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 حل معادلة دالية غير خطية

 فاليري كريستوف كوفاتشف و حسن علي يورتسيفر 

 يعتمد.  معادلة دالية غير خطيةبحل الخاصة و)  2004( لنظرية ريستيسكي تعميم هذا البحث نقدم  في :خلاصة  
 مثل هذا النوع من     لحل طريقة المصفوفات    مع Λ الاختيارية المجموعة   في λ علي تعريف البارامتر     البرهان

 .المعادلات
 

ABSTRACT: In the present paper a generalization of a theorem of I.B. Risteski (2004) 
concerning the solution of a nonlinear functional equation is given. The proof is based 
on a parametric approach by introducing a parameter λ in an arbitrary set Λ , and on a 
matrix method for solving linear functional equations.  
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1.   Introduction 

unctional equations find applications in biology, social sciences, engineering, as well as in many other 
branches of mathematics and a great number of such applications can be found in the monograph by 

Aczel (1966). This has led to considerable interest in the study of functional equations and has given rise to 
numerous articles and monographs on this subject.  

The present paper is devoted to the study of a nonlinear functional equation which generalizes the 
quadratic complex vector functional equation solved by I.B. Risteski (2004). To the best of our knowledge, 
up to now this type of nonlinear functional equation has not been considered in the literature. We carried 
out our research to shed some light on this field of nonlinear functional equations. The results presented 
here and in (Risteski, 2004) supplement and extend some of the results in (Risteski et al 1999, 2000a, 
2000b). 
In order to prepare the background for our study, we present the result of I.B. Risteski (2004). Let V  be a 
complex finite-dimensional vector space and let there exist mappings , :  nf g V V→ .  ( ) 1 2i i n≤ ≤Z  

F 
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will denote vectors in the vector space V . Multiplication of two arbitrary vectors ( )1 2, , , T
nu u u=U …  

and ( )1 2, , , T
nv v v=V …  in V  is defined as ( )1 1 2 2, , , T

n nu v u v u v=UV … . I.B. Risteski (2004) gave 
the following result. 
Theorem 1. The general solution of the nonlinear complex vector functional equation  

( ) ( )1 1 1 2 2, , , , , ,n n n n nf f− + +Z Z Z Z Z Z… …  

( ) ( )1 1 1 2 2, , , , , ,n n n n nf f− + += Z Z Z Z Z Z… …  

( ) ( )1 1 2 1 3 2, , , , , , ,n n n n n nf f− + + ++ Z Z Z Z Z Z Z… …  

( ) ( )1 1 2 1 2 1, , , , ,n n n n nf f− + −+ + Z Z , Z Z Z Z" … …         ( )2n ≥                 (1) 
is given by  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2
1 2

1 2

, , ,

n

n
n

n n n n

F F F
F F F

f

F F F

=

U U U
U U U

U U U

U U U

"
"

…
#

"

,                                (2) 

where ( )  1iF i n≤ ≤  are arbitrary functions in V . 
In the next section we shall consider a slightly generalized version of (1). In the proof of the theorem 

we shall use techniques developed in Risteski (2002) and Risteski and Covachev (2000, 2001). On the other 
hand, the method used in Risteski (2004) cannot be used in the proof of this theorem without imposing a 
very restrictive assumption on the equation considered.   

2.   Statement of the Problem  

In this part of our paper, we shall consider the generalized nonlinear complex vector functional equation 
( ) ( )1 1 1 2 2, , , , , ,n n n n nf g− + +Z Z Z Z Z Z… …  

                        ( ) ( )1 1 1 2 2, , , , , ,n n n n nf g− + += Z Z Z Z Z Z… …   

                      ( ) ( )1 1 2 1 3 2, , , , , , ,n n n n n nf g− + + ++ Z Z Z Z Z Z Z… …  

              ( ) ( )1 1 2 1 2 1, , , , ,n n n n nf g− + −+ + Z Z , Z Z Z Z" … …         ( )2n ≥ .                      (3) 

If f g≡ , equation (3) is reduced to (1).  
It is easy to see that if a component of f  is identically 0 , then the corresponding component of g  may be 
arbitrary. Similarly, if a component of g  is identically 0 , then the corresponding component of f  may be 

arbitrary. So we need to consider only solutions ( ),f g  of equation (3) for which no component of f  or 

g  is identically 0 . Thus we may suppose that (3) is a scalar functional equation. Moreover, the arguments 

( ) 1 2i i n≤ ≤Z  may belong to an arbitrary set V  (with at least 1n +  distinct elements). Furthermore, it 

is easily seen that the function f  depends on the arguments ( ) 1
1 1, , n

n V −
− ∈Z Z…  as on a parameter. So 
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we can slightly generalize equation (3) by introducing a parameter λ  in an arbitrary set Λ  instead of 

( ) 1
1 1, , n

n V −
− ∈Z Z… .  For convenience we write iZ  instead of ( ) 0n i i n+ ≤ ≤Z .  

Thus we consider the equation  
    ( ) ( ) ( ) ( )0 1 2 1 0 2, , , , , , , ,n nf g f gλ λ=Z Z Z Z Z Z Z Z… …  

( ) ( ) ( ) ( )2 1 0 3 1 1 0, , , , , , , , ,n n nf g f gλ λ −+ + +Z Z Z Z Z Z Z Z Z… " …    ( )2 ,n ≥               (4) 

where  :  f VΛ× →C  and :  ng V →C . 

3.   Main Result 

Theorem 2.   Each solution ( ),f g  of the nonlinear functional equation (4), such that none of the 

functions f  and g  is identically 0 , is given by  

                         ( ) ( ) ( )
1

, ,
n

i i
i

f F Gλ λ
=

=∑U U                                                        (5) 

    ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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2 1 2 2 2
1 2

1 2
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n n n n
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G G G

=

U U U
U U U

U U U

U U U

"
"

…
#

"

,                                           (6) 

where ( ):   :   1i iF and G V i nΛ→ → ≤ ≤C C  are arbitrary functions in V . 
Proof : Let us introduce the function 

                       ( ) ( ) ( )0 1 0 1, , , , , , , .n nF f gλ λ=Z Z Z Z Z Z… …                                 (7)  
It satisfies the linear functional equation  

                      ( ) ( )0 1 2 1 0 2, , , , , , , , , ,n nF Fλ λ=Z Z Z Z Z Z Z Z… …                            (8) 

( ) ( )2 1 0 3 1 1 0, , , , , , , , , , , .n n nF Fλ λ −+ + +Z Z Z Z Z Z Z Z Z… " …  
We will not solve equation (8). Instead, we will just find the form of the solutions of (8) which can be 
represented as (7). To this end, we use a method similar to that in Risteski (2002) and in Risteski and 
Covachev (2001).  
Below we will denote by nS  the symmetric group of degree n  (or symmetric group on n  letters, see 

Feyzioğlu (1990)). This is the group of all one-to-one mappings of the set { }1, 2, , n…  onto itself, and its 

elements are called permutations (of 1, 2, ,n… ). Here, for our convenience, we denote by 1nS +  the group 

of all one-to-one mappings of the set { }0,1, 2, , n…  onto itself.   

Let 1nSα +∈ . This means that ( ) ( ) ( )( )0 , 1 , , nα α α…  is a permutation of the indices ( )0,1, , n… . 
Then equation (8) is equivalent to the linear homogeneous system 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 1 2 1 0 2, , , , , , , , , ,n nF Fα α α α α α α αλ λ−Z Z Z Z Z Z Z Z… …                  (9) 
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( ) ( ) ( ) ( ) ( )( )2 1 0 3, , , , , , nF α α α α αλ− −Z Z Z Z Z… "  

( ) ( ) ( ) ( )( ) 11 1 0, , , , , 0,      .nn nF Sα α α αλ α +−− = ∈Z Z Z Z…  

This system of ( )1 !n +  equations has a nontrivial solution if and only if its determinant is 0 . We will not 

show that this determinant is 0 , but we will use the form of the nontrivial solution and eventually obtain a 
solution of (8) admitting the factorization (7).  

According to Risteski (2002) and Risteski and Covachev (2001), a possible nontrivial solution of (8) 
has the form 

           ( ) ( ) ( ) ( )( )
1

0 1 0 1, , , , , , , , ,
n

n n
S

F C Hα α α α
α

λ λ
+∈

= ∑Z Z Z Z Z Z… …                       (10) 

where 1:  nH V +Λ× →C  is an arbitrary function, and Cα  are complex constants (which may also 

depend on λ ).  
However, it is easy to see that if  ( )0 1, , , , nF λ Z Z Z…  has the form (7), then ( )0 1, , , , nH λ Z Z Z…  
must admit the factorization  

           ( ) ( ) ( ) ( ) ( )0 1 0 0 1 1, , , , ,n n nH C G G Gλ λ=Z Z Z Z Z Z… "                       (11) 

where :  C Λ→C  and ( ):   0iG V i n→ ≤ ≤C  are arbitrary functions. 
Thus the representation (10) takes the form                                                                                                            

     ( ) ( ) ( )( ) ( )( ) ( )( )
1

0 1 0 10 1, , , , ,
n

n n n
S

F C G G Gα α α α
α

λ λ
+∈

= ∑Z Z Z Z Z Z… "              (12) 

where we have denoted ( ) ( )C C Cα αλ λ= . 
By virtue of (7) we must have  

                   ( ) ( ) ( ) ( )( ) ( )( ) ( )( )
1

0 1 0 10 1, , , .
n

n n n
S

f g C G G Gα α α α
α

λ λ
+∈

= ∑Z Z Z Z Z Z… "             (13) 

Since g  is not identically 0 , there exists an n -tuple ( )1 2, , , n
n V∈A A A…  such that 

( )1 2, , , 0ng ≠A A A… . We set  ( )1, ,i i i n= =Z A …  in (13) and find  

    ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

1

0 1 00
1

, , , ,
n

n

n ii
S i

f g C G Gα α α
α

λ λ − −

+∈ =

= ∑ ∏Z A A Z A…                (14) 

i.e., ( )0,f λ Z  can be represented as  

                                               ( ) ( ) ( )0 0
0

, .
n

i i
i

f D Gλ λ
=

=∑Z Z                                        (15) 

Now equation (13) can be written in the form  

         ( ) ( ) ( ) ( ) ( ) ( ) ( )1

1

0 1 0
0 0 1

, , .
n

nn n

i i n i jj
i i S j

D G g G C Gα α
α

λ λ −

+= = ∈ =

 
=  

 
∑ ∑ ∑ ∏Z Z Z Z Z…         (16) 

From (16) it follows that  
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         ( ) ( )
( ) ( ) ( )1

1

1 2
1

, , , ,    0,1, , .
n

n

n jj
S ji

C
g G i n

D
α

α
α

λ
λ −

+∈ =

= =∑ ∏Z Z Z Z… …                 (17) 

Now the quotients ( ) ( )/ iC Dα λ λ  must all be independent of λ . Moreover, if we compare two of these 

representations of ( )1 2, , , ng Z Z Z… , for 0i =  and for some 0i ≠ , and we give suitable values to all 

but one of the variables  1 2, , , nZ Z Z… , we find that ( )0G Z  is expressed as a linear combination of 

( ) ( )1 , , nG GZ Z… .  
We can then write  

                             ( ) ( ) ( )0 0
1

, ,
n

i i
i

f F Gλ λ
=

=∑Z Z                                           (18) 

                     ( ) ( )( )1 2
1

, , , .
n

n

n j j
S j

g c Gα α
α∈ =

= ∑ ∏Z Z Z Z…                                (19) 

Equation (18) shows that, in fact, equation (5) is valid. It remains to prove that (up to a constant factor) 
equation (6) also holds. To this end we will determine the constants cα  (up to a common factor) so that the 

pair ( ),f g  given by (18) and (19) satisfies equation (4):  

( ) ( ) ( )( )0
1 1n

nn

i i j j
i S j

F G c Gα α
α

λ
= ∈ =
∑ ∑ ∏Z Z  

( ) ( ) ( ) ( ) ( )( )
( )

1
1

1 01
1 1n

n

i i j j
i S j

F G c G Gα αα
α α

λ −
−= ∈ ≠

= ∑ ∑ ∏Z Z Z  

( ) ( ) ( ) ( ) ( )( )
( )

1
1

2 02
1 2n

n

i i j j
i S j

F G c G Gα αα
α α

λ −
−= ∈ ≠

+ +∑ ∑ ∏Z Z Z "  

( ) ( ) ( ) ( ) ( )( )
( )

1
1

0
1

.
n

n

i i n j jn
i S j n

F G c G Gα αα
α α

λ −
−= ∈ ≠

+∑ ∑ ∏Z Z Z  

Thus for each 1, 2, ,i n= …  we must have  

( ) ( )( )0
1n

n

i j j
S j

G c Gα α
α∈ =
∑ ∏Z Z ( ) ( ) ( ) ( )( )

( )
1

1
1 01

1n

i j j
S j

G c G Gα αα
α α

−
−∈ ≠

= ∑ ∏Z Z Z  

( ) ( ) ( ) ( )( )
( )

1
1

2 02
2n

i j j
S j

G c G Gα αα
α α

−
−∈ ≠

+ +∑ ∏Z Z Z "  

( ) ( ) ( ) ( )( )
( )

1
1

0 .
n

i n j jn
S j n

G c G Gα αα
α α

−
−∈ ≠

+ ∑ ∏Z Z Z                            (20) 

It is easily seen that each term on the left cancels with some term on the right-hand side of (20). Indeed, let 
us take the term  

                                    ( ) ( )( ) ( )( )0i i ji j
j i

G c G Gα α α
≠
∏Z Z Z  
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for some fixed nSα ∈ . Suppose that ( )i kα = . Then this term is identical with the term on the right  

                                     ( ) ( ) ( ) ( )( )
( )

1
1

0 .i k j jk
j k

G c G Gα αα
α

−
−≠
∏Z Z Z  

Now we have to determine (up to a common factor) the coefficients cα  so that the remaining terms on the 
right-hand side of (20) cancel pairwise. The terms on the right  

                                    ( ) ( ) ( ) ( )( )
( )

1
1

0i k j jk
j k

G c G Gα αα
α

−
−≠
∏Z Z Z  

and  

                                    ( ) ( ) ( ) ( )( )
( )

1
1

0i j j
j

G c G Gβ ββ
β

−
−≠
∏Z Z ZA A

A

 

for k ≠ A  cancel each other if and only if  

( ) ( ) ( ) ( )1 1 ,    ,    ,k i k iα β β α− −= = =A A

( ) ( ) ( )1  ,    0.j j j k c cα βα β α −= ∀ ≠ + =  
This means that  

( ) ( ) ( ) { } { }1 1 1,    ,       1, 2, , \ , .k k m m m n kβα βα βα− − −= = = ∀ ∈A A … A  
 
Thus the permutation 1βα −  is a transposition (exchanges the indices k  and A  and keeps all other indices 
fixed), i.e., β  and α  are permutations of different signature (one even and one odd). Consequently, we 
must have  

                                          
if  is even,
if  is odd, 

c
c

cα

α
α


= −

 

for some constant 0c ≠ . Thus  

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1

2 1 2 2 2
1 2

1 2

, , , .

n

n
n

n n n n

G G G
G G G

g c

G G G

=

Z Z Z
Z Z Z

Z Z Z

Z Z Z

"
"

…
#

"

 

 
Finally, we can replace the functions ( )iF λ  by ( )icF λ  for 1, 2, ,i n= … .  

Thus we have shown that any solution ( ),f g  of equation (4), such that none of the functions f  and g  is 

identically 0 , must have the form (5) and (6). It remains to show that every pair of functions ( ),f g  of the 
form (5) and (6) is a solution of equation (4). Indeed, by virtue of the equations (5) and (6) we obtain   
  

( ) ( ) ( ) ( )0 1 2 1 0 2, , , , , , , ,n nf g f gλ λ−Z Z Z Z Z Z Z Z… …  

( ) ( ) ( ) ( )2 1 0 3 1 1 0, , , , , , , , ,n n nf g f gλ λ −− − −Z Z Z Z Z Z Z Z Z… " …  
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                ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 1

1 0 1 1 1

1 0 1

0 1

0.

i i i n

n

n

i
i i i i n

n n n n

G G G
G G G

F
G G G

G G G

λ
=

= =∑

Z Z Z
Z Z Z

Z Z Z

Z Z Z

"
"

#
"

#
"

   

 
This completes the proof of Theorem 2. 

 
Remark 3. It is clear that the solutions of equations (1) and (4) as given, respectively, by (2), (5) and (6), 
coincide if we assume that 1nV −Λ =  and f g≡ . 
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