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 مقدر الانحدار باستخدام طريقة المعاينة المرتبة الثنائية المراحل  

 هاني سماوي وإيمان طوالبه

عندما يكون الوسط الحسابي للمتغير      أداء طريقة المعاينة المرتبة الثنائية المراحل للتقدير الانحداري سوف يبحث هنا           :  خلاصة
 طريقة المعاينة المرتبة    حاكاة ، دلت على أن مقدر الانحدار باستخدام       أن التحليلات الأولية وطرق الم    . المساعد غير معروف  

وأيضاً هو . مرتبة الأخرى الأيٍّ من طرق المعاينة المرتبة وغير الثنائية المراحل هو أكثر فاعلية من مقدرات الانحدار باستخدام 
 المرتبة وغير المرتبة، أحادية أو       طرق المعاينة  أفضل وأكثر فاعلية من المقدرات البسيطة باستخدام الأوساط الحسابية لأي من          

  .  ثنائية المراحل
 

ABSTRACT: The performance of a regression estimator based on the double ranked set sample 
(DRSS) scheme, introduced by Al-Saleh and Al-Kadiri (2000), is investigated when the mean of the 
auxiliary variable X is unknown. Our primary analysis and simulation indicates that using the DRSS 
regression estimator for estimating the population mean substantially increases relative efficiency 
compared to using regression estimator based on simple random sampling (SRS) or ranked set 
sampling (RSS) (Yu and Lam, 1997) regression estimator.  Moreover, the regression estimator using 
DRSS is also more efficient than the naïve estimators of the population mean using SRS, RSS (when 
the correlation coefficient is at least 0.4) and DRSS for high correlation coefficient (at least 0.91.) 
The theory is illustrated using a real data set of trees. 

 
KEYWORDS: Double Extreme Ranked Set Sample; Double Ranked Set sample; Extreme Ranked 
Set Sample; Ranked Set Sample; Regression Estimator.      

1. Introduction 

I n many applications, considerable cost savings can be achieved if the number of quantifications 
is only a small fraction of the number of available units, although all units contribute to the 

information content of the quantification.  Ranked set sampling (RSS) is a method of sampling that 
can achieve this goal. RSS was first introduced by McIntyre (1952).  It is highly powerful and 
much superior to the standard simple random sampling (SRS) for estimating some population 
parameters.  

RSS can be applied in agricultural, environmental and human populations.  For example, the 
level of bilirubin in the blood of infants can be ranked visually by observing: (i) Color of the face. 
(ii) Color of the chest. (iii) Color of lower part of the body. (iv) Color of terminal parts of the whole 
body. As the yellowish goes from (i) to (iv), the level of bilirubin in the blood goes higher (see 
Samawi and Al-Sakeer 2001).  

Al-Saleh and Al-Kadiri (2000) showed that the efficiency of estimating the population mean 
could be improved even more by using double ranked set sampling  (DRSS). Also, they proved that 
ranking in the second stage is easier than in the first stage. Moreover, as a variation of RSS Samawi 
et al. (1996) investigated extreme ranked set sample (ERSS) and also suggested double extreme 
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ranked set sampling (DERSS) Samawi (2002). More details about RSS can be found in Kaur et al., 
(1995) and Patil et al. (1999). In this paper, we investigate the performance of DRSS for estimating 
the population mean using the regression estimator. Theoretical and numerical comparisons with 
other estimators will be considered. In section 2, notations, definitions and some basic results are 
introduced. The regression estimator using SRS and, RSS regression estimator (Yu and Lam, 1997) 
are introduced in section 3. Our proposed regression estimator using DRSS and its properties are 
given in section 4. In section 5, we illustrate the theory using a set of data representing a real life 
situation.  

2.    Sample Notation and Definition with Some Useful Results 

2.1   One Stage Sampling 

2.1.1 Univariate Population 
RSS involves selecting  random sets each of size  from the target population.  In the most 

practical situations, the size  will be 2, 3 or 4. Rank each set by a suitable method of ranking, for 
example, by using prior information or visual inspection. In sampling notation this implies: 
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        (2.1) 

where ijX  denotes the -th observation in the i j -th set and  ( )j iX  is the -th ordered statistic in the i
j -th set. Only the elements 1(1) 2(2), ,..., ( )r rX X

n mr=

X  are quantified i.e. the element with smallest rank 
from the first set, the second smallest from the second set, and so on until the largest unit from the 

-th set is measured. This represents one cycle of RSS. We can repeat the whole procedure 
times to get a RSS of size  (Takahasi and Wakimoto, 1968). 

r
m

2.1.2   For bivariate population 
Samawi and Muttlak (1996) modified the above procedure in the case of bivariate 

distributions to estimate the population ratio, /YR χµ µ= . The procedure is described as follows: 

First choose  independent bivariate elements from a population, with bivariate distribution 
function .   Rank each set with respect to one of the variables Y or 

2r
)y( ,F x X .  Suppose ranking is 

on variable X .  Apply the same procedures as in case of univariate population but for each 
measured unit from the X ’s, the associated unit from the Y ’s is measured too.  This may be 
repeated times to get a bivariate sample of size nm rm= .  In sample notation: The sample 

{ ,  =1,2,…, ; =1,2,…, } will denote the bivariate RSS. 
( )( ,

i i kX Y [ ]i i k
i) r k m

2.2     Double Ranked Samples (Two stage sampling) 

As a variation of RSS, Al-Saleh and Al-Kadiri (2000) introduced the DRSS procedure as follows: 
1. Identify r  elements from the target population and divide these elements randomly    3

      into  sets each of size  elements.  r 2r
2. Apply the usual RSS procedure to each set to obtain r  RSS, each of size r .  
3. Employ again the RSS procedure in Step 2, to obtain the DRSS of size .  r
4. We may repeat steps 1-3 m  times to obtain a sample of size n rm= .  

In sampling notation, after ranking each sample separately in each subset, we get:  
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k=1,2,…,m, where  ( )
( )l
i i kX  is the  i-th ordered observation in the  i-th  sample of the  l-th set in  the 

k-th cycle. Use RSS scheme on each subset separately, to get  
 

      ( ) ( ) ( ){ }1 1 1
1 1 2 2, ,...ik k k r rA X X X= k , …. ( ) ( ) ( ){ }1 1 2 2, ,...r r r

ik k k r rA X X X= k . 

  
Then in the second stage, let W = i-th smallest observation in , then  {W ,        ( )i i k ikA ( )i i k

 i=1,2,…,r, k=1,2,…,m} will denote the DRSS.  Now let  W ,   k=1, 2, …., m, be a 

DRSS, where the mean and variance of W are 
1(1) ( ),...,k rW r k

( )i i k ( )iµ∗∗  and ( )
2

iσ ∗∗ , respectively. Al-Saleh and Al-
Kadiri (2000) showed that:  
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where µ and 2σ  are the mean and the variance of the population, respectively. Also, it was shown 
that ranking in the second stage is easier than in the first stage. 

3.     Regression Estimators Using SRS and RSS 

As in ratio estimation, the linear regression estimator is used to increase the precision of 
estimating the population mean by using extra information in an auxiliary variable X that is 
correlated with the survey variable Y.  When the relation is approximately linear, and the line does 
not go through the origin, an estimate of the population mean based on the linear regression of Y on 
X is suggested rather than using the ratio of the two variables. 

3.1  Regression estimator using SRS 

Let ( , )i iX Y ,   i=1,2,…,r,   be a bivariate sample from , and assume that ( , )F x y
 

      ( )iXy xi iY β εµ µ= + − +                                            (3.1) 

where xµ  and yµ  are the means of X  and Y  respectively, and for fixed  iX  , the iε ’s , i=1,2,…,r 

are i.i.d (independent and identically distributed) with mean zero and variance ( )2 2 1yε
2σ σ ρ−= . 

Consider the case where xµ  is unknown. The method of double sampling can be used to 
obtain an estimate of yµ . This involves drawing of a large random sample of size n ′ , which is 
used to estimate yµ . Then a subsample of size n is selected from the original selected units to study 

the primary characteristic of Y . Setting , the first and the second-phase 
samples are simple random samples. Then the double-sampling regression estimator 

2   and n r m n rm′ = =

dsY  is given 
by  

    ( )ds SRS SRSY Y X Xβ ′= + −  ,                        (3.2) 
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where 1
SRS iX X

rm
= ∑ , 1

SRS irm
= ∑Y , Y X ′  is the  sample mean of  X   based on 

observations  of  X  in the first phase and  2r m
 

( )( )
( )2

i iSRS SRS

i SRS

X X Y Y

X X
β

− −∑
=

−∑
. 

When the underlying distribution of (X, Y) is assumed to be bivariate normal, the regression 
estimator dsY is an unbiased estimator for yµ and its variance is given by 
 

( ) ( )
2

2 2
2

1 11
3ds y

rVar Y
n r n r m
εσ ρ σ
 −

= + +  − 
                                (3.3) 

(Sukhatme and Sukhatme, 1970). If the assumption of the linear relationship in (3.1) is invalid, 
then the SRS regression estimator in (3.2) is in general a biased estimator of yµ . 

3.2 Regression estimator using RSS 

Consider the bivariate RSS. From (3.1) the relationship between Y  and [ ]i k ( )i kX  is  
 

[ ] ( )( ) [ ]y xi k i k i kY Xµ β µ= + − +ε ,   i=1,2,…,r and k=1,2,…,m.             (3.4) 

 
Again, when xµ  is unknown the method of double sampling (two-phase sampling) can be used to 
obtain an estimate of xµ .  Note that the first-phase sample is a simple random sample and the 
second-phase sample is a ranked set sample. Then the double-sampling regression estimator RdsY  
based on RSS as in Yu and Lam (1997) have given by:  
 

( )Rds RSS RSSY Y X Xβ ′= + − ,                      (3.5) 
 
where X ′  is the sample mean of X based on the   observations of the first phase. Furthermore, 
using the basic properties of conditional moments, Yu and Lam (1997) showed that 

2r m
RdsY  is an 

unbiased estimator of yµ  under  (3.4), and the variance is given by: 
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where  
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Again, if the assumption of linear relationship is invalid, the RSS regression estimator in (3.5) is in 
general a biased estimator of yµ . Next we will propose our approach for using a regression 
estimator for estimating yµ  based on DRSS. 
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4. Regression Estimator Using DRSS 

4.1 DRSS for regression estimator 

In the two-phase regression estimator using DRSS, for the k-th cycle, in the first stage r  
quantified RSS samples each of size are considered. The following will denote the first stage 
sampling: 

r
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These sets of quantified observations, of size mr2, are used to estimate xµ , the population 
mean of the variable X, which is assumed to be unknown. In the second stage a bivariate DRSS, of 
size n=rm, which is { ( ) [ ]( ) }:  1 2 1 2i i k i i kW , Y i , ,..., r, k , ,..., m= =  is measured.  

Note that, rankings in the second stage on the variable X are based on the exact measures, i.e. 
perfect ranking. Also, we are not using the mr3   observation from the first stage to estimate xµ , 
because we quantified only mr2 of them and not all the mr3 observations and this will reduce the 
cost of the sampling unit in the study.  

4.2   Regression Estimator of µy 

If W  and  are, respectively, the i -th smallest value of ( )i i k [ ]i i k Y X  (from the second stage of 
DRSS), and the corresponding value of Y obtained from the th sample in the th set, then from 
(3.1), we have 

-i -k

( ) ( )( )y xi i k i i k Y W ikµ β µ ε= + − + , 1, 2,..., , 1, 2,...,i r k m= = ,                (4.1) 

where,  is the model slope, β /yβ ρ xσ σ= , and iikε  are random errors as in (3.1).  Let RSSX ∗  be 

the sample mean based on the r RSS samples of size , i.e.,   2r m ( )
1
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(see Dell  and Clutter (1972)). Under DRSS, the regression estimator of the population mean yµ  
can be defined as 

( )Re
ˆ

gD DRSS D RSSY Y X Wβ ∗= + −                                     (4.4) 
where, 
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and RSSX ∗  as  above. 
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4.2.1. Properties of the estimator 
Again, using the basic properties of conditional moments and the above results, the following 

theorem will be proved. 
Theorem 4.1: Under (4.1) assumptions: 
 
(1) ( )Re gD yE Y µ= . 
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Proof: The prove of this theorem and two required propositions are in the Appendix. 
4.2.2   Performance of Re gDY with Respect to Naive Estimators 

From the previous results, the relative precision of Re gDY  with respect to the naive estimators 

of yµ ,  RSSY  and DRSSY  using RSS and DRSS respectively are as follows: 
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Note that these relative precisions are based on the variances of the estimators. 

4.2.3 Performance of Re gDY  with respect to other Regression Estimators 

When the sample is drown from a standard bivariate normal population, the relative precision 
of Re gDY  relative to the two-phase (double sampling) regression estimator dsY  based on SRS (see 

Sukhatme and Sukhatme, 1970) and to the two-phase regression estimator RdsY  based on RSS (see 
Yu and Lam, 1997) will be respectively as follows: 
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(see section 3). Note that these relative precisions are based on the variances of the estimators. 
Since t is not easy to find, the values of the above expressions simulation is used to calculate them. 

4.3 Simulation Study 

4.3.1 Design of the Simulation  
A computer simulation is conducted to study the efficiency of the regression estimator.   Using 

SRS, RSS, and DRSS bivariate normal random samples where generated when xµ =2, 
 4,  1,  1y xµ σ σ= = =  and ρ= ]99.00.0[ −± . The performance of the regression estimators are 
investigated for r = 4, 5, 6, 7 and 8 and m =1, 4 and 8. Using 5000 replications, estimates of the 
means and the mean square errors for the regression estimators were computed. 

The efficiency of the regression estimator is defined by ( ) ( ) ( ) /, jiji RMSERMSERRRE =  
where i and j represent any type of the above sampling methods. The results for the simulation are 
in Tables 1 and 2. 

Table 1:  The efficiency of Re gDY  with respect to the naive estimators based on RSS and DRSS 

ρ=0.99 ρ =0.95 ρ =0.93 ρ =0.9 ρ =0.8 m r RSS DRSS RSS DRSS RSS DRSS RSS DRSS RSS DRSS
4 4.70 2.22 2.81 1.40 2.39 1.16 2.04 0.96 1.21 0.62 
5 6.92 2.40 3.55 1.32 3.06 1.09 2.53 0.92 1.29 0.58 
6 9.28 2.40 4.20 1.27 3.35 1.04 2.85 0.77 1.68 0.47 
7 12.95 2.60 5.68 1.17 4.71 0.91 3.18 0.70 2.05 0.39 

1 

8 17.30 2.78 6.97 1.07 5.95 0.81 4.01 0.63 2.32 0.39 
4 11.97 2.30 7.35 1.50 6.10 1.26 4.52 1.03 3.52 0.66 
5 22.78 2.55 12.04 1.38 9.84 1.16 8.73 0.92 5.06 0.55 
6 38.33 2.61 19.58 1.23 15.72 1.01 11.93 0.82 6.79 0.46 
7 67.94 2.68 28.73 1.18 22.37 0.97 17.13 0.72 10.23 0.40 

4 

8 99.25 2.68 39.02 1.12 31.18 0.80 23.86 0.64 13.42 0.36 
4 26.98 2.27 18.43 1.45 15.17 1.23 12.97 1.03 8.23 0.66 
5 52.75 2.50 31.41 1.31 26.66 1.11 23.61 0.89 13.89 0.54 
6 120.97 2.62 60.15 1.31 44.88 1.05 34.71 0.80 18.58 0.47 
7 207.09 2.67 90.35 1.17 73.47 0.93 53.73 0.70 30.22 0.41 

8 

8 336.46 2.73 124.39 1.05 99.13 0.83 74.28 0.60 44.91 0.35 
 
Notice that ρ takes only high positive values because the regression estimator for the 

population mean is used only when the correlation between the two variables is high. Also, 
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negative values are not considered since, from (4.6) and (4.7), the relative precision depends on the 
absolute values of   and  ρ β since they are squared. 

4.3.2 Results of the Simulation 
Our simulation (Table 1) shows that the efficiency is affected by the value of ρ.  The 

regression estimator based on DRSS is more efficient than naive estimator using RSS whenever the 
absolute value of the correlation coefficient between X and Y (ρ) is more that 0.40. Moreover, this 
efficiency is increasing as the set size or the cycle size increases. Also, the regression estimator 
based on DRSS is more efficient than the naive estimator using DRSS whenever |ρ|>0.90. 
However, when |ρ|<0.98, the efficiency decreased as the set size increased and increased otherwise. 
Moreover, in this case the efficiency is not affected by the cycle size. 

Table 2 shows that the double sampling regression estimator using DRSS was always superior 
to the double sampling regression estimators using SRS and RSS.  However, the efficiency was 
affected by the value of ρ. The efficiency increased by increasing the value of ρ. Also, the 
efficiency decreases with increasing the set or the cycle size for small values of ρ. However, Re gDY  
was still found to be more efficient than using other sampling methods. 

Table 2: The efficiency of Re gDY  with respect to the regression estimators based on SRS and RSS. 

ρ=0.99 ρ =0.9 ρ =0.8 M r SRS RSS SRS RSS SRS RSS 
4 2.25 2.18 1.94 1.64 1.85 1.48 
5 2.47 3.43 1.72 1.90 1.87 1.33 
6 2.35 2.60 1.43 1.27 1.49 1.27 
7 2.80 2.74 1.56 1.44 1.37 1.23 

1 

8 2.93 2.89 1.51 1.40 1.32 1.21 
4 2.14 2.13 1.46 1.45 1.26 1.24 
5 2.40 2.39 1.45 1.44 1.24 1.23 
6 2.58 2.57 1.23 1.22 1.22 1.20 
7 2.73 2.73 1.41 1.38 1.20 1.18 

4 

8 2.89 2.87 1.38 1.36 1.19 1.17 
4 2.13 2.13 1.44 1.43 1.24 1.23 
5 2.39 2.39 1.43 1.43 1.45 1.21 
6 2.57 2.60 1.22 1.21 1.20 1.19 
7 2.73 2.73 1.39 1.39 1.19 1.18 

8 

8 2.87 2.87 1.36 1.36 1.17 1.16 

5.   Applications to Real Data Set  

We illustrate the double ranked set sample mean estimation procedure using a real data set 
which consists of the height (Y) and the diameter (X) at breast height of 399 trees. See Platt et al. 
(1988) for a detailed description of the data set. The summary statistics for the data are reported 
in Table 3. Note that the correlation coefficient ρ = 0.908.  
 

Table 3: Summary Statistics of trees data. 
 

Variable Mean Variance 

Height (X) in feet 52.36 325.14 

Diameter (X) in cm 20.84 310.11 

Population size N = 399 and the correlation coefficient between X and Y is ρ = 0.908. 

 318



REGRESSION ESTIMATOR USING DOUBLE RANKED SET SAMPLING 

Using a set size r=3 and the cycle size m=3, we draw bivariate SRS and DRSS, of size 9. 
Table 4 contains all the above proposed estimators and their estimated variances using the drawn 
samples.  
 
 

Table 4: Results from the drawn samples 
 

Sample Naïve Estimator of 
Height (Y) in feet 

Estimated 
Variance 

Regression 
Estimator 

Estimated 
Variance 

SRS 52.49 408.88 51.19 176.04 
DRSS 52.61 182.25 52.22 125.10 

 
 
Although, Table 3 confirms our simulation results. It should be emphasized that the example is 
used as an illustration of  the applicability of our proposed estimators.  
 
6. Conclusions 

 In conclusion DRSS regression estimator is to be used to improve the population mean 
estimation whenever DRSS is possible to be conducted. 
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Appendix 
Proposition 1.  Under (4.1) ( )DE β β= . 
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Proof :  Let 
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Next we prove Theorem 4.1 

Proof of Theorem 4.1: 
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Using (4.1), we have  
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Therefore, 
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Hence Re gDY  is an unbiased estimator of yµ . 
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clearly this implies that, 
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