Characterizations of K- Semimetric Spaces

Abdul M. Mohamad

Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Muscat, Sultanate of Oman, Email: mohamad@squ.edu.om.

ABSTRACT: In this paper, we prove, for a space X, the following are equivalent:
1. X is a $\omega \Delta$ space with a regular-G_δ-diagonal,
2. X is a $\omega \Delta_2$ space with a regular-G_δ-diagonal,
3. X is a semi-developable space with $G_\delta(3)$-diagonal,
4. X is a $\omega \Delta_1$-space with a $G_\delta(3)$-diagonal,
5. X is a $\omega \Delta_2$-space with a $G_\delta(3)$-diagonal,
6. X is a $\omega \Delta$-space with a $G_\delta(3)$-diagonal,
7. X is a semi-developable space with $G_\delta^*(2)$-diagonal,
8. X is a semimetrizable, c-stratifiable space,
9. X is a c-Nagata β-space,
10. X is a K-semimetrizable.

KEYWORDS: $\omega \Delta$-space, semi-developable space, K-semimetrizable space, β-space, $G_\delta^*(2)$-diagonal, $G_\delta(3)$-diagonal, regular-G_δ-diagonal, semi-stratifiable, c-semi-stratifiable.

1. Introduction

A space X is semimetrizable if there exists a real valued function d on $X \times X$ such that
1. $d(x,y) = d(y,x) \geq 0$.
2. $d(x,y) = 0$ if and only if $x = y$.
3. for $M \subset X$, $x \in \overline{M}$ if and only if $d(x,M) = \inf \{d(x,y) : y \in M\} = 0$. If in addition, d satisfies.
4. $d(H,K) > 0$ whenever H and K are disjoint compact subsets of X, then X is said to be K-semimetrizable (Arhangel'skii, 1966).

Let $\{G_n\}_{n \in \mathbb{N}}$ be a sequence of covers of a space X.

1. Suppose $\{G_n\}_{n \in \mathbb{N}}$ satisfies the following property: if, $x_n \in \text{st}(x,G_n)$, then the sequence $\langle x_n \rangle$ has a cluster point.
(a) If, for each \(n \in \mathbb{N} \), \(G_n \) is an open cover of \(X \), then \(X \) is called a \(\omega \Delta \)-space (Borges, 1968).
(b) If, for each \(n \in \mathbb{N} \), \(st(x,G_n) \) is an open subset of \(X \), then \(X \) is called a \(\omega \Delta_1 \)-space (Gittings, 1975).
(c) If, for each \(n \in \mathbb{N} \), \(x \in \text{Int} \ st (x,G_n) \), then \(X \) is called a \(\omega \Delta_2 \)-space (Gittings, 1975).

2. If for each \(x \in X \), \(\{ st (x,G_n) \}_{n \in \mathbb{N}} \) is a local base at \(x \), then \(X \) is called a semi-developable space. If in addition, for each \(n \in \mathbb{N} \), \(st(x,G_n) \) is an open subset of \(X \), then \(X \) is called a semi-developable space.

3. If, for each \(n \in \mathbb{N} \), \(G_n \) is an open cover of \(X \) and for each \(x \in X \), \(\bigcap_n st^3 (x,G_n) = \{ x \} \), then \(X \) has a \(G_\delta \) (3)-diagonal.

4. If, for each \(n \in \mathbb{N} \), \(G_n \) is an open cover of \(X \) and for each \(x \in X \), \(\bigcap_n st^2 (x,G_n) = \{ x \} \), then \(X \) has a \(G_\delta^* \) (2)-diagonal.

5. If, for each \(n \in \mathbb{N} \), \(st(x,G_n) \) is an open subset of \(X \) and for each \(x \in X \), \(\bigcap_n st (x,G_n) = \{ x \} \), then \(X \) has a \(S_2 \) -diagonal.

6. If, for each \(n \in \mathbb{N} \), \(x \in \text{Int} \ st (x,G_n) \) and for each \(x \in X \), \(\bigcap_n st (x,G_n) = \{ x \} \), then \(X \) has a \(\alpha_2 \)-diagonal.

7. If, for each \(n \in \mathbb{N} \), \(G_n \) is an open cover of \(X \) and for any pair of distinct points \(x,y \in X \), there exist neighborhoods \(U \) and \(V \) of \(x \) and \(y \), respectively, and \(n \in \mathbb{N} \), such that \(st(U,G_n) \cap V = \phi \), equivalently, \(st(V,G_n) \cap U = \phi \), then \(X \) has a regular- \(G_\delta \)-diagonal.

A COC-map (= countable open covering map) for a topological space \(X \) is a function from \(\mathbb{N} \times X \) into the topology of \(X \) such that for every \(x \in X \), and \(n \in \mathbb{N} \), \(x \in g(n,x) \) and \(g(n,x) \subseteq g(n,x) \). A space \(X \) is called \(\beta \)-space if \(X \) has a COC-map \(g \) such that if \(x \in g(n,x) \) for every \(n \in \mathbb{N} \), then the sequence \(\{ x_n \} \) has a cluster point.

A space \(X \) is called \(q \)-space if \(X \) has a COC-map \(g \) such that if \(x_n \in g(n,x) \) for every \(n \in \mathbb{N} \), then the sequence \(\{ x_n \} \) has a cluster point.

A space \(X \) is called \(c \)-semi-stratifiable (Martin, 1973) \((c \)-stratifiable) if there is a sequence \(\{ g(n,x) \} \) of open neighborhoods of \(x \) such that for each compact set \(K \subset X \), if \(g(n,K) = \bigcup \{ g(n,x) : x \in K \} \), then \(\bigcap \{ g(n,K) : n \geq 1 \} = K \left(\bigcap \{ g(n,K) : n \geq 1 \} = K \right) \).

The \(COC \)-map \(g : \mathbb{N} \times X \rightarrow \tau \) is called a \(c \)-semi-stratification \((c \)-stratification) of \(X \). A space \(X \) is called \(c \)-Nagata if it is first countable, \(c \)-stratifiable space.

Throughout this paper, all spaces are assumed to be \(T_2 \)-spaces unless otherwise stated explicitly. The letter \(\mathbb{N} \) always denotes the set of all positive integers.

2. Main results

\textbf{Lemma 1 :} Every space with a \(G_\delta \) (3)-diagonal has a \(G_\delta^* \) (2)-diagonal.

\textit{Proof.} Let \(\{ G_n \} \) be a \(G_\delta \) (3)-diagonal sequence for \(X \). We want to prove that \(\bigcap_{n \in \mathbb{N}} st^2 (x,G_n) = \{ x \} \) for every \(x \in X \). Suppose we have \(q \in \bigcap_{n \in \mathbb{N}} st^2 (x,G_n) \). For every open set \(U \) such that \(q \in U \) and for each \(n \in \mathbb{N} \)

\[st^2 (x,G_n) \cap U \neq \phi. \]
CHARACTERIZATIONS OF K-SEMIMETRIC SPACES

In particular, if $G \in G_n$ is such that $q \in G$ then $st^2(x,G_n) \cap G \neq \emptyset$. So, $q \in st^3(x,G_n)$. As this holds for all n, it follows that $x = q$.

Lemma 2: Any space with a G_δ^* (2)-diagonal is a c-stratifiable space.

Proof. Let $\{G_n\}$ be a sequence of open covers of a space X such that $\bigcap_{n \in \mathbb{N}} st^2(x,G_n) = \{x\}$. Define a COC-map g by

$$g(n,x) = st(x,G_n).$$

We must prove that $\bigcap g(n,K) = K$ for any compact subset of X.

Let $p \notin K$. Then, for each $k \in K$, there exists an integer $n(k)$ such that $p \notin st^2(k,G_{n(k)})$. Therefore there is an open set $U(k)$ containing p such that $U(k) \cap st^2(k,G_{n(k)}) = \emptyset$. Since K is compact, we can find a finite number of points k_1, k_2, \ldots, k_r of K such that $\{st(k_j,G_{n(k)}): 1 \leq j \leq r\}$ covers K. Let $n = \max\{n(k_i): 1 \leq i \leq r\}$, and $U = \bigcap_{k \in K} U(k)$. Then

$$U \cap st(k,G_n) = \emptyset.$$

That is, $U \cap g(n,K) = \emptyset$. This implies $p \notin g(n,K)$.

Theorem 1: Every $\omega \Delta_1$-space with S_2-diagonal is an ω-semidevelopable space.

Proof. Let $\{G_n\}_{n \in \mathbb{N}}$ be a countable family of covers of a space X illustrating that X is a $\omega \Delta_1$-space. Since X has an S_2-diagonal, there exists a sequence $\{\nu_n : n \in \mathbb{N}\}$ of covers of X such that, for each $x \in X$ and $n \in \mathbb{N}$, $st(x,\nu_n)$ is an open subset of X and $\bigcap_{n \in \mathbb{N}} st(x,\nu_n) = \{x\}$. For each $n \in \mathbb{N}$, let

$$u_n = \left\{U : U = \left(\bigcap_{i=1}^n G_i\right) \cap \left(\bigcap_{i=1}^n V_i\right), G_i, V_i \in \nu_i, i = 1, 2, \ldots, n\right\}.$$

It is easy to see that u_{n+1} refines u_n for all $n \in \mathbb{N}$ and that, for each $x \in X$, $\bigcap_{n \in \mathbb{N}} st(x,u_n) = \{x\}$. Furthermore, for each $x \in X$ and $n \in \mathbb{N}$

$$st(x,u_n) = \left(\bigcap_{i=1}^n st(x,G_i)\right) \cap \left(\bigcap_{i=1}^n st(x,\nu_i)\right)$$

and thus $st(x,u_n)$ is an open subset of X. Also, it is easy to check that $\langle u_n : n \in \mathbb{N}\rangle$ is a $\omega \Delta_1$-sequence for X.

It remains to show that $\langle u_n : n \in \mathbb{N}\rangle$ is a semi-development for X. Suppose instead that $\langle u_n : n \in \mathbb{N}\rangle$ is not a semi-development for X. Then there is a point x, an open neighborhood W of x, and a sequence $\langle x_n \rangle$ such that for all n, $x_n \in st(x,u_n)$ and $x_n \notin W$. Since $\langle u_n : n \in \mathbb{N}\rangle$ is a $\omega \Delta_1$-sequence for X, the sequence $\langle x_n \rangle$ has a cluster point p. Clearly $p \notin W$ so $p \neq x$. By choice of $\langle \nu_n : n \in \mathbb{N}\rangle$, there are k in \mathbb{N} and a neighborhood V of p such that $V \cap st(x,\nu_k) = \emptyset$. Now for $n \geq k$, $x_n \in st(x,u_n) \subset st(x,u_k) \subset st(x,\nu_k)$ so $x_n \notin V$. This contradicts the fact that p is a cluster point of $\langle x_n \rangle$. Thus $\langle u_n : n \in \mathbb{N}\rangle$ is a semi-development for X.

Theorem 2: The following are equivalent for a regular $\omega \Delta_1$-space X:

1. X is semimetrizable;
2. X is semi-stratifiable;
3. X is θ-refinable and has a G_δ-diagonal;
4. X has a $G^*\delta$-diagonal;
(5) X has α_2-diagonal.

(6) X is semidevelopmentable.

Proof. The only implications requiring comment are (5) \Rightarrow (6) and (6) \Rightarrow (1). To prove (5) \Rightarrow (6), let $\{G_n\}$ be a countable family of covers of X illustrating that X is a $\omega\Delta_2$-space. Let

$$\langle v_n : n \in \mathbb{N} \rangle$$

be an α_2-sequence for X. Let the sequence $\langle u_n : n \in \mathbb{N} \rangle$ be defined as in the proof of Theorem 2.3. Since for each $x \in X$ and $n \in \mathbb{N}$,

$$\text{Int}(x, u_n) = \left(\bigcap_{n=1}^{\infty} \text{Int}(x, G_n) \right) \cap \left(\bigcap_{n=1}^{\infty} \text{Int}(x, v_n) \right),$$

we have $x \in \text{Int}(x, u_n)$. It follows, exactly as before, that $\langle u_n : n \in \mathbb{N} \rangle$ is a semi-development for X. The implication (6) \Rightarrow (1) follows from (Alexander, 1971), Theorem 1.3.

Theorem 3:

For a space X, the following are equivalent:

1. X is a $\omega\Delta_1$-space with a regular-G_δ-diagonal,
2. X is a $\omega\Delta_2$-space with a regular-G_δ-diagonal,
3. X is a semi-developable space with $G_\delta (3)$-diagonal,
4. X is a $\omega\Delta_1$-space with a $G_\delta (3)$-diagonal,
5. X is a $\omega\Delta_2$-space with a $G_\delta (3)$-diagonal,
6. X is a $\omega\Delta_2$-space with a $G_\delta (3)$-diagonal,
7. X is a semi-developable space with $G_\delta^* (3)$-diagonal,
8. X is a semi-stratifiable, c-stratifiable space,
9. X is a c-Nagata β-space,
10. X is a K-semimetrizable.

Proof. It is clear that $1 \Rightarrow 2$, $3 \Rightarrow 4$, $4 \Rightarrow 5$, $8 \Rightarrow 9$.

The implication $5 \Rightarrow 6$ follows by Lemma 2.5 and since every $\omega\Delta_2$-space is a q, β-space. The implication $6 \Rightarrow 7$ follows by facts every β-space with a $G_\delta^* (3)$-diagonal is a semi-stratifiable space, every q-space with a $G_\delta^* (3)$-diagonal is first countable and every first countable, semi-stratifiable space is a semimetrizable.

The implication $7 \Rightarrow 8$ follows by Lemma 2.2 and since every T_θ-semi-developable space is a semimetrizable.

The implication $9 \Rightarrow 8$ follows by facts every c-stratifiable, β-space is semi-stratifiable and every first countable, semi-stratifiable space is a semimetrizable.

$1 \Rightarrow 8$ follows by Lemma 2.2, Theorem 2.3.

For $2 \Rightarrow 3$. Suppose that X is a $\omega\Delta_2$-space with a regular-G_δ-diagonal. Every space with a regular-G_δ-diagonal has a $G_\delta^* (3)$-diagonal. By Theorem 2.4, X is a semi-developable space. Let $\{G_n\}$ be a semi-development and regular-G_δ-diagonal-sequence. To see that G_n satisfies the $G_\delta (3)$-diagonal-sequence, let $x \neq y$ points in X, U and V open sets containing x and y respectively, and n_0 an integer such that if $n > n_0$, then no member of G_n meets both U and V. Let n_1 and n_2 be integers such that $st(x, G_{n_1}) \subset U$ and $st(y, G_{n_2}) \subset V$. $N = \max\{n_0, n_1, n_2\}$. Then no member of G_n meets both $st(x, G_n)$ and $st(y, G_n)$. Thus $y \not\in st^3(y, G_n)$.

For $10 \iff 3$. Let $G_n = \{1/n \text{ sphere centered at } x\}$. It is clear that $\{G_n\}$ is a sequence of covers of X and $y \in st(x, G_n)$ if and only if $d(x, y) < 1/n$. Therefore $\{G_n\}$ is a semidevelopment for X. Now let $G_n = \{\text{interior of } 1/n \text{ sphere centered at } x\}$. It is clear that $\{G_n\}$ is a sequence of open covers of X and if $y \in st(x, G_n)$ then $d(x, y) < 1/n$. If there exist distinct points x and
such that \(y \in st^3(x,G_n) \) for all \(n \in \mathbb{N} \), then there are sequences \(\{x_n\} \) and \(\{y_n\} \) such that

\[x_n \in st(x,G_n), y_n \in st(y,G_n) \quad \text{and} \quad y_n \in st(x_n,G_n). \]

Let \(K_1 = \{x\} \cup \{x_n : n \in \omega\} \) and \(K_2 = \{y\} \cup \{y_n : n \in \omega\} \). We may assume \(K_1 \cap K_2 = \phi \) with both sets compact. But \(d(K_1, K_2) = 0 \), a contradiction.

Conversely, let \(G_n \) be a semi-development and \(G_\delta(3) \)-diagonal-sequence for \(X \). Define a semimetric \(d \) on \(X \) by \(d(x,y) = 1/\inf \{j \in \mathbb{N} : x \notin st(y,G_j)\} \). From the definition \(x \in st(y,G_n) \) if and only if \(d(x,y) < 1/n \). Assume there exist disjoint compacta \(K \) and \(H \) such that \(d(K,H) = 0 \). We can find two sequences \(\{x_n\} \) and \(\{y_n\} \) in \(K \) and \(H \) respectively, such that \(d(x_n,y_n) < 1/n \). Note that \(X \) is sequential and \(T_2 \) so that \(\{x_n\} \) and \(\{y_n\} \) have convergent subsequences. Let \(\{x_{n_i}\} \) and \(\{y_{n_i}\} \) be subsequences of \(\{x_n\} \) and \(\{y_n\} \) converging to \(x \) and \(y \), respectively. Without loss of generality, we may assume \(d(x,x_{n_i}) < 1/i \) and \(d(y,y_{n_i}) < 1/i \) for each \(i \in \mathbb{N} \). Since \(d(x_{n_i},y_{n_i}) < 1/i \), it follows that there is no \(k \) such that \(y \notin st^3(x,G_k) \). This contradiction completes the proof.

References

Received 15 May 2001
Accepted 20 February 2003