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ABSTRACT: We prove the existence of an asymptotically stable periodic solution of a system of
delay differential equations with a small time delay t > 0. To achieve this, we transform the system
of equations into a system of perturbed ordinary differential equations and then use perturbation
results to show the existence of an asymptotically stable periodic solution. This approach is
contingent on the fact that the system of equations with t = 0 has a stable limit cycle. We also
provide a comparative study of the solutions of the original system and the perturbed system. This
comparison lays the ground for proving the existence of periodic solutions of the original system by
Schauder's fixed point theorem.
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1. Introduction

Ithough substantial progress has been made toward the study of first order scalar delay

differential equation (DDEs), much less is known about the periodic solutions of systems of
DDEs. The need for studying a system of DDEs, aside from its mathematical interest, arises from
the wide variety of systems in biology and physical sciences that lead to mathematical models
involving such systems. Examples arise in the study of coupled oscillators with a time lag in the
coupling (Wasike, 1997), in the diffusion of mass across a membrane, (Epstein, 1990) and in
synaptic coupling (Ermentrout,1990).

We consider the system of equations
x'(t):dL[x(t—r)—x(t)] +f (x (t)), (1)

T . L . :
Where x (t)= [x (1), x, (¢ )] , Here the accent " " " denotes differentiation with respect to time
t , the superscript 7 denotes transpose,

1 1
L = ,T,d >0,
1 1
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t,d > 0,are real numbers, and f €C (RZ) with £, (x (t)) and f, (x (t )) are given by

fi(x,,x,)=—x +x, (l—xf —xj),fz (x,,x,)=x,+x, (1—x12 —xj). )
When |x (¢)] = 1, the following hypotheses are satisfied:
(HI)x, f,(x,,x,)<0,forx, #0;xf (x,,x,)>0, forx #0.
(HI)Thereis M>0 such that || f(x)” <M

1.1 Remarks on Hypotheses

(H1) is a planar negative feedback condition. It forces the solution of equation (1) to rotate about the
origin in the anticlockwise sense. (H1) can be shown to hold for equation (1) by observing that

fi(x;,x,) > —x, and f,(x,,x,) > x, as |x(t)| —1. The Taylor expansion of f (x(t)) about the
origin yields || f(x@)) || < || Df (0) || |x (t)| < 2=: M where D denotes the derivative with respect to

X .
Equation (1) arises from the study of a model equation of two oscillators coupled by a
symmetric-diffusion-like path with a time lag. The equation is given below

X (t)=dL(X, (t-1)-X,(t)) +f (X, (t) ) 3)

where X, (t) =[xk (t),yk (t)] ' i, J,k=1,2,i# j and f (X (¢)) is given in (2). After an analysis of

the linear part of equation (3), two two-dimensional invariant manifolds
(X, (t):X,(t)£X,(t)=0,Vt 27
were observed with one whose dynamics on the manifold
(X, (t):X,(t)-X,(t)=0,Vt 27}
is described by equation (1), (see Wasike, 1997).
Let C, =C ([-7.0]. R*) with |@]=sup{ |p (s)|:se[-7,0] | <7, <. Equation (1), subject

to an initial condition ¢ €C, , is known to have a unique solution x (t;d ,go) that satisfies it for

t > 0. The solution is defined on the maximal interval of existence [—r, t*(d,p));t" (d,p)< o,

and is continuously differentiable on [O,t i (d ,go)} . This solution also depends continuously on the

initial condition in the following sense: for every ¢ € C .y ot >0, and £>0, there exists >0 such

that for all ¢ €C, with lo—wl|< 6,

x(s;d,go)—x(s;d,l//)|<g, for all se[-z,t]. See for

example, Hale and Lunel (1993, Chapter 2).
More information on the basic theory on delay differential equations can be found in Hale and
Lunel (1993), Bellman and Cooke (1963) or Diekmann et. al. (1995) ).
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2. Main Results

We show how a perturbed system of ordinary differential equations (ODE) is found from
equation (1) for small delays and then show that the perturbed system has an asymptotically stable
periodic orbit.

Proposition 1. equation (1) with 7small can be written in the form

x'(t)=G(x (t);d,r)JrH(x(t)), 4)
where
G(x (t);d,r):= [I—n(d,r)L]f(x (t)), (5)
with
n(d’z-)::l-:l;;lr ’

(6)

I is a 2x2 identity matrix, and ”H (x (t )) ||=||x "(t)-G (x (t );d,r) ||=O (7).

Proof. For I(7):=[37,T],T >3z, the solution x(r), with x(0)=¢(0), is in C3(I (T))

Therefore

Let, for notational convenience, equation (1) be written as
x'(t):d L I:x (t —r) —Xx (t):l +f (x (t)) =g (x (t —r)) . (7)
For 7small we have:
(I +dz'L) g(x (t —z') ):f (x (t)) +d1r’L (x 2(t) I (t) + ] . (8)

Simplifying equation (8) we obtain:

g(x(t—r))zG(x(t);d,r)+H (x(t)),
where
dr’

H(x(t)):(l—nL)( > Lx"(t)+... } (9)

and 7= 77(d , z'). It is observed from equation (8) that

x(1)=(1 —nL){Df (x (t))x'(t)+d;2 Lx" (0))# o }

which when substituted in equation (9) gives

:dj (1-25)" LDf (x (¢) )x' (£ )+....

H(x (1))
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Clearly ” H (x (t )) ” =0 (7), where ||.

Next we show that the solutions of equations (1) and (4) remain “close' for all # > 0. Indeed this
also provides another way of proving existence of periodic solutions of equation (1) by Schauder's
fixed point theorem.

, here is the usual Euclidean norm.

Proposition 2. The solution x (t) of equation (4) is bounded.
Proof. In polar coordinates, defined by

x,(t)=r(t)cosb(t), x,(t)=r(t)sinb(r),

with |x (t) =r(t) =r,,

|
ri(t)= r(l—rz)—dr (1+sin20) +
dr (t -7) {cos(@(t —r)—H(t))+ sin(é’ (t —r)+<9(t))}, (10)

{cos(@(r —r)+0(t))+sin(6’(t —r)—H(t))}.

equation (1) becomes,

0 (t )=1-d cos 20+ M

r(t)

H(t—z') zﬁ(t)—rﬁv(t)+h.o.t., r(t—r) :r(t)—m"(t)+h.0.t.,

For small 7,

where h.o.t. means higher order terms. Using this in equation (10) we get

r':r(l—rz )—d {r +rsin29—(r —rr')(cosré" + sin(2t9—r9'>)},

! (1)
0=1-d {00326’— [l—lj (cos(26’—ﬂ9')— sinré")} .
r
By Maclaurins expansion,
2n'2 3n'3
cost0 =1-29" 4 hor. sinc0 =0 -2 4 hot. (12)

Ignoring terms of order higher than O (7) and using (12) in (11) we obtain

R A e Y a3)

0 1

where

B(d,r):(

dt (1+sin26) dzrr cos 26
(drcos20)/r dr(1-sin26))

and the matrix R (r,0) is such that ||R (r,6’)|| :0(72). For 7 small || B (d,z-)” <1, where
|| . || denotes a norm of a matrix,

(1, +B(d,7)) ~I,-B(d,7).
Thus ignoring terms of O (72 ) in (13), we obtain

r=r(1-r") (1-d r (1+sin20)) = d r7 cos20, (14)
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0'=1-dr (1-sin20) —d z(1-r’ ) cos 26. (15)

Solving equation (14), and noting that for fixed &, ri= ‘; (t)‘ is given by

1

_ 2

e drcosZﬁ . (16)
1-drt (1+sm29)

By Binomial expansion,
P 1 drcos20

2 1-dr (1+sin2¢9)

Clearly 7 ~1+0(7) used in equation (14), shows that x (¢) is bounded.
We now give other comparisons of the results between the solution x ( (t d r) of the

t)i=x

perturbed system equation (4) subject to initial data x(z‘)::[; , (0), OJ nd the solution
(

x,(r):=x,(0)=¢,(0) and T the first time of return of x(¢)such that x
)

X, (YT ) = 0. We note from the proof of Proposition 2 that || x (1) ||£ r, and ” X (1
the set

B(;(z’))i {goe C,,:

[o(s) - (7)| <0 (r).mr<s <0}

with || || denoting the Euclidean norm. The set B(; (r)) is a closed bounded set. By taking initial
values in this set, we wish to show that x (t ) and x (t) remain o (z‘) “close'; that is,

”x (1) —;(t ) ” =o(r)forall r >0. This is accomplished by using Lemmas 1 and 2 below.

Lemma I . For any qoeB(;(r)), X (t)-x (t)”:o (z)forall £ 20.
Proof. Equation (1) can be written as x =G (x (1) d,z‘) +H (x (t );d,r) . Let

x (1)=G (x(t):d.7) .
[ ()=x () 1=6 (+ ()= G (v () H (x (1))

where G(x (t))::G (x (t);d,qo) ,G (;(t)):zG(;(t) ;d,r ) and H(x (t))::H (x (t);d,r) )
By using the inner product in R”, we get
2dt|| ||Muw—¥omh(o—?vn,
[ (2) = x (2)|p. x (1)]<( )G (x @) +H (x (¢))) [ x () = x (¢)

2

where D denotes the derivative from the right. This simplifies to
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(1) =% (o)

D

+

x (0)=x (0)]<(|6 (x () =6 (x )|+ (x O)) Jr ()= ()]

Since G eC’ on B(; (r)), it is Lipchtzian with a Lipschitz constant 0 <% (say). From this we

obtain
D

+

e (1) = x (¢)|[<k e () =x (o) |+ |H (x ()
(1) = x (t)|<k |x () - x (¢

Since ”H (x (1)) ”:0 (r),wehave D,

N—
+
QS

—
(\]

N—

Using the Gronwall's Inequality and bearing in mind that ¢(0) = x (0) , we get

[ (t)=x (¢)|<o(2) Iy exp(k (t=5)) ds =o(r), (17)

Hence the lemma is proved.

Lemma 2.
Let N, (YT ) be an ¢ >0 neighborhood of T . Then

() There is T *e[T,.T7,], with x,(7,)<0,x,(T,)>0,T,,T, €N, (T), such that

2
X, (T*;d,(p):O, X, (T*;d,(o) >0, and

(ii) [7°-T|=0(2).

Proof (i). We show the existence of T'". Without loss of generality, choose &>0 and small
enough such that 7, =T —¢,7, =T +¢ . Then x, (T,) =x, (YT)—gx; (T)+hot . Recall that

X, (YT) =0 . By the continuity of £, (;(t )) and Hypothesis H]I, fl(;(f) )—) 0 as ;2 (1)—0,

and using n=7(d,7) >0 as 7—0, we have
x, (1)) =-¢(1-n)f, (; (f))—) —ex, (]_’):—5;7&0

Similarly x, (7,) = &7 . By the fact that, for any (peB(;(r)),

% (T)-x,(T)

x,(T))=—er . Hence x,(T))=-¢er+o(z). Similarly x,(7,)=-¢er+o(z). Ignoring

x(t)—;(t) ” = 0(2’) uniformly

in any bounded set in ¢, we have =o(z),implying x,(7;)=x,(T;)+ o(z). But

O (7)and noting that x (¢) is at least C' on [T,.,T,], by the intermediate value theorem, then
thereisa 7 =T (d,7)€[T,,T,] such that x, (T*): 0.
Proof (i1). We prove that |]T—T *| =O(z‘). In the neighborhood of T, we can use linear

interpolation to determine 7 and 7. For x , (¢), ¢ €[T,,T, ] we have

— T, x

1

T: 2 = ;
xZ
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and for x, (t),t €[T,.T, ]

0% (L) -Tx () _(L+T)er+(T-T,)o(r)
xz(Tz)_xz(T1) 2¢r

Therefore T-T =— w :
2¢r

andby 7, ~T,=—2¢, T-T" = o(r)/r . Recall that r = 1+ o(z) . Thus |?—T*| =o(7).
We now demonstrate that any solution of equation (1) with initial value in B (; (T)) returns to it

after some 7~ > 0. This is shown by Lemmas 3 and 4 below.

First we show that at the time 7 >0, (T " >0) of crossing the positive part of the x ; (t)
(respectively, x, ) axis, the solutions x (t),and (x (t )) are still o(7)close.

Lemma 3. [x(T) =x(1") | = o(z)

Proof.

(18)

By the continuity of f (x (t )) and Hypothesis (H1), we obtain

o — e — ’
[)ﬁ (T )2 +X 2 (T)Z :lz =x, (1) (1—277+2772 )2
which tends to x ; (ZT )=; as 7 — 0. Hence, the expression in (18) above gives

H; (ZT) —;(T*) H = |T*—7_1|; and, by using |T*—T| = o(z‘),we have,H; (f) —;(T*)H = o(z').

Lemma 4. For any ¢ E[T*— T,T*] and p € B (; (?)), ” x( t)—x(T*) ” =o(r)
Proof. By the mean value theorem, and Lemma 1,

”x(t)—x(T*) ||gr te[TS*u—pr,T*}

=7 tE[Ts*u_pT’T*J U =nz) £ (x(0)| < c(+20)M = o(z)

}

d —
E(x (t) + 0(2‘))

ix(t) =7 sup {
dt te[T*—r,T*}

Proposition 3. Forany ¢ € B [; (T) ), Xpe =X (t) |[T*—r T*} eB (;(T)J .
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Proof. The proof of this proposition shows that indeed x () returns to B ()7 (r)) after some

time ¢ € [T* —r,T*] . We first show that ”x(T*)—;(z') ” <o(r) . We observe that

5 ()= ()| <] ¥ ()X ()| + |5 ()~ () |+ | )~ ()

Let us consider each term in turn.
[x(r) -x(7)| = [ijo (T)} {xl g )B <5, +o(z)-1||=0(x)

=0(7),and by Lemma 1, ”x (T*)—x(T*)

By Lemma 3, H;(Z_")—;(T>

”;(r)—x (T)|

Let te[T*—r,T*],

|=O(r) . Thus
:O(r).

x(t)-x(7) ” < ”;(r)—x (T)” + ”x (T*)—x (7) ” By the estimate above
and Lemma 4 we see that ”x(t)— ;(7)”3 20(7) =o(r), implying x .€B (;(r)) The proof of

proposition 4, shows that indeed x (¢) returns to B (; (r)) atx ..

Theorem 5. Equation (1) with small 7 has at least one periodic solution.
Proof. This follows from Proposition 4 and Lemmas 1-4 above. Indeed we can define the Poincar’e

operator p:p €B (; (t)) X, € C,, . By Proposition 4, p is defined from a closed bounded
convex set B (; (t )) into itself. The continuity of p is assured by the continuous dependence of

solutions on the initial data (as shown in Lemma 1) and the transversality of x (t ) with the x, -axis

(as essentially proved in Lemma 2 (i)). Since p maps B, a compact set, into itself, and is
continuous, it is completely continuous. By Schauder's fixed-point Theorem we conclude that p has
at least one fixed point, which corresponds to a periodic solution of equation (4).
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