
Science and Technology, 7 (2002) 199-209
© 2002 Sultan Qaboos University

Towards Formulation of a Complex Binary
Number System

Tariq Jamil*, David Blest** and Amer Al-Habsi*

*Department of Information Engineering, College of Engineering, Sultan Qaboos
University, P.O. Box 33, Al Khod 123, Muscat, Sultanate of Oman. **School of
Mathematics and Physics, University of Tasmania, Launceston, TAS 7250,
Australia.

 نحو نظام للأرقام المركبة الثنائية

 طارق جميل ، ديفيد بلست وعامر الحبسي

تعامل بشي من عدم الالفة نسبة الى الأرقام الحقيقة بغض النظر عن) المعقدة(لسنوات عديدة ما زالت الأرقام المركبة : خلاصة
في هذه الأيام عمليات الحاسوب التي تشمل أرقام . الحاسوبيةانتشار استعمالاتها في تطبيقات عديدة في مجالات الهندسة الكهربائية و

تنفذ في كثير من الأحيان بواسطة تطبيق طريقة تقسيم أجزاء الرقم المركب إلى مكوناته وتنفيذ العمليات الحسابية) معقدة(مركبة
لعمليات الحسابية على كل جزء ثم فالجزء الحقيقي والخيالي من الرقم المركب يفصلوا عن بعض وتنفذ ا . على كل جزء على حدى

هذه الطريقة في تعقيد العمليات الحسابية على الأرقام المركبة تحث . تجمع النتائج لكل جزء لتركيب النتيجة النهائية للعملية المركبة
يذ العمليات الحسابية على إيجاد طريقة لمعاملة الأرقام المركبة تحث على إيجاد طريقة لمعاملة الأرقام المركبة كوحدة واحدة وتنف

ناقشنا العمليات الحسابية . j-1-)(في هذا البحث قمنا بتحليل واقتراح النظام الرقمي الثنائي المركب بأساس . عليها بطريقة مباشرة
 .على عددين في هذا النظام واوضحنا الدراسات القائمة حاليا في مجال الحاسوب

ABSTRACT: For years complex numbers have been treated as distant relatives of real numbers
despite their widespread applications in the fields of electrical and computer engineering. These days
computer operations involving complex numbers are most commonly performed by applying divide-
and-conquer technique whereby each complex number is separated into its real and imaginary parts,
operations are carried out on each group of real and imaginary components, and then the final result of
the operation is obtained by accumulating the individual results of the real and imaginary components.
This technique forsakes the advantages of using complex numbers in computer arithmetic and there
exists a need, at least for some problems, to treat a complex number as one unit and to carry out all
operations in this form. In this paper, we have analyzed and proposed a (–1–j)-base binary number
system for complex numbers. We have discussed the arithmetic operations of two such binary numbers
and outlined work which is currently underway in this area of computer arithmetic.

KEYWORDS: Complex Binary Number, Addition, Subtraction, Multiplication, Division.

1. Introduction

T he use of complex numbers in mathematics can be traced as far back as 1545 when Cardano
used the notation √–1 during investigation of the roots of polynomials. Later, Euler in 1777

introduced the abbreviation i for √–1 and originated the a + ib notation to represent complex
numbers (in electrical and computer engineering, we tend to replace the symbol i with j because it
is easier to distinguish between the number 1 and j than 1 and i). Since then, complex numbers
have played a truly unique role in the development and research of modern science and
engineering. In the fields of electrical and computer engineering, the application of Fast Fourier
Transform in most digital signal processing algorithms, and the geometric analysis of pixels in
graphics and image processing owe their advantage to the use of complex numbers. Despite their
widespread applications, complex number operations have, to a large extent, been treated as just an
add-on patch to the basic operations of real arithmetic. Today, even with the availability of over

199

TARIQ JAMIL, DAVID BLEST and AMER AL-HABSI

100-million transistors on a single IC-chip (Geppert, 1999), virtually the entire complex arithmetic
involves the application of “divide-and-conquer” technique, whereby a complex number is broken-
up into its real and imaginary parts and then operations are carried out on each part as if it were a
part of the real arithmetic. Finally, the overall result of the complex operation is obtained by
accumulation of the individual results. For instance, addition of two complex numbers (a + jb) and
(c + jd) requires two separate additions (a + c) and (b + d) while multiplication of the same two
complex numbers requires four multiplications (ac), (ad), (bc), (bd), one subtraction (j2bd = – bd),
and one addition (ac + j(ad + bc) + (– bd)). This can be effectively reduced to just one complex
addition or only one multiplication and addition respectively for the given cases if each complex
number is represented as one unit instead of two individual units.

The pursuance of providing equal opportunity representation to complex numbers has resulted
in some efforts of defining binary numbers with bases other than 2. In 1960, Donald E. Knuth
described a “quater-imaginary” number system with base 2j and analyzed the arithmetic operations
of numbers using this imaginary base (Knuth, 1960). However, he was unsuccessful in providing a
division algorithm and considered it as a main obstacle towards hardware implementation of any
imaginary-base number system.

Walter Penney, in 1964, attempted to define a complex number system, first by using a

negative base of – 4 (Penney, 1964) and then by using a complex number (–1+j) as the base
(Penney, 1965). However, the main problem encountered with using these bases was again the
inability to formulate an efficient divison process. Stepanenko (1996) utilizes the base j√2 in which
the even powers of the base yield real numbers and the odd powers of the base result in imaginary
numbers. Although partly successful in resolving the division problem as an “all-in-one” operation,
in his algorithm “…everything…reduces to good choice of an initial approximation…” in a
Newton-Raphson iteration which may or may not converge.

In an earlier paper (Jamil et al 2000), we revisited Penney’s number system of base (–1+j) and

extended his work by providing algorithms for converting integers, imaginary, fractional, and
floating point numbers into (–1+j)-base binary number system, including description of the basic
arithmetic operations based on this new number system.

In this paper, we concentrate our efforts on providing algorithms and arithmetic operations for

(–1–j)-base binary number system. In addition to this, we have provided algorithms for obtaining
conjugate and magnitude of the given (–1–j)-base complex binary number. This will help conclude
the fact that both (–1+j) and (–1–j) are excellent bases for facilitation of complex numbers’
representation as a single entity. This paper is organized as follows: In Section 2 we present an
analysis of (–1–j)-base binary number system. In Section 3, we present algorithms for converting
various types of numbers into the proposed (–1–j)-base binary number system. This is followed by
an analysis of arithmetic operations in Section 4. In Section 5 we present algorithms for obtaining
conjugate and magnitude of a given (–1–j)-base complex binary number. Finally, in Section 6 we
present conclusion and a synopsis of the ongoing work being done by us in this area.

2. The Base –1–j

The value of an n-bit binary number with base (–1–j) can be written in the form of a power
series as follows:

an-1(-1-j)n-1 + an-2(-1-j)n-2 + an-3(-1-j)n-3 + … + a2(-1-j)2 +a1(-1-j)1 +a0 (-1-j)0 (1)

where the coefficients an-1,an-2,an-3,…,a2,a1,a0 are binary (either 0 or 1). Table 1 gives some real and
imaginary numbers along with their complex binary representations (base –1–j).

 200

TOWARDS FORMULATION

Table 1: Binary representations for some real and imaginary numbers (base –1–j).

Real No. Complex
Binary Number

Imaginary No. Complex
Binary Number

–5 1100 1101 –j5 111 0011
–4 1 0000 –j4 111 0000
–3 1 0001 –j3 111 0111
–2 1 1100 –j2 111 0100
–1 1 1101 –j1 0011
0 0000 j0 0000
1 0001 j1 0111
2 1100 j2 0100
3 1101 j3 11 0011
4 1 1101 0000 j4 11 0000
5 1 1101 0001 j5 11 0111

3. Binary representation for complex numbers

3.1 Conversion algorithm for real integers1
Let’s first begin with the case of positive integers N. To represent N in the proposed (–1–j)-

base binary number system, we express N in terms of powers of 4 using the division process. Thus

Nbase 4 = ∑ qi 4i (2)

This “normalized” representation is unique when 0≤ qi< 4. In that case the non-zero ‘digits’
…, q5, q4, q3, q2, q1,q0 are called the base 4 representation of N. If the constraint on the qi is
removed, then we call it an un-normalized base 4 representation of N, which is not unique. Now
convert the base 4 number …, q5, q4, q3, q2, q1,q0 to base – 4 by replacing each digit in odd location
q1, q3, q5, … with its negative to get

(…, q5, q4, q3, q2, q1, q0)base 4 = (…, -q5, q4,- q3, q2, -q1, q0) base – 4 (un-normalized)

We normalize the new number (i.e. get each digit in the range 0 to 3) by repeatedly using the
operation of adding four to the negative digits and adding a one to the digit on its left. This
operation will get rid of the negative numbers, but might create some digits with a value of 4
after the addition of a 1. To normalize this, we replace the four by a zero and subtract a one
from the digit on its left. Of course this subtraction might once again introduce negative digits
which will be normalized by the previous method, but this process will terminate! What is
interesting is that with negative bases, all integers, positive or negative have a unique positive
representation. As an example

55base10 = (3,1,3)base 4 = (3,–1,3) base – 4 = (4,3,3) base – 4 = (–1,0,3,3) base – 4
 = (1,3,0,3,3) base –4 (normalized)

To represent the given number in the base (–1–j), we replace each digit in base – 4
representation with a four bit sequence according to Table 2, which yields:

55base10 = (1,3,0,3,3) base – 4 = 0001 1101 0000 1101 1101 base –1–j

1 See Figure 1 for a program in C language to convert real integers into (–1–j)-base complex binary number system.

 201

TARIQ JAMIL, DAVID BLEST and AMER AL-HABSI

To convert a negative integer into (–1–j)-base representation, we simply multiply the representation
of the corresponding positive integer with 11101 (equivalent to –1base–1–-j) according to the
multiplication algorithm given in Section 4.3.
Thus – 55base10 = (0001 1101 0000 1101 1101) x (11101)

= 0000 0001 1100 1101 1101 0001 base –1–j

Figure 1: A program in C language for conversion of real and imaginary integers to (–1–j)-base
complex binary number system.

/* Program for Real and
Imaginary */
/* Integers Conversion
to (–1–j)-base */
/* Complex Binary Number
System */
/* Author: Amer Al-Habsi
*/
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include "base1j.h"
int clear(int *a, int n)
{ int i;
 for(i=0; i<n-1;
i++)
 a[i]=0;
 a[n-1]=1;
/*Length = 1*/
 return 0;}
int print(int *a)
{ int i;
 for(i=MAX-1; i>=0;
i--)
 printf("%i
",a[i]);
 return 0;}
int print_bits(int *a,
int n)
{ int i, digits;
 i=n-1;
 while(a[--i]==0) ;
digits=i;
 for(i=digits;
i>=0; i--)
 printf("%i",a[i]);
 return 0; }
int sprint_bits(int *a,
int n, char *s)
{ int i, digits;
 i=n-1;
 while(a[--i]==0 &&
i>=0);

digits=i;
 if(digits==-1){

sprintf(s++,"0");
 return 0; }
 for(i=digits;
i>=0; i--)

sprintf(s++,"%i",a[i]);
 return 0;}
int int2basen(int x, int
n, int a[])
{ int i, remainder,
dividend;
 i=0;
 do {
 dividend=x/n;

 remainder=x%n;
 a[i++]=remainder;
 if(i==MAX-1)
return -1;

 x=dividend;}
 while(dividend!=0)
;
 a[MAX-1]=i; return
0;}
int basenegative(int
a[])
{ int i;
 for(i=1; i<MAX-1;
i+=2)
 a[i]=-a[i];
 return 0;}
int done(int a[], int n,
int size)
{ int i;
 for(i=0; i<size-1;
i++)
 if((a[i]>=n) ||
(a[i]<0))

return 0;
 return 1;}
int normalize(int a[],
int n)
{ int i;
 do{for(i=0; i<MAX-
1; i++)
 if(a[i]<0){

 a[i]+=n;
++a[i+1];}
 for(i=0; i<MAX-1;
i++)
 if(a[i]==n){
 a[i]=0; --
a[i+1];}

while(!done(a,4,MA
X));

 return 0;}
int normalized2bits(int
bits[], int a[])
{ int i, digits;
 i=MAX-1;
 while(a[--i]==0) ;
digits=++i;
 for(i=0;
i<digits;i++){
 if(a[i]==0){
 bits[i*4]=0;
bits[i*4+1]=0;
 bits[i*4+2]=0;

 bits[i*4+3]=0;}
 else if(a[i]==1){
 bits[i*4]=1;
bits[i*4+1]=0;
 bits[i*4+2]=0;

 bits[i*4+3]=0;}
 else if(a[i]==2){

 bits[i*4]=0;
bits[i*4+1]=0;
 bits[i*4+2]=1;

 bits[i*4+3]=1;}
 else if(a[i]==3){
 bits[i*4]=1;
bits[i*4+1]=0;
 bits[i*4+2]=1;

bits[i*4+3]=1;}}
 i=4*MAX-1;
 while(bits[--
i]==0) ; digits=++i;
 bits[MAX*4-
1]=digits;
 return
(digits);}
int
normalized2string(char
*s, int a[])
{ int i, digits;

char *lut[]=
{"0000","1000","00
11","1011"};

 char *temp, c;
temp=s;
 i=MAX-1;
 while(a[--i]==0)
digits=++i;
 for(i=0; i<digits;
i++){

sprintf(s,"%s",lut[a[i]]
);

 s+=4;}
 *s='\0';

s=temp;
 for(i=0;i<digits*2
;i++) {
 c=s[i];

 s[i]=s[digits*4-
i-1];
 s[digits*4-i-
1]=c; }
 return digits;}
int int2base1j(int
bits[], int r)
{ int temp[MAX*4];
 int i;
 int
minus1[]={1,0,1,1,1};
 int a[MAX];
 clear(a, MAX);
 if(r==0){
clear(bits,MAX*4);
 return 0; }
 if(r>0){int2basen(
r, 4, a);

 basenegative(a);

;

 202

TOWARDS FORMULATION

Table 2: Equivalence between base –4 and base (–1–j) representations.

base –4 base (–1–j)
0 0000
1 0001
2 1100
3 1101

3.2 Conversion algorithm for imaginary integers2

To obtain binary representation of a given positive or negative imaginary number, we simply
multiply (according to algorithm in Section 4.3) the corresponding (–1–j)-base representation of
positive or negative integer with 111 (equivalent to jbase10) or 11 (equivalent to –jbase 10), as required.

Thus

j55base10 = (0001 1101 0000 1101 1101) x (111)
 = 0000 0001 0001 0000 0100 0011 base –1–j
– j55base10 = (0001 1101 0000 1101 1101) x (11)
 = 0000 0111 0111 0100 0111 base –1–j

3.3 Conversion algorithm for decimal fractions3

The procedure for finding the binary equivalent for fractions in base (–1–j) is based on the
usual approach to obtaining ordinary binary representations. Any fraction F can be expressed
uniquely in terms of powers of ½ = 2–1 such that F = r0 = f1.2–1 + f2. 2–2 + f3. 2–3 + f4. 2–4+ … up to
machine limit. Then the coefficients fi and remainders ri are given as follows:
Initially if 2r0 – 1 < 0 then f1 = 0 and set r1 = 2r0 or if 2r0 – 1 ≥ 0 then f1 = 1 and set r1 = 2r0 – 1.
Then if 2ri – 1 < 0 then fi+1 = 0 and ri+1 = 2ri or if 2ri – 1 ≥ 0 then fi+1 = 1 and ri+1 = 2ri –1

We continue this process until ri = 0 or the machine limit has been reached. Then, for ∀fi = 1,
we replace its associated 2–i according to Table 3 (only the first four values of i are listed in this
table; for i>4, refer to Table 4).

Table 3: Equivalence between fractional coefficients and base (–1–j) representations.

i 2–i base (–1–j)
1 2–1 1.11
2 2–2 1.1101
3 2–3 0.000011
4 2–4 0.00000001

As an example, let F = r0 = 0.6875base10
Initially 2r0 – 1 = 2(0.6875) – 1 = 0.375 > 0 ⇒ f1 = 1, r1 = 2r0 - 1 = 2(0.6875) – 1 = 0.375.
Then 2r1 – 1 = 2(0.375) – 1 = – 0.250 < 0 ⇒ f2 = 0, r2 = 2r1 =2(0.375) = 0.750

2 See Figure 1 for a program in C language to convert imaginary integers into (–1–j)-base complex binary number
system.
3 See Figure 2 for a program in C language to convert real/imaginary fractions into (–1–j)-base complex binary number
system.

 203

TARIQ JAMIL, DAVID BLEST and AMER AL-HABSI

Figure 2: A program in C language for conversion of real and imaginary fractions to (–1–j)-base
complex binary number system.

/* Program for Real
and Imaginary
*/
/* Fractions
Conversion to
*/
/* (–1–j)-base Complex
Binary Number */ /*
System
*/
/* Author: Amer Al-
Habsi
*/

#include <stdio.h>
#include <stdlib.h>
#include "base1j.h"
#define FRACPART 80
#define INTPART (MAX-
FRACPART)
#define ARBIT 0

void print_frac(int
bits[], int left, int
right)
{ int i, j;

for(i=FRACPART+left-1;
i>=FRACPART;i--)
 printf("%i",
bits[i]);
 printf(".");
 for(i=FRACPART-1,
j=0; j<right; i--,
j++)
 printf("%i",
bits[i]);}
void neg_frac(int
bits[])
{ int temp[MAX*4];
 int i;
int
minus1[]={1,0,1,1,1,0,
0,0,0,0,0,0};
 clear(temp,MAX*4);

mult(minus1,bits,12,MA
X,temp);
 for(i=0;
i<MAX*4;i++)
 bits[i]=temp[i];}
int frac(double F, int
accumulator[])
{ int i, j;

 double r,
doublerm1;
 double save_F;
 int temp[MAX*4],
tempsum[MAX*4];
 int t, s, k;
 int f[FRACPART/4];
 save_F=F;
 if(F<0) F=-F;

clear(accumulator,4*MA
X);
 clear(temp,4*MAX
);

clear(tempsum,4*MAX);
 for(i=0;
i<FRACPART/4; i++)
f[i]=0;
 r=F;
 for(i=1;
i<FRACPART/4 &&
r!=0.0; i++){
 doublerm1=2.0*r-
1.0;

 if(doublerm1<0.0
){f[i]=0;
 r=doublerm1+1;}
 else{ f[i]=1;
r=doublerm1;}}

 clear(accumulator,
MAX);

if(f[1]==1){clear(temp
, MAX);

temp[FRACPART]=temp[FR
ACPART-
1]=temp[FRACPART-2]=1;
 add(accumulator,
temp, tempsum, MAX-
ARBIT);
 for(j=0; j<MAX; j++)

accumulator[j]=tempsum
[j];}

if(f[2]==1){clear(temp
, MAX);

temp[FRACPART]=temp[FR
ACPART-

1]=temp[FRACPART-
2]=temp[FRACPART-4]=1;
 add(accumulator,
temp, tempsum, 100);
 for(j=0; j<MAX; j++)

accumulator[j]=tempsum
[j];}

if(f[3]==1){clear(temp
, MAX);
 temp[FRACPART-
5]=temp[FRACPART-6]=1;
 add(accumulator,
temp, tempsum, MAX-
ARBIT);
 for(j=0; j<MAX; j++)

accumulator[j]=tempsum
[j];}
 for(i=4;
i<FRACPART/4; i++){
 if(f[i]==1){t=i%4;

s=i/4;
 k=8*s;
clear(temp, MAX);
 switch (t) {
 case 0:
temp[FRACPART-k]=1;
 break;
 case
1:temp[FRACPART-
k]=temp[FRACPART-k-
1]=temp[FRACPART-k-
2]=1; break;
 case 2:
temp[FRACPART-
k]=temp[FRACPART-k-
1]=temp[FRACPART-k-
2]=temp[FRACPART-k-
4]=1; break;
 case
3:temp[FRACPART-k-
5]=temp[FRACPART-k-
6]=1; break;}
 add(accumulator,
temp, tempsum, MAX-
ARBIT);
 for(j=0; j<MAX;
j++)

accumulator[j]=tempsum
[j];}}

Continuing according to the algorithm, we have
2r2 – 1 = 2(0.750) – 1 = 0.5 > 0 ⇒ f3 = 1, r3 = 2r2 -1 = 2(0.750) – 1 = 0.5
2r3 – 1 = 2(0.5) – 1 = 0 (STOP) ⇒ f4= 1, r4 = 0

 204

TOWARDS FORMULATION

Thus 0.6875base 10 = 1.2–1 + 0. 2–2 + 1. 2–3 + 1. 2–4

 = 1(1.11) + 0(1.1101) + 1(0.000011) + 1(0.00000001)
= 1.11001101base (-1-j)

 (addition according to algorithm in Section 4.1)

It is likely that most fractions will not terminate (as our example) until the machine limit is
reached. For example 0.351base 10 =1.110111001100110000011100110…base –1–j

In that case, it is up to the user to terminate the process when certain degree of accuracy has
been achieved.

In general, to find binary representation of any 2–i, express i as 4s + t where s is an integer and
0≤t<4. Then, depending upon value of t, 2–i can be expressed as given in Table 4. All rules for
obtaining negative integer and positive/negative imaginary number representations in base (–1–j),
as discussed in previous sections, are equally applicable for obtaining negative fractional and
positive/negative imaginary fractional representations in the proposed new base.

Table 4: Equivalence between value of “t” and base (–1–j) representations.

t base (–1–j)
0 0.0…(8s–1)zeroes followed by 1
1 0.0…(8s–1)zeroes followed by 111
2 0.0…(8s–1)zeroes followed by 11101
3 0.0…(8s+4)zeroes followed by 11

3.4 Conversion algorithm for floating point numbers

To represent a floating point positive number in the new base, we add the integer and
fractional representations according to the addition rules given in Section 4.1. Once again, all rules
for obtaining negative integer and positive/negative imaginary number representations in base (–1–
j), as discussed in previous sections, are equally applicable for obtaining negative floating point
and positive/negative imaginary floating point representations in the proposed new base.
For example
55.6875base 10 = 0001 1101 0000 1101 1101 + 1.11001101

= 0001 1101 0000 1100 0000.1100 1101base –1–j
And
j55.6875base 10 = 0001 1101 0000 1100 0000.1100 1101 x 111
 = 11000001000000.01110011base –1–j
Knowing the conversion algorithms, as described in the previous sections, the binary representation
for any given complex number can be easily obtained, as shown by the following example:
(55.6875 + j55.6875)base10 = 0001 1101 0000 1100 0000.1100 1101base –1–j

+ 11000001000000.01110011base –1–j
= 0010 0011 1000 0011.1010 0010base –1–j

This can be verified to be equivalent to the given complex number by calculating:

(–1–j)13 + (–1–j)9 + (–1–j)8 + (–1–j)7 +(–1–j)1 +(–1–j)0 +(–1–j)–1 +(–1–j)–3 + (–1–j)–7

4. Arithmetic operations for complex numbers

4.1 Addition
The binary addition of two complex numbers follows these rules: 0 + 0 = 0; 0 + 1 = 1; 1 + 0 =

1; 1 + 1 = 1100. These rules are very similar to the traditional binary arithmetic except for the last
case where when two 1s are added, the sum is zero and (instead of just one carry) two carries are

 205

TARIQ JAMIL, DAVID BLEST and AMER AL-HABSI

generated which propagate towards the two adjoining positions after skipping the immediate
neighbor of the sum column. That is, if two numbers with 1s in position n are added, this will result
in 1s in positions n+3 and n+2 and 0s in positions n+1 and n in the sum. Similar to the ordinary
computer rule where 1+111 … (to limit of machine) =0, we have 11 + 111 = 0 [zero rule]. (See
Section 4.3 for an example of addition).

4.2 Subtraction
The binary subtraction of two complex numbers follows these rules: 0 - 0 = 0 ; 0 - 1 = * ; 1 -

0 = 1; 1 - 1 = 0. Three of the four conditions listed in these rules are the same as for subtraction in
ordinary binary system. For the case where 1 is subtracted from 0 (* case in the rules), the
following algorithm applies:
Assuming our minuend is anan-1an-2…ak+4ak+3ak+2ak+1ak0ak-1….a3a2a1a0 and subtrahend is bnbn-1bn-

2…bk+4bk+3bk+2bk+11bk-1….b3b2b1b0. Then, the result of subtracting 1 from 0 is obtained by
changing ak →ak+1 ,ak+1 →ak+1 (unchanged) , a k+2→ a k+2 + 1 , a k+3→a k+3 + 1 , a k+4→ a k+4 +1
and bk →0.
Example: Subtract (2–3j) from 3
Solution: In base (–1–j) notation, we have
3 – (2–3j) = 1101 – (1100 – 0111 0111) ≡ 1101 – 1011 (by algorithm) = 0100 – 0010

= (0100 + 111010) – 0000 (by algorithm)
= 111110 = (1+3j)

4.3 Multiplication
The multiplication process of two complex binary numbers is similar to multiplication of two

ordinary binary numbers except that while adding the intermediate results of multiplication, the
new rules for addition, as given in Section 4.1, should be followed. The zero rule plays an
important role in reducing the number of summands resulting from intermediate multiplications.
Example: Multiply (2–j3)(1+j3)
Solution: The binary representations of the given complex numbers in base (–1–j) are: (using Table 1)

 2–j3 = 1100 + (1110111) = 1011base –1–j
 1+j3 = 0001 + 110011 = 111110base–1–j
Now (2–j3)(1+j3) = 1011 x 111110

 111110
 1011
 =========================
 111110
 111110
 000000
 111110
 ==========================
 111100010

Bold-faced 1s help us in recognising the pattern 111 + 11 which results in 0 (zero rule).
For verificaton

111100010 = (–1–j)8 + (–1–j)7 + (–1–j)6 + (–1–j)5 + (–1–j)1 = 11 + j3

4.4 Division
The division algorithm is based on determining the reciprocal of the divisor (denominator) and

then multiplying it with the dividend (numerator) according to the multiplication algorithm given in
Section 4.3.
Thus

 206

TOWARDS FORMULATION

(a + jb) ÷ (c + jd) = (a+jb)(c+jd)–1 = (a+jb)z (3)

where z = w–1 and w = c + jd

We start with our initial approximation of z setting z0 = (–1–j)–k where k is obtained from the
representation of w such that

 w ≡ (–1–j)∑
∞=

k

- i
ia –i (4)

in which ak ≡ 1 and ai ≡ 0 for i>k.

The successive approximations are then obtained by zi+1 = zi (2 – wzi). If the values of z do not
converge, we correct our intial approximation to z0 = –j(–1–j)–k which will definitely converge
(Blest and Jamil, 2001). Having calculated the value of z, we just multiply it with (a+jb) to obtain
the result of the division. In the following examples, for the sake of clarity, we have used decimal
numbers to explain the converging process of the division algorithm.

Let (a+jb) = 1 + j2, and w = 1+j3. Our calculations for approximation of z = w–1 then begin as
follows:
1 + j3 = 0001 + 110011 = 111110base–1–j

= 1.(–1–j)5 + 1.(–1–j)4 + 1.(–1–j)3 + 1.(–1–j)2 + 1.(–1–j)1 + 0.(–1–j)0 ⇒ k = 5

Therefore
z0 = (–1–j)–5 = 0.125–j0.125
z1 = 0.15625 –j0.21875
z2 = 0.100208989 –j0.299802410
z3 = 0.1000000024 –j0.3000000010
z4 = 0.10000000 –j0.30000000
z5 = 0.1 – j0.3
z6 = 0.1 – j0.3 (converging)

Now
0.1 – j0.3 = 0.0111111111111111…base –1–j
So (1+j2) ÷ (1+j3) = (1+j2) x (1+j3)–1

= 0101base –1+j x 0.0111111111111111…base –1–j
= 1.0001001001001…base –1–j = 0.7 – j0.1

As another example, let w = –28–j15, then
–28–j15 = 111100010111base –1–j
 = 1.(–1–j) 11 + 1.(–1–j) 10 + 1.(–1–j) 9 + 1.(–1–j)8 + 0.(–1–j)7 + 0.(–1–j)6

 + 0.(–1–j)5 + 1.(–1–j)4 + 0.(–1–j)3 + 1.(–1–j)2 + 1.(–1–j)1 + 1.(–1–j)0 ⇒ k = 11

We begin by choosing
z0 = (–1–j)–11 = 0.15625 + j0.15625
z1 := 0.239 + j0.0449
z2 := –0.249 + j0.128
z3 := –0.398 – j0.160
z4 := 1.014 + j5.235
z5 = –895 – j87.9
 (not converging)

 207

TARIQ JAMIL, DAVID BLEST and AMER AL-HABSI

So we correct our initial approximation to:
z0 = –j(–1–j)–11 = –0.015625 +j0.015625
z1 := –0.02393 + j0.0176
z2 := –0.0279 + j0.01556
z3 := –0.0278 + j0.01486
z4 := –0.02775 + j0.014866
 (converging)

The converging value of z4 can be represented in base (–1–j) and then multiplied with any given
complex number to obtain the result of dividing the given complex number by –28–j15, as in
previous example.

5. Conjugate and magnitude of complex numbers

Beyond the rules for real arithmetic, complex numbers arithmetic may require the
calculation of conjugates and magnitudes as well. Thus, if

wbase –1–j = (c + jd)base –1–j = a∑
∞=

k

-i
i (–1–j)i (5)

then, since –j(–1–j) = –1+j, the complex conjugate of w is given by

w~
base –1–j = (c – jd)base –1–j = a∑

∞=

k

-i
i (–j)i(–1+ j)i (6)

which gives c = a∑
∞=

k

-i
i
~(–1–j)i

where ai

~ = ½ (1–ji) ai and for i = 0 (mod 4), ai
~ = ai ; i = 1 (mod 4), ai

~ = 1110.1ai ; i = 2 (mod 4),
ai

~ = 0 ; and for i = 3 (mod 4), ai
~ = 1.1ai

The imaginary part of the conjugate d can be calculated as j (c – w).
As an example, let w = 1 + j3, then its conjugate w~ will be of the form c – jd, where c and d are
calculated as follows:

In base (–1–j), w = 1+j3 = a5a4a3a2a1a0 = 111110base –1–j then
a0

~ = a0 = 0
a1

~ = 1110.1a1 = 1110.1 x 1 = 1110.1
a2

~ = 0
a3

~ = 1.1a3 = 1.1 x 1 = 1.1
a4

~ = a4 = 1
a5

~ = 1110.1a5 = 1110.1 x 1 = 1110.1

Thus
c = a5

~(–1–j)5 + a4
~(–1–j)4 + a3

~(–1–j)3 + a2
~(–1–j)2 + a1

~(–1–j)1 + a0
~(–1–j)0

 = 1110.1(–1–j)5 + 1(–1–j)4 + 1.1(–1–j)3 + 0(–1–j)2 + 1110.1(–1–j)1 + 0(–1–j)0
= 000000001base –1–j

And
d = j(c – w) = 111(000000001 – 111110)
 = 01101base –1–j

 208

TOWARDS FORMULATION

Now –jd = 11 x 1101 = 1110111
Thus w~ = c – jd = 1 + 1110111 = 1010base –1–j = 1 – j3
To calculate the square of magnitude of w, we have
|w|2 = ww~ = 111110 x 1010 = 111001100base –1–j
To verify (1+j3)(1–j3) = 10base 10 = 111001100base –1–j

6. Summary and Conclusion

We have described conversion algorithms and arithmetic procedures for a (–1–j)-base binary
number system which allows given complex numbers to be represented as one unit. This is
expected to facilitate equal opportunity representation to complex numbers and, hence, simplify
their operations in today’s microprocessors. Currently, work is underway to design a hardware
arithmetic unit based on algorithms presented in this paper and then it will be implemented using
Field Programmable Gate Arrays.

References

BLEST, D. and JAMIL, T. Efficient division in a binary representation for complex numbers.
Proceedings of the IEEE Southeastcon 2001. Clemson, South Carolina. 30 March-1 April
2001. USA.

GEPPERT, L. 1999. The 100-million Transistor IC. IEEE Spectrum. 36: 7: 23-60.
JAMIL, T., HOLMES, N., and BLEST, D. 2000. Towards implementation of a binary number

system for complex numbers. Proceedings of the IEEE SoutheastCon 2000. Nashville,
Tennessee. 7-9 April 2000. USA

KNUTH, D.E. 1960. An Imaginary Number System. Communications of the ACM. 3: 245-247.
PENNEY, W. 1964. A Numeral System with a Negative Base. Mathematics Student Journal.

11(4): 1-2.
PENNEY, W. 1965. A Binary System for Complex Numbers. Journal of the ACM. 12(2): 247-248.
STEPANENKO, V.N. 1996. Computer Arithmetic of Complex Numbers. Cybernetics and System

Analysis. 32(4): 585-591.

Received 8 June 2001
Accepted 7 November 2001

 209

	Tariq Jamil*, David Blest** and Amer Al-Habsi*
	Example: Subtract \(2–3j\) from 3
	
	Summary and Conclusion

	References

