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تزامن وموت المتذبذب في المتذبذبات الشبكية المقرنة انتشارياُ       

 واسيكيأدو 

يهتم هذا البحث بدراسة التزامن وتوقف التذبذب لمتذبذبات مستوية ذات عدد زوجي موجب مقرنة إلى أقرب متذبذبات  :  خلاصة
لكل متذبذب حل دوري    . شاري خطي ومتماثل   ، ثنائية وثلاثية من خلال مسار انت        في شبكية صحيحة على مستويات آحادية     

 اثبتت الدراسة أن في بعض حالات التفارق يوجد تزامن متماثل وتزامن غير متماثل يناظر كل حل دوري متماثل وغير                  . جاذب
من غير متماثل يكون عند التفارق الضعيف ،        التزامن المتماثل يوجد في حالة التفارق القوى بينهما التزا        . متماثل على الترتيب  

 . وهذا يختفي إلى الأصل بعد تفارق قوي معين
 

ABSTRACT: We consider the synchronization and cessation of oscillation of a positive even 
number of planar oscillators that are coupled to their nearest neighbours on one, two, and three 
dimensional integer lattices via a linear and symmetric diffusion-like path. Each oscillator has a 
unique periodic solution that is attracting. We show that for certain coupling strength there are both 
symmetric and antisymmetric synchronization that corresponds to symmetric and antisymmetric 
non-constant periodic solutions respectively. Symmetric synchronization persists for all coupling 
strengths while the antisymmetric case exists for only weak coupling strength and disappears to the 
origin after a certain coupling strength.  
 
KEYWORDS: Lattice Differential Equations, Bravais Lattice, Dynchronization and Oscillator 
Death.       

1. Introduction 

This paper is concerned with the synchronization and mutual extinction of oscillations of a 
system of ordinary differential equations (ODEs) indexed by points in an -dimensional 

integer lattice { }, 1, 2,mZ m ∈ 3 . This system is what we shall refer to as lattice differential 
equations (LDEs).By a lattice oscillator, we mean a system of LDEs with every lattice points 
having an attracting periodic orbit.  

They have been great interest in the synchronization of coupled oscillators on a one-
dimentional integer lattice. Aside from the mathematical interest in the problem (see for instance 
Aronson et. al. 1987, and references therein, coupled oscillators occur in other fields. In biology 
the papers of Ermentrout and Koppel (1990,1992) provide us with examples where 
synchronization and oscillator death occur. In chemistry Bar-Eli (1985) and Crowley and 
Epstein (1989) consider the synchronization and oscillator death for some chemical oscillators. 
LDEs are also found in Cellular neural networks (CNN), (see for example Chua and Roska 
1993. Metallurgy is another area where lattice systems can be found (Cahn 1960). (private 
communication) has considered synchronization of coupled oscillators of subsystems that are 
described by a second order damped forced Duffing ordinary differential equation. The 
oscillators are linearly and diffusively coupled both in position and velocity to their nearest 
neighbours. He found that synchronization that occurred for large values of the coupling 
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strength for both identical nonidentical oscillators is mainly influenced by the damping in the 
individual oscillators and dissipation of the coupling component of the system. Much of the 
work on synchronization and cessation of oscillations is done on a one-dimensional lattice and 
coupling involves only one variable of each subsystem. This is known in the literature as scalar 
coupling (Bar-Eli 1985). There is less repertoire on this subject in two and three-dimensional 
cases and when all variables in the subsystems at each lattice site are involved in the coupling. 
The problem we consider in this paper is the synchronization and cessation of oscillation of 
planar oscillators that are linearly and symmetrically coupled via a diffusion-like coupling to 
their nearest neighbours on one, two and three dimensional lattices. As a special case of the 
general results, we consider a canonical model where each oscillator is a truncated normal form 
to cubic order for a general planar oscillator near a Hopf bifurcation point. These types of planar 
oscillator that were considered by Poincar’e in 1891 (Perko 1998, p. 351) in his works on limit 
cycles, lend themselves to an easy analytical treatment. The dynamics of each oscillator 

 is governed by the solution of the equation.  ( ) 2: , 1, 2,3,.....,j jz z t R j∈ =

( )2
:j j j j jz Az z z g z= − = ,                                              (1.1) 

where 

                                                                 
1 1

,
1 1

A
− 

=  
 

   

. denotes the Euclidean norm, and the “dot” denotes differentiation with respect to time t . The 

solution of Equation (1.1) for any initial condition in {2 \ 0R  is a unique limit cycle that attracts 

the whole of { }2 \ 0 ,R see for instant (Perko 1998, page 356).  
We couple the differential equations in (1.1) to yield various lattice structures. We shall first 
consider the dynamics of the system when coupling yields a one-dimensional lattice and then 
proceed to consider the two and three dimensional lattices cases.  

2. One dimensional lattice 

Now, let us couple the  identical subsystems in equation (1.1) to yield  n 2≥
( ) ( ) ,z B k z f z= +                                                    (2.1) 

where denotes the coordinates of a point on the lattice, ( 1 2, ,....., T
nz z z z= ) ( )B k a real symmetric 

matrix depending on the coupling strength , is given by k 0≥ ( ) 1B k k= ∆ L⊗ with 

( ) ( )1 1
1

1 1 0 0 ... 0 0 0
1 2 1 0 ... 0 0 0

1 1
0 1 2 1 ... 0 0 0 , ;

1 1
: : : : ... : : :
0 0 0 0 ... 1 2 1
0 0 0 0 ... 0 1 1

n nR L− × −

 
 − 
 −
  ∆ = − ∈ =   

  
 

− 
 − 

       (2.2) 

where denotes the Kronecker product, and ⊗ ( ) ( ) ( ) ( )( )1 2, ,..., .
T

nf z g z g z g z= This type of 
coupling corresponds to a symmetric nearest neighbour coupling on a linear lattice with 
Neumann boundary conditions. We observe that if we had taken each subsystem in dR say, then 
the matrix above could be replaced by a dL d×  matrix whose entries are all 1’s. This coupling 
differs from the one considered in Hale (private communication) where is a d identify 
matrix.  

L d×
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We say that Equation (2.1) is synchronized or has symmetric solutions if its solution is in the 
set  

z

{ }2
1 1 2: : ... 0 ,n

nz R z z zΘ = ∈ = = = ≠  

for all t . We refer to this set as the ‘diagonal ‘ in 0≥ 2nR (Fujisaka and Yamada 1983).  
Oscillator death occur when there is a mutual cessation of oscillation in all oscillators for certain  
coupling strengths. That is, when is a constant for all t  for some positive values of k The  z 0≥ .
invariant subspace  

{ }2
1 : : 0,1n

jz R z j n∏ = ∈ ≠ ≤ ≤ −1 ,  
defines antisymmetric solutions to equation (2.1) or antisymmetric synchronization. These two  
subspace are the most readily observed and are of great interest in practical problems.  

The analysis of the evolution of the periodic solutions of equation (2.1) with as a 
parameter is facilitated by analyzing the flow restricted to the invariant manifolds ∏ and 

k
11 Θ .  

Proposition 1.1. We let  be an even integer. Then there exists a constant  for which 
equation (2.1) defines antisymmetric solutions for all 0

n 0 0k >

0k k< < . Moreover, there is oscillator 
death for k .  0k>

Proof. The proof involves the determinates of the eigenvalues of ( )B k and an appropriate 
change of coordinates. It is well known (Householder 1964) that the eigenvalues of ∆  are 1

0 0, 2 2 cos ,1 1,s
s s n
n
πλ λ= = − − ≤ ≤ −  

and they are simple. If  is an even number, then clearly n / 2 2nλ = −  is an eigenvalue and the 

corresponding eigenvector is V v  where for a given v  is a (/ 2 1 2, ,....., ;T
n v v= )n 2I1 2 ,I= ± 2 2×  

identify matrix with v v The eigenvalues of are ( )1 1 , 1, 2,....,j
j j j+ = − = 1.−n k L

0 10, 2 .kµ µ= =
2

The set ∏  is a subspace of the generalized eigenspace corresponding to the 
eigenvalues 

1

,α 0,1.µ α− =  We show that for any solution of equation (2.1) with an initial point 
in , there is oscillator death for all  and antisymmetric synchronization for 

 Consider the coordinate transformation given by  
1∏

( )00, .k k∈
0k k>

1 .
1

1, 1 1,
n

j j j
j

w z z j n y z
n+

=

= − ≤ ≤ − = j∑                        (2.3) 

If we let w w  then w and satisfy the ODEs  ( )1 2 1: , ,...., ,T
nw w −= y

( )

( )

2 2

2
1

, ,
1 ,

n

n
jj

w k Lw f w y R

y g z R
n

−

=

= ∆⊗ + ∈

= ∈∑
                                    (2.4) 

where  

( ) ( )1 1

2 1 0 0 ... 0 0 0
1 2 1 0 ... 0 0 0
0 1 2 1 ... 0 0 0 ,
: : : : ... : : :
0 0 0 0 ... 1 2 1
0 0 0 0 ... 0 1 2

n nR − × −

 
 − 
 −
 ∆ = − ∈ 
 
 

− 
 − 

                    (2.5) 
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and the function  
( ) ( ) ( )( )1 1, , ,......., , ,

T
nF w y F w y F w y−=  

with  
( ) ( ) ( )( )1, , 1j j jF w y g z g z j n+= − 1.≤ ≤ −  

Taking an initial condition in the manifold 0y 1,∏ we find that the solution of the second 
equation in (2.4) is  for all t and the governing equations reduce to the decoupled 
system of the form  

0y = 0≥

20y R= ∈ ,                                                        (2.6) 
  

( )2 1 2 1 2 1
2

2 ,n
j n j jw kl Lw g w− − −= − ⊗ + ∈R

)n

                             (2.7) 

where The solution (1, 2,3,......., / 2 .j = ( )2 1j −w of equation (2.7) corresponds to 
antisymmetric solutions of the system (2.1). To show the existence of we need consider the 
case for  let only as the system equation (2.7) is decoupled and the result for n will 
follow easily. Let   

t

0,k
2n = 2>

( )
( )2

2 , tan 2 1 2 .
1 2 1

kk k
k

α α φ= = = −
− +

 

 
We introduce a change of coordinates in equation (2.7) with n 2= given by  

1

1 0 sin cos
.

cos sin0 1

U
w

V
α φ

φ φα

 +   
=      −    

φ
                               (2.8) 

The equation (2.7) becomes  

{
( ) ( )

( )

( ) ( )
( )

( ) }

'

'

2 2 2 2

22

1
1 2 2 sin 2 1 2 cos 2

1

1
1 2 cos 2 1 2 2 sin 2

1

.
1

k k k
U
V

k k

U V U V UI
V

k

α
φ φ

α

α
φ φ

α

α

α

 +
 − − −

−  
=   

−   
− + − + + 

 + − −   −   −   

              (2.9) 

in which the prime denotes differentiation with respect to time. In polar coordinates defines by  
 

( ) ( ) ( ) ( )cos , sin ,U p t t V p t tσ σ= =  
equation (2.9) becomes  

( )

( )

2
'

2

' 2

1 cos 2 1 2
1

1 1 2 sin 2 .

p ,p k p

k

α σ
α

σ α α σ

 
= − − − −

= − − + −

                             (2.10) 

 
Solving  for 0p′ = p in the first equation in (2.10), one finds that  
 

( )( )* 1 2 1p k 2α= − −                                                  (2.11) 

provided 1 and 2k> 1,α <  is the radius of a unique invariant circle. ' 0σ <  when  
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0 1k≤ < / 2  and  
*

'
*

0, When ;
0, When .

p P
P

p P

< >

> <

 

Therefore  is the underlying point set if a limit cycle of (2.10) and attracts all of *P ( )2 \ 0,0R as 

 that exists when  If we let t →∞ 0 1/k≤ < 2. ( ) ( ) ( )( )1 cos , ,t t r tθ=w r then it can be shown that 
equation (2.7) with 0 1/ 2,k< <  admits a unique and asymptotically stable periodic orbit with 
period T ( )α and radius ( )r α given by  

( )
( )

( )
( )( )

( )( )
2

2

1 2 12 , .
1 cos 21 2

T r
t

α απα α
α θ φα

− −
=

− +−
 

Clearly at i.e. there is no oscillation. Simple analysis shows that for 
the origin for system (2.7) is stable.  

0 1/ 2, 0;k k r= = =

0 ,k k>

3. Two-dimensional lattice  

We consider an  simple (or Bravais) square lattice. Let z in n× ,1 , ,ij j n≤ ≤  be coordinate of the 

 site oscillator and the matrix Z z( ), thi j
, 1

.: n
i jij =

 =    Let ( )n1, ,......Z Z Z Z=  with Z R 2 1,n
r

×∈  

 as its column. Let ve1 r≤ ≤ ,n rth c Z denote the vector valued function of ,Z and ⊗ be the 
Kronecker sum (See Graham 1981, for details on matrix tensor algebra).  
The system of differential equations describing the dynamics on the n n×  lattice is given by  

( ) ( ) ,H k G= +Z Z Z                                                          (3.1) 

where ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) .1 1 1 2, 1
, and : , ,....,nij ni j

H k k L G g z f Z f Z f Z
=

 = ∆ ⊗∆ ⊗ = =    Z  

Equation (3.1) is symmetrically synchronization when 0ijz z= ≠  for all ij . This occurs when 

( ) 0, 0H k Zµ= = ≠Z Z  with 0µ =  as an eigenvalue of ( ).H k  Indeed, the eigenvalues of 

 are  ( )H k

( )( ) ( ){ }: : ,0 , 1s pH k s p nασ µ µ λ λ µ= = + ,≤ ≤ −  

with , , , 0,1,p s αλ λ µ α =  as defined in section 2. Clearly 0µ = is an eigenvalue of  and by 
equation (3.1), there is symmetric synchronization. In this case, the plane will be ramified with 
traveling-wave like pattern solutions to equation (3.1).  

( )H k

To facilities the understanding of other dynamics, we define some subspaces invariant to the flow 
defined by equation (3.1). Here, we shall follow a trend similar to that in Mallet-Paret and Chow 
(1995a, 1995b) where pattern formations are considered for LDE’s with a first order scalar ODE at 
each lattice site. Let  

{ }
( ){ }
( ){ }

{ }

1 1

1 1

1 1

: , ,1 1 ,

: 1 ,1 1 ,

: 1 , ,1

: .

j j j

j
j j

j
j j j

T

Z Z Z Z j n

Z Z Z j n

Z Z Z Z j n

Z Z

θθ

πθ

ππ

πθ πθ

+

+

+

Θ = = ∈Θ ≤ ≤ −

∏ = = − ∈Θ ≤ ≤ −

∏ = = − ∈∏ ≤ ≤ −

∏ = ∈∏

1 ,
 

 
We further make a coordinate transformation defined thus  
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1
1

1,1 1, and .
n

j j j
j

W Z Z jn Y Z
n+

=

= − ≤ − = j∑                                   (3.2) 

Using this in equation (3.1) we get :  
( ) ( ) ( ) ( )

( ) ( )

2 1
1 1 1

2
1

,

1 ,

n n
n n

n n
jj

W k I L W L W I G W Y R

Y B k Y f Z R
n

−
− −

=

= ⊗ ∆ + ∆ ⊗ + ∈  

= + ∈∑
                       (3.3) 

 
where  

( )1 1,..., ,nW W W −=  
 

( ) ( ) ( )( )1 1, , ,....., , ,nG W Y G W Y G W Y−=  
 
with  

( ) ( ) ( )1, ,1j jG W Y f Z f Z j n+= − 1.≤ ≤ −  

on the subspace θθΘ  
( )

( ) { }

2 1

2

0 ,

, 1, 2,......, .

n n

n

W R

Y Z f Z R nβ β β

−= ∈

= = ∈ ∈
                              (3.4) 

The system in this case is symmetrically synchronized and the dynamics are described by equation 
(3.4).  
Proposition 2.1. Let be an even integer. Then there exists a constant  for which the simple 
lattice equation (3.1) is ramified with horizontal and vertical bands of antisymmetric solutions for 
all  Moreover, oscillator death occurs for  

n 1 0k >

( 10, .k k∈ ) 1.k k>

Proof. On  θπ∏  and πθ∏ , we have horizontal and vertical bands of stripes respectively and their 
flows are governed by the decoupled ODEs,  

( )( ) (2 1 2 1 2 1
2

0,

2 ,j n n j j

Y

W I B k kI L W f W− −

=

 
= ⊗ − ⊗ + 
 

)−

n

                         (3.5) 

where W W  Since all Z( )2 1 2 11 , with 1,2,3,...., / 2.j
j j j+ −= − = 1,j ∈Θ  equation (3.5) reduces to 

 decoupled ODEs. Thus  / 2n
 

( ) ( )2 1 2 1 2 12j n jW kI L W f W+ −= − ⊗ + ,j −                                    (3.6) 
 

which upon the use of equation (2.7), Proposition 2.1 is proved with 1 1/ 2k = . 
Proposition 2.2. Let  be an even integer. Then there is a constant  for which the lattice 
equation (3.1) is ramified with checkerboard like solutions for all 

n 2 0k >

( )20, .kk ∈  Moreover, oscillator 
death occurs for .  2kk >
Poof. The subspace ππ∏  represents vertical (horizontal) bands of symmetric and antisymmetric 
oscillators. This subspace constituted a checkerboard. A unit square on a checkerboard is 
constituted by four subsystems on a  square lattice.  Within each square, the subsystems are of 
alternate signs with their nearest neighbours. If 

2 2×
( )z t  represents an oscillator, then  
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( ) ( )
( ) ( )

z t z t
z t z t

− 
 − 

 

is the unit square. The entire checkerboard is defined by these squares that alternate is sign. The 
subspace ππ∏ is invariant under the flow defined by equation (3.1) and its flow governed by the 
solution of the equations  / 2n

( ) ( )2 1 2 1 2 14j jW kI L W f W− −= − ⊗ + ,j −                                    (3.7) 
We notice that equation (3.7) is similar to equation (2.7). The proof of the Proposition 2.2 follows 
easily if we replace k in equation (2.7) with . We find that 2k 2 1/ 4k = .  

4. Three dimensional lattice  

We consider an simple cubic lattice. Let n n n× × ,1 , , ,pqrz p q r n≤ ≤  be the coordinate of the 

( , , th)p q r site oscillator with its dynamics described by equation (1.1). We shall assume that the 
coupling is to the nearest neighbour and the coupling forces are equal and acting along the axes of 
the cube. Thus the oscillator can only interact with the oscillators z Z  

six in all. Let where 

pqrz

1 2, ,=Z Z Z

1 1, ,p q r p q r p q rZ± ± 1,±

( ): ....., T
nZ

, , 1
: .

n

qr p q rr pz
=

  =Z  The system of differential equations 

describing the dynamics of the entire lattice system is given by  
( ) ( ) ,k= +Z H Z G Z                                                 (4.1) 

where                ( ) ( ) ( )( ) ( ) ( ) ( )( )1 1 1 1, ,...., ,
T

n nk k I L G G = ∆ ⊗∆ ⊗ ⊗∆ ⊗ = H G Z Z Z  

with                    G g( ) ( )
, , 1

.
n

r pqr p q r
z

=
 =  Z  

To determine the invariant subspaces available to equation (4.1), we find the eigenvalues of 
and the corresponding eigenvectors. We have  ( )kH

( )( ) ( )( ){ }: : , 0 , , 1p q rk pασ µ µ λ λ λ µ= = + + ,q r n≤ ≤ −H  

where , , , ,p q r αλ λ λ µ  are as defined in section 2 with each rλ occurring with multiplicity  .n

{ }
{ }
{ }

( ){ }
( ){ }
( ){ }

{ }

1

1

1

1

1

1

000

: , ,1 1 ,

: , ,1 1 ,

: , ,1 1 ,

: 1 , ,1 1

: 1 , ,1

: 1 , ,1

: 0 .

j j j

j j j

j j j

j
j j j

j
j j j

j
j j j

j n

j n

j n

j n

j n

j n

θθθ θθ

ππθ ππ

θπθ θπ

θθπ θθ

θππ θπ

πππ ππ

+

+

+

+

+

+

Θ = = ∈Θ ≤ ≤ −

∏ = = ∈∏ ≤ ≤ −

∏ = = ∈∏ ≤ ≤ −

Θ = = − ∈Θ ≤ ≤ −

∏ = = − ∈∏ ≤ ≤ −

,

1 ,

1 ,∏ = = − ∈∏ ≤ ≤

∏ = =

Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z

−

 

 
The system of equations defining the dynamics on these manifolds follows readily with the 
coordinate transformation 

1

1

: , 1

1: .

j j j

n
jj

j n

n

+

=

− 1,≤ ≤ −

= ∑

W Z Z

Y Z
                                                   (4.2) 

Using equation (4.2 in equation (4.1), we get 
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( ) ( )( ) ( )

( ) ( )
1 1

1

: ,

1 ,

n

n
jj

k I L

H k G
n =

 ∆⊗ ⊗ ∆ ⊗∆ ⊗ + 

= + ∑

W W

Y Y Z

,G W Y
                        (4.3) 

where                     ( ) ( ) ( ) ( )( )1 1 1 1,...., , , , ,......, , ,
TT

n nG G− −= =W W W G W Y W Y W Y  

with        ( ) ( ) ( )1, , 1j jG G j n+= − 1,≤ ≤ −Y Z ZG W  on , ,θθθΘ =W 0  and the flow is governed by  

( ) , 1,...., .Gβ β β= =Z Z n                                                (4.4)     
We thus see that the system is synchronized  
Proposition 3.1. Let be an even integer. Then for all n ( )30,k k∈ the simple three-dimensional  
lattice equation (4.1) has layers of checkerboards. Besides, oscillator death occurs for . 3k k>
Proof. On the subspace ,ππθ∏  the flow is defined by the solution of the decoupled equation  

          ( ) ( )4 , , 1,...., ,
j j jnk I L f j nβ β β β= − ⊗ + =ZZ Z                             ( 4.5)  

where   
jβZ is the   column of thj βZ

k

. Thus we shall have layers of checkerboards that persist for 
. Notice the similarity of equation (4.5) with equation (2.7). Thus replacing in 

equation (2.7) with  we find that  
0 k< <1/ 4

)

k
2k 3 1/ 4.=

Proposition 3.2. Let be an even integer. Then there exists a constant k  such that for all 
 the simple three-dimensional lattice equation (4.1), has sheets with vertical bands of 

stripes of checkerboards. Moreover, oscillator death occurs for .  

n 4 0>

( 40,k k∈

4k k>
Proof. On the subspace ,πθθ∏ the flow is defined by the solution of the decoupled equation  

( ) ( )2 , , 1,..., ,
j j jnk I L f j nβ β β β= − ⊗ + =.Z Z Z                               (4.6) 

where   
jβZ is the   column of thj βZ . Thus the entire system in the three-dimensional space is 

composed of sheets with vertical bands of stripes. Clearly, we see from equation (2.7) that this 
regime persists for . Proposition 3.2 follows with 0 1k< < / n 4 1/ 2.k =   
On ,θπθ∏ the flow is defined by the solution of the  decoupled equations in (4.6). The solutions 
represent layers of sheets with horizontal band strips that persists for 0 1

3n
/k 2.< <   

Proposition 3.3. Let  be an even integer. Then there exists a constant k  for which the 
simple three-dimensional lattice equation (4.1) has layers of horizontal sheets with horizontal 
bands that persist for all  Moreover, oscillator death occurs for                               

n 5 0>

5.k k>( 50, .k k∈ )
Proof. On the subspace πθθΘ  the flow is defined by the solution of the decoupled equations  

( ) ( )2 1 2 1 2 12 1,2,...., / 2.j n j jk I L G j n− − −= − ⊗ + =W W W                             (4.7) 
Thus we shall have horizontal bands of synchronized sheets, like a “stack of sandwiches” that 
persists for 0 . Proposition 1.1 follows with k1k< < / 2 5 1/ 2= .  
On ,θππ∏ the flow is governed by equation (4.7) and we have sheets with horizontal bands.  
Proposition 3.4. Let  be an even integer, then there exists a constant  for which the simple 
three-dimensional lattice equation (4.1), has layers of horizontal sheets of checkerboards that 
persist for all 

n

(

0k σ >

)0,k k σ∈ . Moreover, oscillator deaths occur for k k σ> . 
Proof. On the subspace πππ∏ , the flow is defined by the solution of the decoupled equations 
 

 ( ) ( )2 1 2 1 2 -14 , 1, 2,...., / 2.j n j jk I L G j n− −= − ⊗ + =W W W                             (4.8) 
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Thus the entire system in three-dimensional space is composed of layers of horizontal sheets of 
checkerboard. This dynamical regime persists for 0 1/k 4.< <  Proposition 3.4 follows with 

.  6 1/ 4k =

5. Discussion  

In LDE’s on the Bravais lattices given in equations (2.1),(3.1) and (4.1) the coupling matrices 
( ) ( ) { }( ), ,B k H k H k  have 0 0λ =  as an eigenvalue. Thus any solution to these equations that 

pass through a point in the generalized eigenspace corresponding  respectively, 
shall be symmetrically synchronized. That is, they shall be in the set 

0 , 1, 2,3v
i vµ λ =

1, ,
,
,θθ θθθΘ Θ Θ

n

respectively. 
For an even number of oscillators in the bravais lattice, the coupling matrices have / 2 2λ = −  as an 
eigenvalue. From equations (2.7),(3.7),(4.5), we see that any solution to equation (2.1),(3.1),(4.1) 
through a point in the generalized eigenspace belonging to / 2 2nλ = −  will always be antisymmetric 

for some coupling strength : 0k < k k≤  and there shall be oscillator death for . Thus 
simple Bravais osillators with each osillator as given in equation (1.1) can either lead to 
synchronization or oscillator death depending on the initial conditions and the strength of coupling.  

k k≥
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