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ABSTRACT: In this paper, using hidden Markov models, we estimate the number of
individuals in a two-species (predator-prey) animal population using partial information
provided by the so-called capture-recapture technique. Random samples of individuals
are captured, tagged in some way and released. After some time other random samples
are taken and the marked individuals are observed. Using this information, we estimate
(recursively) the sizes of the two populations. Also, using the Expectation Maximization
(EM) algorithm, the parameters of the model are updated.
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1. Introduction

One of the first models to incorporate interactions between predators and preys was proposed in 1925 by
the American biophysicist Alfred Lotka and the Italian mathematician Vito Volterra .

Vito Volterra (1860-1940) was a famous Italian mathematician who retired from a distinguished career in
pure mathematics in the early 1920s. His son-in-law, Humberto D’ Ancona, was a biologist who studied the
populations of various species of fish in the Adriatic. Volterra developed a series of models for interactions

of two or more species.
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Alfred J. Lotka (1880-1949) was an American mathematical biologist (and later actuary) who
formulated many of the same models as Volterra, independently and at about the same time. His primary
example of a predator-prey system comprised a plant population and an herbivorous animal dependent on
that plant for food.

Here we consider a discrete-time stochastic version of the Lotka-Volterra model. Hidden Markov
models (Elliott er al. 1995) have been used extensively in many areas of science and technology. In this
paper we are extending the use of this powerful tools (see Aggoun and Elliott 1998 for a single species
model) to estimate the hidden number of individuals in a multi-species animal population using partial
information provided by the so-called capture-recapture technique (see Seber 1982, for instance).

Two random samples of individuals one from the predator population and one from the prey
population are captured, tagged or marked in some way, and then released. After allowing time for the
marked and unmarked to mix sufficiently, two second simple random samples from both populations are
taken and the marked ones are observed.

At epoch ¢ write Z, for the prey population size, 2 , for the number of marked and released preys,

ko~
Zi = 24:1 z, for the total number of captured and marked preys up to time k, R, for the sample size, z,
for the number of available marked individuals for sampling and yf for the number of captured (or
recaptured) marked individuals.

Similarly write X, for the predator population size, ;C,g‘ for the number of marked and released
predators, ; P Zlgzl )~c , for the total number of captured and marked predators up to time k, F, for the
sample size, X, for the number of available marked predators for sampling and y[X for the number of
captured (or recaptured) marked predators.

2. Model Assumptions and Recursive Estimation

All random variables are defined initially on a probability space (€2, ', P). All the filtrations defined
here are assumed to be complete.
wiite G, =0(Z,,z,,y/ R, X,,x,, ¥, ,FL<k),andY, =c(y/,y},(<k).
X . and Z , represent the number of predators and preys, respectively, that are alive at time period k, then

a (discrete time) Lotka-Volterra type model is:

X=X, +aZ X, -bX, +oyv,, €))
Z,,=2Z,+cZ, -dZ X, +o,w_,,

where the parameters are defined by:

is the efficiency of turning predated preys into predators.

is the natural death rate of predators in the absence of food (preys),

is the natural growth rate of preys in the absence of predation,

is the death rate per encounter of preys due to predation,

v and W are sequences of independent random variables with some (either discrete or continuous with

[T el uil )

finite supports) densities ¢, and 3, respectively and 0, O, are some positive real numbers. The random
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variables v and w indicate other sources of variations in the populations like death caused by old age,
diseases, births etc.

It is assumed here that X, and Zz, are random variables with binomial distributions with parameters
(.;Ck’ p,y) and (;k, P, ) respectively.

The observed random variables ykz , y,f are assumed to have joint distribution:

Py =m,yl =n|G, ,2,,Z, R, %, X, F})

Fk Rk X X Fo—m 2 4 R, —
= _ml__kkm_k "1_ k kN
(mj(nJ(Xk) ( Xk) (Zk)( Zk) ®

Let A, =1.For £ =1 and for suitable density functions y, v write A, = ﬂfﬂf , where

) X) 1 _ = 4x, X)X X X _
gr = OB XD) Ly eyt gyt ©
(4 ¢f(v/) 2F,+x/ X X X( Xﬂ
Z) 1 _ _% 4z Z 4 A Z_
2{2 =O-2vlf( 4 _ Zy 1_ zyT J4 Yy 1_ 0\ —R, 7
B TRt N M ™

and A, :HI;:O A,.

Lemma 1. The process A, is a G -martingale.

Proof. E[A, | G, 1=A,_ E[A A7 | G_,], so we must show that
E[A} A7 | G,_,]1=1. However using repeated conditioning it is enough to show that E[A” | G, ]=1,
say.

OV, (Zk) 1 ~
8, w,) 28t
xp(l=p, )z G, ]

1 oy (Z,) _ E s Z, 7
— _ E 2" k k Zk 1_ Zk kE k Vi
g B gy 2o (mpa) T EICH)

E[X |G 1=E]

Zy Nt l_Z_k vi-Ry
(Zk) ( Zk)

X(l—?h)ykl_lw G2z R 1G]

k

oy (Z,) AR,
= — F[—2t—* (1= ZeT E G
e [lgk(wk) p, (I=p,) m—O(m 1G]
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— lE[O-ka(Zk)
220 G wy)

_ 1 O_zv (Z,) Zk || G
) Z( ]' !

oy, (Z,  tow,)

p;k (l_pz )ikﬂk ’ Gk71]

=E[ ) |G, ]
w,)
J-O-zv (gk(l-;o-zw)lg(W)dVZ.[Vk(”)duzl

d
A new probability measure Q' can be defined by setting £ Ld—g |G, J = A, . The point here is that:

Lemma 2. Under the new probability measure O, X,, x,, y,f Z,, z, and ykZ are sequences of

independent random variables which are independent of each other. Further, X, has density ¥, , x, has
~ 1 1
distribution bin(;c/eg)’ ¥, has distribution bin(ﬂ,a), Z, has density v,, z, has distribution
| z o 1
bin(; k,E) and y; has distribution bln(Rk,E).

Proof. We shall check the claim for the three processes Z,, z, and ykZ . For any integrable real-valued

functions f°, g and / and using a version of Bayes’ theorem (see Elliott et al. 1995) we can write:

Elf (Z,)g(z, )h(yk)A |G, ]
Byl (208G )IG, )= TN

=E[f (Z)gE)h(y{)A |G, ]

B 7oV (Z) 1
=E[f (Z)gE)h({) 86r.) 2

1 z zZ
E[h(y7) (2t 2oyt -t G, Z, 2, R G, ]
287, VA

k

O-ZVk(Zk) 1 -z, -tz
— =t k 1_ ngTik
Gw,) 2" pe(=p)

Ry R
3 hm) (-2 )( G216
=70, T 2fi z

k k

p;t(=p,)

=E[f (Z,)gz)h(])
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_ z O-ka(Zk)L 1 Rtz
—EV(Zk)g(Zk)h(yk)—gk(Wk) S P (1-p;)

& R, )1
X[Z‘) h(m ){ " ]2&]| Gl

=B IO (20860 T T

=EQ[h(ykZ NEgEOIE (Z,  +cZ, \—dZ, X\ +ow,)

8 oy, (Z, +cZ, —dZ, X, +ow,)
g w,)

=E,[h(y E,[g(z,)]

x_[f Z, +cZ, ,-dZ, X, +tow)

xoyv, (Z, +cZ, —dZ, X, +o.w)dw

= E,[h(r D E g 1) f
= B, [h(y 7 VIE, g OIE,If (Z, )

R, R,!
where = .
m m!(Rk —m)!

That is, under (J the three processes are independent sequences of random variables with the desired

p;k (1_pz )_ﬁk“k | qu]

1G]

distributions.
Using this fact we derive a recursive equation for the unnormalized conditional distribution of Z, and X,

given Y, .
For any measurable test function f  consider:
Eolf (X, ZOA | V]
—1 .
EolAc 1 Y]

The denominator of (8) being a normalizing factor we focus only on the expectation under Q in the

E[f(Xk’Zk)‘ Yk]=

®)

numerator. Write
E [ f(X,,Z, A Y, ]= .[f(x,z)qk (x,z)dxdz. Q)

Theorem 1. The unnormalized conditional joint probability density function of the populations’ sizes given
by the dynamics in (1) and (2) follows the recursion:
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q,(x,2) = 4 (x, Z)jBk (u,v,x,2)q,_, (u,v)dudy (10)

where

4(x.2) = ZZ(M ]pza P P (= py )

010, j=0i=0
><( )yk (I- )Fk yk( )V‘ (I- )R‘ g (12)
Bk(u,v’sz):gk(z—v—cv+dvu)¢k(x—u—avu+bu) (13)
0-2 O-l

(Note we take 0° =1.)
Proof. In view of Lemma 2 the left hand side of (9) is:
:EQ[f(Xkﬂzk)A:—lﬂ“k_l |Yk]

:2zzk+Rk+;k+Fk % %
2 2%

xE [ZZ(; j{ Jpz(l P, phA=p )

j=0i=0

fo (x,z )(L)y;‘ (1_L)Fk i (L)yf (1_L)Rk y?
X X z z
z-Z, ,—cZ, +dZ, X

. . =
? v, (2)
oy, (2)
@, (x —X _aZg_lel +ka71)
X : x, (x)
o X (%)

xpy(l=p, ¥ " ph(l=p, )y dxdz A", Y, ]

R +Fy i oo (R = _ . -
i ZZ(Zikj(xijpé(l_pz)“ px(=py )’

0,0, j-0i=0

fo (.2 )yt =Lyt (ot =Lyret
X X z z

z —v —cv +dvu X —u—avu +bu

-[ F( )% ( )q, (uy )dudvdxdz
o, o,

Comparing this last expression with the right hand side of (9) gives the result.
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¢, (x,2) .
,[ q, (u,v)dudv
The initial (normalized) probability density of (X,,Z,), prior to sampling, is 7,(.),
q,(x,z)=1my(x,2).

ql(x,z>— ' ZZU( jpz(l P ph(=p)

2]010

Remark 1. The normalized conditional joint density function of (X, ,Z, ) is simply

x(l)ylx (1_l)ﬁ -5 (L)yf (1_£)Rl—y5
X X z V4

z—v—cv+dvu, ,  x—u—avu+bu

Jac Y e
0, o,

And further estimates follow from (10).

If the distribution of (X, Z,) is a delta function concentrated at (A4, B) say

_2R1+F XI _z1 20\ % - -
G(x2)== ZZ(Z](JPZ(I P (= p )

102 j=0 i=0

x(l)yﬁ (1_1)F1 o (L')yf (1_i)Rl -7
z z

X X
—B—cB+dBA — A—aBA+bA
l91(2 cB+d )¢l(x aBA+b ).
o, 0,

3. Parameter Revision

Here we shall assume, for simplicity, that the random variables v and W in our model are standard
normal (means 0 and standard deviations 1).

The EM algorithm, (Baum and Petrie 1966, Dempster et al. 1977) is a widely used iterative numerical
method for computing maximum likelihood parameter estimates of partially observed models such as linear
Gaussian state space models. For such models, direct computation of the MLE is difficult. The EM
algorithm has the appealing property that successive iterations yield parameter estimates with non-
decreasing values of the likelihood function.

Suppose that we have observations ),,..., ), available, where K is a fixed positive integer. Let
{P,,0 € ®} be a family of probability measures on (€2, F"), all absolutely continuous with respect to a

fixed probability measure F,. The log-likelihood function for computing an estimate of the parameter 0

dP,
based on the information available in Yy is L, (8) =E, logd—P‘9| Y, K], and the maximum likelihood

0

estimate (MLE) is defined by 0e argmax,_o L, (0).
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Let éo be the initial parameter estimate. The EM algorithm generates a sequence of parameter estimates

{0}, j =1, as follows. Each iteration of the algorithm consists of two steps:

Step 1. (E-step). Set 0 = éj and compute Q(6, é) , where

~ dP,
0(0,0)=E, logd—;| Y, |

[

Step 2. (M-step). Find éj+1 € argmax9€®Q(9,0j) .
Using Jensen’s inequality it can be shown (see Theorem 1 in Dempster et al. 1977) that the sequence of

model estimates {é/ , j 21} from the EM algorithm are such that the sequence of likelihoods {L, (é})} ,

J =1 is monotonically increasing with equality if and only if éj a= éj .

Sufficient conditions for convergence of the EM algorithm are given in Wu (1983). We briefly summarize
them here:

1. The parameter space ® is a subset of some finite dimensional Euclidean space R" .
2. {#e®:L,(0)>L(g,)} iscompact forany L, (g,) > —©
3. L, iscontinuous in ® and differentiable in the interior of © .

(As a consequence of (1), (2) and (iii), clearly L, (é}) is bounded from above).
4.  The function Q(@,éj) is continuous in both & and éj.

Then by Theorem 2 in Wu (1983), the limit of the sequence EM estimates {é/} has a stationary point 0

of L. Also {L; (é])} converges monotonically to [, =L, (@) for some stationary point 6 . To make

sure that [, is a maximum value of the likelihood, it is necessary to try different initial values éo .

The model in (1) and (2) is determined by the parameters @, b, ¢ and d which need to be updated as
new information is obtained. These parameters are estimated using the expectation maximization (EM)
algorithm.

Maximum likelihood estimation of the parameters via the EM algorithm requires computation of the filtered
estimates of quantities such as

() _ Ok 2 52
T;c - Z(:l Xf—lZl—l 4
(D _ Ok 2
Tk - 24=1 Xe—lz/,—lv

k

Tk(lm = L XXz,
T =YX
Tk(V) = :;1 XX,
S/EI) = ];:1 XHZ/,{N
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k

ur _
Sk =2 1X YA Zé "
k 2
S(III) — Z
k =170
vy _\k
Sk = Zezz—ls

=1
k k
Uk = Z/:l X and Vk ZZM Zk

For M =1,....V write
E [AN'T™I(X, edx,Z, €dz)|Y,
BT ICX, e dv, 7, e dz)| v, = e i TX edv 2, € )| 1]
[A, | Y]

0 (x,2) = EG[ATM (X, edx,Z, edz)| Y],

E AT | Y] f BV (x,z)dxdz s 5500

ETk(M) Yk —
[ - E [Ak R j-qk(x z)dxdz

For N=1,.,IV.
E[A'SVI(X, edx,Z, edz)| Y,
FISMICX, e dv, 7, e dz)| v,)= 2ol S T eduZy ed) | ]
[Ay [ Y]

1M (x,2) = EJ[AL SV I(X, e dx,Z, edz)| Y],

E [A'SV | Y] f ™ (x,z)dxdz o 55
E [Ak R Iq (x,z)dxdz

First we compute ML estimates of the parameters 6 = (a,b,c,d,0,,0,) given the history in ¥, . Now

ESM Y ]=

the expression for Q(6,8) is derived.

To update the set of parameters from & to @, the following density is introduced _le H Vi
5.¢(Xk — X —aZ, X, +bX - 6 9(2k —Zy ¢, +de—le—1)
y, = 1 o, %,
, — =
O_¢(Xk _Xk—l_aZk—le—l+ka—l)O_'9( —Zy~ CZk1+de lel)
I 5, 2 s,
Now
dP, 1 S X, -X,,—aZ_ X, +bX
E; logd—;|Gk|Yk =—klog0'1—klog02—EE§ D 1)1y,
/] (=1 1

SN Z,-Z, ,+dZ,_ X, —cZ,

—1E~ Z(

[
2 l=1

LY’ | Y, |+R(0)=0(6,0),

o,
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where R(8) does not involve 6.

0
To implement the M-step set the derivatives % =0. This yields

/\([1[) /\(”)(b 1)
= A (1) ’
k
AUDAU) A~ A
11 k k 1k
b-1= A(IV) (1) (A(Il)z ’

~V v/ ~
) S( )+dS()

_ Ok Dk k
c= ~ () >
k
AN~ (1)  ~UV)~ () | ~()
_2 k Sk — Sk Sk TSk
(A(I)) A(l) (111)
% 2
-
= Z i1 —aZ X, +0X, ) Y,
(=1

2
2

1
T
1 k R

n 42(2 ~Z,  +dZ_ X, ~cZ,) \YJ.

=1

For any “test” function g, write

EQ[A:];(M)g(Xk,ZkH n]zjﬁéM)(x,z)g(x,z)dxdz, M=1,..V.
EATS g(XZ)| 1= (x.2)g (s, sz, N =11V

Theorem 1. For k>1, the unnormalized densities A (x,z), 7V (x,z), M =1,...V,

N =1,...,1V are given by the following recursions.

p(x,z)=A4, (x,z)[ka Wy ,x,2) B0 v dudy
+ka W,v,x,zuv’q,  (,v)dudv]

B (x,z)=4, (x,z)[ka W,v,x,z)B") v )dudy
+ka Wy, x,zuvg,  (u,v)dudv],

ﬂlfm)(x sZ ) :Ak ()C 5 Z )[IBk (M,V X5 Z )ﬂ(l)(u v )dudv
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+Xx J.Bk u,v,x,zuvq, (u,v)dudv],
ﬂ,ﬁn/)(x,z)=Ak(x,z)[J-Bk(u,v,x,z) ) (u,v )dudy
+J-Bk W,v,x,zW’q, u,v)dudv]
,B,fV)(x,z):Ak(x,Z)[J-Bk(u,v,x,Z) " (u,v )dudv
+x IBk (u,v,x,zuq, (u,v)dudv],
7" (x,z)=4, (x,z)[J‘B,C W,v,x,z)n" W, dudv
+J‘Bk W,v,x,z uv’q, W,y )dudv]
" (x,z)=4, (x,z)[jBk W,v,x,z)n") W, )dudv
+z J-Bk w,v,x,zuvq, ,(u,v)dudv]

" (x,z)=4,(x,z )[J-Bk @,y ,x,2 )0 @,y dudv

+zg L (x,2)]
B 2) = A, e B v e ") .
vz [ B @ x.z Wy e Yudv ]
where A4, (x,z) and B, (u,V,x,z) are given in (12) and (13) and g, is given recursively in (10).
Proof. First note that Tk(” = Tk(_ll) +X ,f_IZ 1?—1- Therefore
= EQ [A:T;c(l)g(Xka Z)| Y]
= Eo[A T e(X,, Z) | 1+ EgI A X0\ 2]\ 8(X,, Z) | Y,

The first expectation is simply

E AT g(X (,Z )Y, ]

DR +F; i oo (R ~ 4 _ .
) Zz{zik]();kjpé(l‘l’z)” pr(=py)+’

0,0, j-0i=0

xjg (x A )(L)yf‘ (l—l)Fk i (L)yf (I—L)Rk 7
X X z z
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—v —cv +dvu X —u—avu +bu
[EXE ) ( )

0, O,

" (u,v )dudvdxd:z .

And
E AN X; . Z g(X,,Z,)| Y]

2RA+FA Xk _Zk ;
Zz(zzkj(ﬂpz(l P pi=p)

010, j=0 i=0

ng(x,z)(l)yzf( (1_1)1‘1 - (i)ykz (l_i)R,(—y,(Z
X X z z

J.lgk(z—v—cv+dvu)¢k(x—u—avu +bu)
o, O,

xuv’q,_, (u,v)dudvdxdz

Using (12) and (13) yields the result.

Write

E,[NUI(X, edx,Z, edz)|Y,
E[U (X, edx,Z, edz)| Y,]= ol A UK, el 2100
EolA 1Y, ]

é/k(x’Z)ZEQ[A:UkI(Xk €dx,Z, edz)| Y],

EJAU %] J g oo zpdnd
EQ[A;1 RA ,[qk (x,z)dxdz
E AV I(X, edx,Z, edz)|Y,]
Eg[A' | Y]

& (x,2) = B[NV (X, edx,Z, €dz)| Y,].

EU,|Y,]= i}k’

EVI(X, €dx,Z, edz)|Y,]=

BN A LUAR AN ES
I EQ[Ak RA qu(x,z)dxdz

To update the parameter from p, to p,, the following density is introduced

H[p_)(] k(l—p){ Jxrvk.
1 ﬁx l_ﬁX

Vi

dP

Now
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k
Px logdeX |Gk |Yk :l/]\k long +Zf[10g(1—px)+(/j\k log(l_px)
Px =1

+R(ﬁx)=Q(px aﬁx ),

where R (P, ) does not involve p, .

To implement the M-step set the derivatives

= (. This yields

py
Us
Px =7 .
Z X/
r=1
A similar argument yields:
v
P, =5

For any “test” function g, write

E AU g(X,,Z)| Y, ]= J ¢ (x,2)g(x,z)dxdz.

EIAW,g(X,.20) ¥,1=] & (. 2)g(x, ).

Theorem 2. For k >1, the unnormalized densities &, (x,z) and & (x,z) are given by the following
recursions.

£o(,2) = A, (62) ) By v, 3,2, ()l

+%Qk (x,2)
£,(6,2) = 4, (6, 2) [ B, (.5, 206, (0, ) dudy
+%qk (x,z)
Proof. First note that U, =U,_, + x, . Therefore
= EQ[A;1 &XZ) Y]

= EQ[AZIkalg(XkﬂZk) | Yk]+EQ[A;1xkg(XkJZk) | Y]

The first expectation is simply
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E [A;Uk—lg(Xk’Zk)| Y]
2Rk+Fk Xk _Zk

ZZ(Zlk](ikaz(l pz)Zk px(l p)()mc !

0-10-21010

J g(x,z)(i)yf =Lyt (Dt (1=Lynst

X z z

Jlgk(z—v—cv+dvu)¢k(x—u—avu +bu)

0, 0,
x&,,(u,v)dudvdxdz.

from which the result follows.
Remark. The above theorems do not require v, and W, to be Gaussian.
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