero,
and negative. All membership functions are normalized and have standard deviations 0.33. The
centers of the membership functions are placed at 1, 0, and —1, respectively. The normalization
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factors of «, g, and ode are selected to be 0.667, 0.1, and 2, respectively. The second fuzzy system
has two additional inputs; namely y, and y,. The membership functions are similar to those used

for x with the normalization factors adjusted according to the command signal. It is assumed that

the nominal value f3,(x) is 20% off the true value S(x). The controller parameters are selected as

2

p=500, r=p°, oc=2, and k =1. The initial values of é ,are initialized with random numbers

in the range [— 0.05,0.05]. The reference trajectory, y,, is generated via a first order system with a
one-second time constant. Figure 1 depicts the performance of the proposed controller for a

Sgcommand signal for different values of r. As expected, as r decreases, the tracking error

decreases. However, Figure 2 shows that the cost of a very small tracking error is an unacceptably
active control signal.

2 4 5 0 1 3 4 5
secs.
r= r=0.1
0.4
0.2H
0 [ iy
-0.2 —
-0.4
0 2 4 5 0 1 2 3 4 5

Figure 2. Control activities of the proposed controller for different attenuation factors p* = r.

6. Conclusions

The short-period approximation of the aircraft longitudinal model is highly nonlinear. Fuzzy
logic has been used to compute the nominal values of such non-linearity. Based on the nominal
values of the non-linearity, conventional feedback linearization has been modified to ensure
robustness and acceptable performance. Adaptive and robustifying components have been added to
the feedback linearization control law. The derivation of the proposed controller has been given in
detail. It has been also shown that the tracking error has remained finite and made small using a
certain tuning parameter. The stability of the proposed control system has been verified using the
second method of Lyapunov. Simulation results have confirmed our theoretical analysis and
demonstrated the capability of the system in tracking a high g-command with acceptable error and
control activity.
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Appendix 1: Variables definitions and values at Mach 0.9 and 6096 m altitude.

Variable Definition Value

o, Air density 0.65381 kg/m’

q Dynamic pressure q=05p,V>Nim*
S Surface area 27.87899 m’

c Mean aerodynamic cord 3.450336 m

I, Distance from cg to pilot 4.244645 m

m Mass 9530.302 kg

g g-acceleration 9.8 m/sec.”

U Horizontal velocity 284.4 m/sec.

1, Moment of inertia 73046.53 kg m”

k, Elevator gain 20.0

., Aerodynamic force due to a 4.0 /degree

L Aerodynamic force due to g 3.162 (unitless)
Crs Aerodynamic force due to de 0.55 (unitless)

Cpi Aerodynamic moment due to ¢ | 0.1146 (unitless)
Coug Aerodynamic moment due to g -2.382 (unitless)
Coso Aerodynamic moment due to de | -0.6933 (unitless)
Chy Aerodynamic force due to o 0.151261 (unitless)
Cus Aerodynamic force due to de 0.009912 (unitless)
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