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م مائع مضغوط بين سطحين متوازيين في حركة تذبذبية عمودية فل  

 الصادق أحمد حمزة

ركزت . يهتم هذا البحث بدراسة الحركة الناتجة من ضغط طبقة رقيقة مائعة بين سطحين متوازيين وفي حركة نسبية                 :  خلاصة
ر بدفع مفاجئ من حالة سكون إلي تذبذب        الدراسة على  الحالة الخاصة الناتجة من تثبيت أحد السطحين وتحريك السطح الآخ             

وبالإضافة إلى التوصل لإيجاد حلول تحليلية باستعمال طريقة التشويش المنتظم والتحليل           . متموج في اتجاه عمودي على مستواه     
تفاضلية الخطي للمعادلة التفاضلية الجزئية غير الخطية التي تحكم الحركة بصورة عامة ، فقد تم إيجاد حل عددي للمعادلة ال                    

وباستعمال هذه الحلول تم بحث تأثير الحركة المتموجة على أشكال سرعة           . الجزئية غير الخطية كاملة بطريقة الفروق المحددة      
 .الفلم المائع وقوته الضاغطة على السطحين

   
ABSTRACT: We study the motion which results when a fluid film is squeezed between two parallel 
surfaces in relative motion.  Particular attention is given to the special case where one surface is 
fixed and the other is impulsively accelerated from a state of rest to a state of sinusoidal oscillations 
in a direction normal to its plane. In addition to the presentation of analytic solutions which are 
based on the regular perturbation technique and on the linearised analysis of the resulting nonlinear 
partial differential equation, a numerical solution of the full nonlinear equation based on a finite-
difference scheme is obtained. The effects of the sinusoidal motion on the velocity profiles and on 
the normal forces which the fluid exerts on the surfaces are investigated.  
 
KEYWORDS:   Squeezed film, Impulsive acceleration, Normal oscillations. 

1. Introduction 

T he earliest attempts at the problem of the behavior of a thin film of liquid squeezed between 
opposing surfaces can be traced to Stefan (1874) and to Reynolds (1886), both of whom 

confined their attention to the special case where inertial forces are negligible  in comparison to 
viscous forces.  Their work is considered as the foundation of hydrodynamic lubrication analysis 
and later became known as the classical lubrication theory.  Interesting and useful studies of the 
importance of inertia effects have been motivated by the increased machine speeds and low 
viscosity lubricants.  Among authors who have studied the role played by fluid inertia are Ishizawa 
(1966), Kuzma (1967), Tichy and Winer (1972),  Jones and Wilson (1975), and Hamza and 
MacDonald (1981).  The mathematical analysis, when inertia terms are included, is basically based 
on an iteration or perturbation scheme.  The last two authors presented an initial condition that 
describes the manner in which squeezing is initiated and discussed the length of the transition 
period during which the regular perturbation solution fails to approximate the exact solution 
accurately. 

The case when one of the surfaces undergoes sinusoidal oscillation in squeezing film flows 
has received considerable attention due to the important roles it plays in many industrial 
application, especially in conditions of unsteady loading in machines which is often oscillatory in 
nature. Fuller (1956) was first to treat this problem. He obtained a solution for the pressure of the 
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fluid between the surfaces by neglecting inertia terms in the Navier-Stokes equation. Kuhn and 
Yates (1964) extended Fuller's solution by including inertia terms. Their solution agrees with their 
experimental results. However, they did not take account of the time-dependent boundary condition 
and their result appears to be in error. Hunt (1966) obtained a similar solution to the one given by 
Fuller but he allowed for variation in the boundary point. He also performed some experimental 
work which satisfactorily agrees with his theoretical solution. Terrill (1969) obtained an analytic 
solution that depends on two parameters, the nondimensional amplitude of the oscillation of the 
surface and a Reynolds number that is related to the maximum velocity of the vibrating surface. 
Different cases depending on the magnitude of the two parameters were investigated. A similar 
solution for the case of oscillating squeeze film with arbitrarily varying surface geometry was 
presented by Tichy and Modest (1978). They included inertia forces in the equations of motion. In 
the case of the thrust bearing of fixed inclination, they found that the classical lubrication solution 
for the load and pressure fluctuations is in error by over 100 percent for Reynolds numbers as low 
as 5.  

In this study we examine the motion of an incompressible viscous flow between two parallel 
plane disks where one disk is fixed and the other is rapidly accelerated from a state of rest to a state 
of normal sinusoidal oscillations. The nondimensionalization used by Terrill (1969) will be 
employed here.  The resulting nonlinear partial differential equation that describes the flow is 
solved subject to boundary and initial conditions.  In section (3) analytic solutions through a use of 
a regular perturbation technique and Laplace transformation are presented and in section (4) a 
numerical solution to the full nonlinear equation is given. The perturbation solution is in full 
agreement with Terrill’s results. The objective of the study is to investigate the effects of 
oscillations on the load-carrying capacity and on the velocity profiles. 

2. Equations of Motion 

We consider the motion of a thin film of fluid squeezed between two parallel coaxial disks 
which are spaced a distance h(t*) apart, where  h(0) = H.  We choose cylindrical polar coordinates ( 
r* , θ* , z* ) , in terms of which the lower fixed disk is described by z* = 0 and the upper disk by z* 
= h( t* ) .  The corresponding velocity components are ( u* , v* , w* ) . We shall assume that the 
fluid is at rest for t* < 0 and that at t* = 0 the upper disk moves impulsively with steady normal 
oscillations of frequency ω  and amplitude V. The Navier-Stokes equations of motion are 
transformed to nondimensional form by referring all lengths to H , all velocities to V, time to l/ω 
and pressure to ρV2, where ρ denotes density.  The corresponding dimensionless variables are those 
without the asterisks. The configuration is sketched in Figure 1.  

 
                                                                                                                                    
                                                                     z,w 
                                                   
                                        
 
                                        
                                                                                    ε 
                                      
                                     h(t) 
                                                                                          cos (t)  
 
 
 
                                                                                                                                          r,u 
     

Figure 1. System configuration at time t. 
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The nondimensional equations governing the flow are:  

 
2 21 1 ,2 2 2

u u u p u u u uu w
t r z r R r rz r r

ε ε
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = − + + + −   ∂ ∂ ∂ ∂ ∂  ∂ ∂ 

 

 
2 21 1 ,2 2

w w w p w w wu w
t r z z R rz r

ε ε
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + = − + + +   ∂ ∂ ∂ ∂ ∂  ∂ ∂ r

 

 

   ( ) 0,wru r
r z
∂ ∂

+ =
∂ ∂

 

where R = H2ω /v and ε = V/Hω  ( v denotes kinematic viscosity and ε is the nondimensional 
amplitude). The boundary conditions are: 

u = 0      at   z = 0   and  at   z = 1 - ε sin t,  
w = 0     at   z = 0   and  w = -cos t   at   z = 1 -  ε sin t.  

The boundary conditions on w suggest that a solution in which w is independent of r should be 
sought. If we choose a stream function F(z, t) which is such that  

 
    u=rFz ,      w=-2F, 
 

the mass conservation equation will be satisfied. Hence the above nondimensional momentum 
equations may be expressed in the form 

  

( )2 12 ,zt z zz r zzzF F FF p F
r R
εε+ − = − +     12 .

2t z zF FF p F
R zz

εε− = +               (1), (2)    

 
Furthermore equations (1) and (2) show that p is of the form  
 

( ) ( )2
1 2

1 , ,
2

p r P t P z t= +  

 
whence differentiation of equation (1) with respect to z and then use of the change of variables 
 

z = (1- ε sin t)y,    t = t,  
leads to the equation  

 

( )( ) ( ) ( )2 1cos 1 sin 2 1 sin 2 1 sinyyy yy yyt yyy yyyyt t y F F t F t F F
R

ε ε ε ε ε− + + − − − = F .           (3) 

 
Equation (3) is the same equation given by Terrill (1969). The transformed boundary conditions are  

F = 0,    F  = 0,     y = 0;     F = cos t/2,     F  = 0,     y = 1.                              (4)  y y
 

The radial pressure gradient, 1
1( ) ,P t
r r

p
=

∂
∂  is given by                                                                                  
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1

0

11
3 (1 sin )(1 sin )

yyy yt

y

P F
tR t

ε
εε

F
=

 
 = −

− − 
                                         (5) 

 
The initial condition, which states that for y≠ 0,1, the vorticity is zero at time t = 0+ is  

 
1 cos ,
2

F y t= when   t 0+= ,                                                        (6) 

Thus  at t = 0+ the radial velocity u outside the infinitesimally thin sheets of vorticity which are 
formed on the surfaces is the inviscid velocity given by the continuity equation 
 

     / cos /u r t 2.=  
 If the upper disk is assumed to be of radius c and of negligible thickness, the resultant normal 
force, or load W is given by  
 

( ) 00
2 , , ,

c
W r p r h t p drπ  =   

−∫  

where p0 is the nondimensional pressure at r = c, z = h.  Thus the above result may be expressed in 
the form  

3
10

c
W r Pπ= − ∫ dr

n y

                                                                (7) 

 

In general, to solve equation (3) subject to conditions (4) and (6) a numerical approach is needed 
and this will be discussed in section (4).  However, analytic approximate results will be considered 
first. 

3.   Analytic Solutions 

The nonlinear partial differential equation (3) with conditions (4) and (6) can be solved for 
special practical cases when εR, R and t are small.  

3.1   Solution for Small R. 

The parameter ε is the ratio of the amplitude of the oscillation of the upper disk to the distance 
apart of the disks and is, therefore, less than one.  Thus if R is small then εR will also be small.  

By ignoring the initial condition (6), we can obtain from equations (3) and (4) the terms of the 
perturbation expansion  

   

( ) ( ) ( ) ( )
0 1

.n n
n

n n
F R f y R gε

∞ ∞

= =

= +∑ ∑                                           (8)  

The first few terms are 
2

0
3 cos ,
2

f y y = − 
 

t      ( )( ) ( )22 2
1

1 2 1 1 1 cos 7
140

f y y y y y t2 , = − − − − − +   

( )( ) ( ) ( )( )2 22 2 2
2 1

1 12 1 1 cos cos , 2 1 1 sin
3880800 40

,f y y y q t s t g y y y= − − − + = − − t  

( )( ) (22 2
2

1 2 1 1 10 10 3 cos
16800

g y y y y y= − − − − ) ,t                                        (9) 

where  
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6 5 4 3 21512 4536 1659 10878 6207 12 558,q y y y y y y= − − + − + +  
4 3 214245 28490 20867 6622 3234.s y y y y= − + − −  

The radial pressure gradient P1 is given by  
 

( )( ) ( )

( ) ( )

13
1

2 2
2

1 6 1 sin cos 28 3cos
140

3157 1110cos cos sin cos
1940400 10 8400

r
RP p t R t

r

R R Rt t t t

εε ε

ε

− = = − − + −



− − − + 



t

           (10) 

 
This is the forced solution in which the initial condition (6) is neglected and so we expect it not 

to be valid in the region of t = 0.  However, for t not small and R = o(1) and εR = o(1), the solution 
is a good approximation to the motion of the fluid.  The particular case R = 0, which has the simple 
solution ( )2

0 3 / 2 cos ,f y y= − t  has been discussed by Fuller (1956), Kuhn and Yates (1964) and 
Hunt (1966). Terrill (1969), correctly obtained f0 , f1 , g1 and g2 through using a perturbation 
scheme. When cos t = 1 and sin t = 0, the solution ( the zero and first orders) reduces to the 
solution given by Ishizawa (1966)  and  Jones and  Wilson (1975).   They obtained the solution 
correct to  O((εR)2),  (note that   εR = HV / v is the usual squeezing Reynolds number) .   For this 
case, good agreement with experiment, even when the Reynolds number was an order of 
magnitude greater than unity, was reported by Tichy and Winer (1972) and Kuzma (1967).  The 
good agreement between theory and experiment at values of  εR > 1  can be explained by reference 
to the remarkable decrease in magnitude of the functions  ,  > 0if i .   

3.2   Solution for Small Rε and Small t  .

The perturbation solution described in section (3.1) cannot satisfy the initial condition which 
states that the vorticity is zero at  t 0+= . Here we look for a solution satisfying the initial 
condition.  For t and εR small equation (3) becomes  

 

yyt yyyyRF F=                                                           (11) 
To solve equations (11), (4) and (6), we shall employ Laplace transformation (Hamza and 

MacDonald (1981)) technique to get a solution which is rapidly convergent for t .   0→

3.2.1  Laplace Transform Solution 
The outline of the solution starts by integrating equation (11) with respect to y twice to get, 
 

 ( ) ( ) ,yy tF A t y B t R F+ + =                                                (12) 
where A(t), B(t) are constants of integration. Multiplying equation (12) by e-st and then integrating 
with respect to t over [0,∞), we obtain on using the initial condition (6),  

( , ) ( ) ( ) ( , ) ,
2yy

R yF y s a s y b s R s F y s+ + = −                                      (13) 

where  

0 0
( , ) , ( ) ( ) , ( ) ( ) .st st stF e F y t dt a s e A t dt b s e B t d

∞ ∞− −= = =∫ ∫ 0
t

∞ −∫                      (14) 

The transformed boundary conditions are 

20, 0, 0; , 0, 1
2(1 )y

sF F y F F y
s

= = = = =
+ y =                                 (15) 

The general solution of equation (13) is 
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 1 2 2

1 ( ) ( )( , ) ( ) ,
2

dy dy a s b sF y s C e C e y
s d d

−= + + + + 2                                    (16) 

where C are arbitrary constants and 1 2, C .R=d   Applying conditions (15) we find that s
( ,F y s ) can be expressed as 

    

     ( ) ( )
( ) 0

, 1 / 2, ,
4 1 / 2 1 / 2

n
nd

n

I y s ds e
d d

∞
−

=

+ =  − − 
∑F y                  (17) 

where              

                            ( ) ( ) ( )11, 1 1 d yd dy ds d y e e e e
s

− −− − −= − + − + − .
I y                                               (18)               

For small t 

( )
( )

( )

111, ,
4 1 / 2

d ydy d d ddy e e de y e eF y s O
s d

− −− − − − − − + − −   = +  −  s
              (19)    

so that 

( )

( ) ( )
( )

4 1/ 2
1/ 2 1/ 2

2 1 42 4 1/ 2 1/ 2
1/ 2 1/ 2

2 4 1/ 2 2 4 1/ 2
1/ 2 1/ 2 1/ 2

11 2 1/ 2 erfc 2 erfc erfc
2 2

1 1, erfc 2 erfc 2
4 2 2

1 1erfc 2 2 erfc 2 erfc
2 2

yy

y ye y

y yF y t e e

e ye

τ

ττ

τ τ

τ
τ τ

τ τ
τ τ

τ τ
τ τ

− − +− +

− + − +

 −
+ − − + −


 −   = + − − −    

   
    + − + − −    
    

( )1/ 2 1/ 4 ,O e ττ −








 
 



+

1
2τ





   (20) 

where /t Rτ = .  
The radial pressure gradient, on using the conditions 0yF F= =  on 0y = , is given by  

 

( )
( ) ( ) ( )1 3

1 0, 0, ,
1 sin

yyy ytP F t RF t
R t

ε
ε ε

O R = − + −
                (21) 

 
i.e. 

( )( )
( )

( )
.

1
4
1e1

2
2

1erfce2erfce2
Rtsin1P

4/12/1

2/1
2/1

422/14

13
1



































 +

τ
+πτ−















 τ−

τ
+τ−−

εε−=
τ−−

τ+−τ

−
              (22) 

 
The form (20) of the solution to equations (11), (4) and (6) should give accurate results for 0 < 

t < < 2π and it can be used to estimate the importance of the initial condition. However, for other 
ranges of interest, nonlinear terms must be taken into account and this necessitates a numerical 
solution of the full nonlinear equation. 

4.    Numerical Solution 

To obtain satisfactory information on the nature of the flow for 0 <   ε sin t < 1 and for values 
of R and ε which are not small a numerical solution of the governing nonlinear equations is 
necessary. To integrate equation (3) subject to conditions (4) and (6), we employ an implicit finite 
difference scheme of the Crank-Nicolson type. On the y-axis select uniformly spaced mesh points 
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at , i= 1,2,3, ..., (m+1)  where  (m + 1)h = 1  and denote by  the value of  F at y = ih  
and  t = jk, where j = 1,2,3, ..., (n -1), and sin nk = (ε)

,iy i h= j
iF

-1.  Equation (3) is replaced by finite 
difference approximations in which central difference formulae are used for approximation of the 
derivatives in the y-direction and forward difference formulae are employed for the derivative in 
the t-direction.  For example we find  

 

( ) ( ) ( )

4 6
22 1 1 2

4 4 6

1 1 13 5
21 1 1 1

2 2

4 6 4

2 2

j jj j j j j
i i i i i

i i

j jj j j j j j
i i i i i i

i i

F F F F FF FO h
y h y

F F F F F FF FO h
y t kh y t

+ + − −

+ + +
+ − + −

 − + − +∂ ∂ = +
 ∂ ∂ 

 − + − + −∂ ∂ = +
 ∂ ∂ ∂ ∂ 

4

1j

         (23) 

On replacing all terms of the equations other than Fyyt, by the mean of their values on the j-
th and (j + 1)-th line rows, we obtain from (3)  

 
( ) ( ) ( ) ( ) ( ) ( )

5 5
1 1 1 1 1

3 3
1 1

j j j j j
i si i s si i s i

s s
F a F b F c+ + + + + +

+ − + −
= =

+∑ ∑ =                   (24) m,,3,2,1i …=

where the coefficients ( ) ( ) ( 1j
i

1j
si

1j
si c,b,a +++ )

)−

 are defined in terms of  h, k, R, ε, (tj + t )/2, and the values of  

.  
1j +

1 0 2, , ,j j j
mF F F− +…

 
From the boundary conditions we obtain  

 
(1 1 2 0 1, , 0, cos / 2, 0,1, , 1 .j j j j j j

m m mF F F F F F t j n− + += = = = = …              (25) 
We select 10h = 1/2l, l = 0,1,2, ...so that (10 x 2l -1) nonlinear algebraic equations must be solved. 
The algebraic equations were solved by use of the Newton-Raphson iterative technique.  

4.1  Computational Details 
The program was so written that it could be used to give results for wide ranges of parameters 

R and ε. The calculations were performed by using double precision for the values of R and ε in the 
ranges  and 0.10.5 500,R≤ ≤ 0.8.ε≤ ≤  For fixed R and ε, accuracy was checked by comparing the 
results for two consecutive l values.  The range of l varies from 1 at the lower values of R and ε to 
3 at the higher values. For l = 1, k was selected to be 0.000625 so that the stability parameter k/ h  
= 0.25. For l = 2, k was taken to be 0.000078125 and the stability parameter was 0.125. For l = 3, k 
was taken to be 0.9765625 x 10

2

-5 and the stability parameter was 0.0625.   
Equation (5) which gives the radial pressure gradient in the transformed coordinates, contains 

a number of higher order derivatives with respect to y. For small values of t these give rise to 
unsatisfactory finite difference results for the radial pressure gradient. Thus it is preferable, since 
( )/ /p r r∂ ∂  is independent of , to integrate (5) with respect to y over [0,1] to obtain the equation y
 

( ) ( ) ( ) ( ) ( )
2 1

1 23 1 1
1 0 0

sin 1 sin
1 sin 3 1 sin

2 yy y y

t t
t P R F t F dy

ε ε
ε ε ε

−
−

=

−
− = + − − ∫  (26) 

where the integrals are evaluated by use of Simpson's rule. 

5.    Results and Discussion 

We discuss the case of an upper surface which is rapidly accelerated from a state of rest to a 
state of steady oscillations normal to the lower surface which is at rest.  Close to the start of the 
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motion the vorticity layers adjacent to both boundaries are thin and the flow is largely inviscid, the 
inviscid velocity distribution being specified, when sin t is not large, by  

 
( )/ / cos /u r F z t h t= ∂ ∂ =                                       (27) 

 
where  and h(t) respectively denote the speed of the moving surface and its distance of 
separation from the lower surface. Impulsive movement of the upper surface results in rapid 
acceleration of the fluid, the driving force being the radial pressure gradient, which does work to 
overcome fluid inertia and frictional resistance. In the early stage of motion the inertial terms 
dominate the flow, as vorticity diffuses the contribution due to the frictional resistance will be 
equal in importance to that due to fluid inertia and as the surfaces approach one another inertial 
resistance becomes negligible in comparison to frictional resistance since the vorticity layers 
adjoining the surfaces will merge and the stream function F(z,t) will tend to the classical 
lubrication value f

cos t

0 (the manner in which F →f0 is, of course dependent on R).  
Figures 2 and 3 present the load variation with time t for a range of Reynolds number 

extending to R = 500 for values of ε = 0.1 and ε = 0.8, respectively.  The Figures indicate that for a  

 
Figure 2.  Normal force, or load, variation with R when ε = 0.1. 

 
fixed value of ε the magnitude of the load on the disk decreases with increase of R, or equivalently 
with increase of the squeezing Reynolds number HV/v.  The result states that if V and H are held 
constant, a decrease in kinematic viscosity will result in a decrease in the magnitude of the load on 
the disk. We also notice that for fixed ε and for t = π /2 or t = 3π /2, the magnitude of the load is the 
same for all values of R in this range. (This can be seen, for small values of R and ε , from equation 
(10)).  For small ε and near the vicinity of t = 0 the load is large (this large force is necessary in the 
early stages of motion to overcome inertial resistance).  In fact as t→ 0, it can be shown from 
equation (22) that the load behaves like 1/ 2( ) /Rtπ ε− .  

 290



A FLUID FILM SQUEEZED BETWEEN TWO PLATES  

 
Figure 3.  Normal force, or load, variation with R when ε = 0.8. 

 

 
Figure 4.  Radial velocity profile development with time t when ε = 0.1 and R = 0.5, 5.0,500.  
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The maximum and minimum values of the load (or equivalently the radial pressure gradient) 
are of particular interest in connection with surface wear and cavitation. For ε = 0.8 and R = 0.5 the 
maximum and minimum values of the radial pressure gradient are 335.2 and -342.4 while for ε = 
0.1, R = 0.5 the corresponding values are 123.8 and -128. For fixed values of ε these maximum and 
minimum values of the radial pressure gradient decrease with increase of R, while for fixed values 
of R they increase with increase of ε.  

 
It is of interest to compare the results obtained when the radial pressure gradient in equation 

(7) is obtained from the numerical solution and (i) the first-order regular perturbation solution, (ii) 
the solution to the linearised equation (11). For R = 0.01, 0.025, 0.1, 0.5, 5, 10 and for values of t in 
the range 0.0005  t  0.105 this comparison is made in Table 1 (the upper values correspond to  ≤ ≤
 

Table 1:  Comparison of (i) the numerical solution (N) and the first-order perturbation 
results (P) and (ii) the numerical solution (N) and the results of the linearised analysis 
based on equation (11) (L) for the radial pressure gradient:  percent error  

( )100 / /N P L N= −  when ε = 0.1 and 0 < t << 1. 
 

   R    
t 0.01 0.025 0.1 0.5 5 10 

.0005 01.151 
00.012 

12.193 
00.013 

42.026 
00.101 

69.911 
00.454 

89.781 
08.394 

92.198 
09.513 

.0050 00.032 
00.014 

00.032 
00.011 

01.130 
00.137 

26.750 
00.520 

68.212 
02.350 

75.480 
03.910 

.0100 00.032 
00.015 

00.033 
00.009 

00.016 
00.129 

12.370 
00.603 

57.570 
02.591 

65.850 
03.975 

.0200 00.033 
00.017 

00.035 
00.004 

00.047 
00.111 

02.411 
00.286 

44.034 
02.882 

55.134 
04.294 

.0400 00.035 
00.021 

00.039 
00.005 

00.064 
00.075 

00.089 
00.497 

28.927 
02.641 

41.634 
03.932 

.0500 00.035 
00.022 

00.041 
00.009 

00.071 
00.057 

00.210 
00.410 

23.850 
02.270 

36.830 
03.385 

.0650 00.037 
00.025 

00.044 
00.016 

00.084 
00.030 

00.288 
00.279 

17.872 
01.508 

30.806 
02.238 

.0850 00.038 
00.029 

00.048 
00.025 

00.100 
00.006 

00.370 
00.100 

11.803 
00.184 

24.215 
00.183 

.0900 00.038 
00.029 

00.049 
00.027 

00.103 
00.014 

00.390 
00.055 

10.520 
00.200 

22.760 
00.420 

.1000 00.039 
00.031 

00.051 
00.032 

00.112 
00.033 

00.431 
00.037 

08.170 
00.020 

19.910 
01.745 

.1050 00.040 
00.032 

00.052 
00.034 

00.116 
00.041 

00.450 
00.078 

07.168 
00.452 

18.647 
02.386 

 
the first-order perturbation solution).  The table shows that in the case of the first-order solution 
and for R < 0.5 the agreement for values of t in the range t ≥ 0.005 is very good.  For R = 0.5 the 
agreement is acceptable, but for R > 0.5 the numerical and the perturbation solutions differ 
appreciably even at higher values of t.  On the other hand the table demonstrates the remarkable 
agreement between the numerical solution and the solution based on equation (11). 
 

The radial velocity profiles for t in the range π /2 ≤  t ≤  2π ,  for values of  R = 0.5,5 and R = 
500 and for ε = 0.1 and ε = 0.8 are shown respectively in Figures 4 and 5.  In general the magnitude  
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igure 5.  Radial velocity profile development with time t when ε = 0.8 and R = 0.5, 5, 250.  

e radial velocity profile increases with increase of amplitude. We also notice that as R 
ases the radial velocity profiles are beginning to experience oscillations with respect to time 

position.  
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