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ABSTRACT: Regression is used to estimate the population mean of the response
variable, Y , in the two cases where the population mean of the concomitant (auxiliary)
variable, X | is known and where it is unknown. In the latter case, a double sampling
method is used to estimate the population mean of the concomitant variable. We
invesitagate the performance of the two methods using extreme ranked set sampling
(ERSS), as discussed by Samawi et al. (1996). Theoretical and Monte Carlo evaluation
results as well as an illustration using actual data are presented. The results show that if
the underlying joint distribution of X and Y is symmetric, then using ERSS to obtain
regression estimates is more efficient than using ranked set sampling (RSS) or simple
random sampling (SRS).

KEYWORDS: Extreme ranked set sample, ranked set sample, relative efficiency,
regression estimators, two-phase sampling.

1. Introduction

In many experimental situations the response variable Y s related to a non-stochastic concomitant
variable, X", For instance, let Y be the Bilirubin level in jaundice babies who stay in neonatal intensive

67


mailto:hsamawi@yu.edu.jo

HANI M. SAMAWI, AHMED Y. AL-SAMARRAIE and OBAID M. AL-SAIDY

care and let X be the weight of the baby at birth. By obtaining simultaneous observations on X and Y,

we can use information contained in the X-measurements to estimate the mean value of Y- This can be
done by using either ratio estimation or regression estimation.

Herein, we are interested in the regression estimation method used to obtain increased precision in
estimating the population means or totals of the variable of interest, Y by taking advantage of its

correlation with the auxiliary variable X' . The two cases where the mean, Hy ,of X is known and where

it is unknown are considered.

In many cases the sampling units in a study are easier ranked than actually quantified. Mcintyre
(1952) proposed to use the mean of N units obtained from a ranked set sample (RSS) to estimate a
population mean. Patil et al. (1993) compared the precision of ranked set sampling with the regression
estimator. They showed that using RSS is superior to regression estimator under SRS in most of the cases.
Yu and Lam (1997) used the RSS regression estimation method to estimate the population mean and
showed that using RSS provides a more efficient estimator than using SRS. For more details on RSS see,
for example, Kaur et al. (1995) and Patil et al. (1999). Samawi et al. (1996) investigated the use of extreme
ranked set sampling (ERSS) in reducing the ranking error and in improving the precision in estimating the
population mean in the case of a symmetric underlying distribution. They showed that if the underlying
distribution is the uniform distribution, then the highest magnitude of the relative savings occur when only
the extreme ordered units are measured with equal proportion. However, in the case of other unimodal
symmetric distributions the highest gain is achieved when the units possessing the middle rank are
measured. For this reason, Yanagawa and Chen (1980) did not consider the uniform distribution while
investigating various symmetric distributions to develop a better ranked set sample estimator of the
population mean.

As in Samawi et al. (1996) we obtain an extreme rank set sample by first choosing r independent sets,
each of which contains I bivariate elements drawn randomly from an infinite population. Rank the
elements in each set with respect to one of the variables Y or . Suppose that the ranking is done on the
variable X . From the first set an actual measurement is taken of the X element with the smallest rank,
together with the value of Y associated with this smallest element of X . From the second set an actual
measurement is taken of the element with the largest rank of X , together with the associated Y value.
From the third set an actual measurement is taken of the element with the smallest rank of X , together
with the associated Y value, and so on. In this way we obtain the first I —1 measured elements using the
first 1 —1 sets, together with the associated values of the Y variable. The choice of the ' —th element
from the T —th (i.e., the last) set depends on whether I is even or odd :

(@) If Tis even the largest ranked X element is measured, together with the value of the associated
variable Y . ERSSa will denote such a sample.

(b) If T is odd we measure the median of X , together with the value of variable Y associated with the
median of X . ERSSb will denote such a sample.

The cycle may be repeated m times until 1 =M pivariate elements have been measured.

In this paper we propose to use ERSS to improve the precision of the two methods of regression
estimation. We study the properties of these estimators and compare them under different settings. In
Section 2, we obtain the regression estimator of the mean of Y using extreme ranked set sampling when

Hx is known. The mean and variance of the estimator are derived. Comparisons between the various
estimators are discussed in terms of efficiencies. In Section 3, we obtain the regression estimator using
extreme ranked set sampling when HX " is unknown using a double sampling method. Again, we derive the

mean and variance of the estimator and some comparisons between the various estimators are discussed in
terms of efficiencies. An illustration of the methods using real data about the Bilirubin level in jaundice
babies is given in Section 4.
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2. Regression Estimators when Hx is Known

Like ratio estimation, linear regression estimation of the mean is designed to increase the precision of
the estimator by using an auxiliary variable X' that is correlated with Y . When the relationship between
Y and X is examined, it may be found that although the relation is approximately linear, the line does not
go through the origin. This suggests that an estimator based on the linear regression of Y on X is better
than an estimator that is based on the ratio of the two variables.

2.1 Regression Estimator Using SRS

(X Y ) 1=12..n be a bivariate random sample from F (X Y ) and assume that

Let
Y, =,uy+,B(X-—,uX)+g- 2.1)
where A an ,uy are the means of X and Y respectlvely, and for a fixed X , the & Is, 1=12...n
are i.i.d. with mean zero and variance Gg (1 '0 , where © s the correlation coefficient between
Xand Y .

When the population mean Hy is known, the regregsion estimator of the mean of Y s given by:

1 Y regﬁjz(ﬁ(/?)(\{ ‘)V) @2
2% Y =y, > (%~ X)

) ,and

X =

S|

where n=mr.

XY
When the joint underlying distribution of ( ' ) is assumed to be a bivariate normal, the regression

estlmatorY ™3 js an unbiased estimator for 'Y an(gizts varlan is giyen
Var (Y, ) =—2(1- T1+—
n n-3 2.3)

(see Tikkiwal (1960) or Sukhatme and Sukhatme, 1970.) However, if the assumption of the linear
rﬂ:il/tionship in (2.1) is invalid, then the SRS regression estimator in (2.2) is in general a biased estimator of

2.2 Regression Estimator Using RSS
Y..

Consider a bivariate RSS where the relationship between [l

Y[i]k =H, +ﬂ(x(i)k _/“x)+5[i]k i=12,..r and k=12,....m. (2.4)

and X,.
k (ik is

Then the regression estimator Y reg based on RSS as in YU and Lam (1997) is given by

?Reg = VRSS + ,é(ux —YRSS ) 25)
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Using basic properties of conditional moments, Yu and Lam (1997) showed that under (2.4), Y reg is an
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Unbiased estimator of *'Y and its variance is 52 5
Var (Yg, ) =—(1- 1+E| =B
I k|

(2.6)
2

ZRSS—_ZZZ K Z) = R S;R:%ZZ(Z(W(—ZRSS)

where, Ox | and ki

Again, if the assumption of the linear relationship is invalid, the RSS regression estimator in (2.5) is in
general a biased estimator for

2.3 Regression Estimator Using ERSS
. Xy - o Kiyicr Vigik
Assuming that both variables, /A and T , have symmetric underlying distributions, let ! !

be re%pectlvely the i—th smallest value of X andythe corresponding value of Y obtained from the

sample and the k—th cycle. Then regressmg [ on = K e have
Y[i]jk = Hy +po__(x(i)jk — Hx )+gijk ,
X 2.7)
i—1rj=12., >
where 1 =L Fij=12.,r/2  k=12..m . iseven,( Tj=12., 5
k=12,..m . i N . :
) when I' is odd, and Cij has the same distributional assumptions as in (2.1). In what

follows we discus in details the case when I is even. The case when r is odd is similar and it will only be
presented in the numerical results.

When the population mean 'ul is known, we have the difference estimator,
Yoa = Yerssa + 5 (,Ux -X ERSSa)

(2.8)
m r/2 m r/2
e = zz( e HVppen ) Kenssa zz( o+ X o)
=1 , k=1 j= , and B is a

constant to be determined. Under the assumption of symmetric underlying distribution functions of X and

X
Y , ERssagng " ERssa 3re ynbiased estimators for Hy and Hy respectively, see Samawi et al. (1996).

Therefore, it can easily bg shown Othat YDa_ is an unbiased estimator of Hy: Furthermore,
varf ) ,B var XERSSaP) Zlgp_var(XERSSa3+Var(YERSSae)

where,
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2

_ Oy _ Oy
var ( X =—%  var(Y, =4 ( ): 2 v r(Y ): :
( ERSSa) n ( ERSSa) var X(l) T ar( Yy oy, -
o2 =2 A
N=TM " Note that by the symmetry of the underlying distributions, X Xmand Y Y| see

Samawi et al. (1996). _
Since for any value of B , Yo. s an unbiased estimaltgo,[ of ”g_? the optimal value of B can be obtained
_ =p—
by minimizing the variance of YDa. Doing so gives OX as the optimal value ofﬂ . However,
m r/2

z i_s%(%\zi‘bcg(dé}imge%ﬁ%ﬁﬁe)i(gwk_VERSS"") n 12

m 12 B 5 :zzzc(i)jkY[i]jk’
ZZZ(X(i)jk_XERSSa) P

a

Now, define the ERRSa regression estimator for Hy as _
YEreg =Yerssa + Fa (ﬂx -X ERSSa) 2.9)

Then using basic properties of conditional moments, we have the following theorem:
Theorem 2.1: Under (2.2) and assuming that the underlying marginals distributions of X and of Y are
symmetric, the regression estimator of * ¥ as defined in (2.9) has the following properties:

(a) E(YEreg):'uY 2 72
Var (Ve )= %(1—,02) 1+ E(SE—SSS]
0) "
h , _ 1 r/2
e Zepss :EZZ(Z(l)Zj—lk +Z(r)2jk)’
k=L j=L
d 1| 2 _ 2 12 _ 2
" S22E :HZ[Z(Z(l)Zj—lk _ZERSS) +Z(Z(r)2jk _ZERSS) }
k=1 j=L j=1 ,
with
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7 . x(i)jk — Hy
ik — . .
0] oy i=1 rij=Ll., /2, k=l.,m,
Proof: / Foyprove Theorem 2.1, we first show that
G T e °,
@ a(r% 2 | )aﬁum r/2 )
z Z( ERSSa)
(2) k=1 j=1 i

Proof & romthedeflnltlon of m r/2
LT e [E, (3,1 )] = BLE(Z2,2.,, Y, 1]

k=t =L , We have that I /2-1 i . Since
E, (Y[i]jk | X):ﬂy +B(X iy = ) Z;;Zilca)jk =0and Z;;Zilcmkx(i)jk =1
n m r/2 m r/2
kR Bl %D = B2 3C,., (i, + A Xy~ M= EJ0+ B °C,. Xy ~0]
k=1 j= i k=l j= i
=E,(B)=p
u 1
var, (Y | X ) = o and ZZZCm,k = o — )
Proof of (2):  Similarly, sinc= i<t i DO (Kiy ik — Xerssa)’
k=l j=1 i then
R m r/2 2
Var(ﬁa | X)= 222 Ciyie Var (Y | X) =57 = _ '
Kt kzl: % 1Z(X(i)jk - XERSSa)z
=545
Ey (Y_Ereg X ) = Ey (Y_ERSSa + B, (:ux - >ZERSSa) ‘ X )

Proof of Theorem 2. 1((3)1;_ %rﬁz‘,@’ﬁ”d the @‘(%"L@E‘é‘é%ah)a \1 g@h}t ’E(Y_E reg ) = Ey (E y (Y_E reg ‘X ))
rm

[i1jk
k=1 j=1 i

< [l k)R X

=:uy+ﬂ(>zERSSa ﬂx)+18( _ERSSa)
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E(Y.. )=u, Y
Therefore, ( Ereg) Hy and hence ' E'€9 s an unbiased estimator of ,uy.

Proof of Theorem 2.1 (b): Using properties of conditional moments, B
Var (Yo ) = B, | Var, (Yoo | X ) | +Var, [ E, (¥

Ereg Ereg

Ereg

x))

]
and from the proof of

Var, [ €, (Yo | X ) [ =Vat, | E, (Vosea A (41, ~ R

Ereg

First note that,

part (a), (Y_Ereg ‘X) Hy t Var, | E (YEreg X)J :V%rx [,Uy] :9.
N E [Var (YEreg XS =E, | Var, (YERSSa + b, (:Ux - XERSSa) X )}
s0,

- T )01 R 5,

. _ o+ 2COV)0( ERSSa’ (/Ix ERSSa ) |X )}

Cov (YERSSa , Ba (ﬂx - X ERSSa

_ m 12
(/Jx _XERSSa)COV[szzlz liljk ZZZCWYW |XJ

)

but, i k=1 j=1 i
1 m 12
:m(ﬂx ERSSa) kz;z];zc(l)jkvar(Y[l]]k | X),
o=
1 m 12
= %(ﬂx ERSSa) O, kZ:;, < ZC(I)jk
therefore,

x))-

Ereg

SEV

it

and from the proof of (2) above,

BBl ool )

2
Ue

el

+E, (,ux _)zERSSa)Z m ri2

ZZZ(X(I)jk ERSSa

k=1 j=1 i
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k=1 j=1 i
Clearly this implies that,
A 2
X - |o?
+O'EZE __ ( ERSSa ﬂx) Oy
ZZZ{(X(I)Jk ) = (XERSSa ;ux)} /O'
k=1 j=1 i
and hence, o 72
Var (Y, ) = y(1—,02) 1+E, %
ZE

2.4 Comparison with Naive Estimators

Using Theorem (2.1) and the above results the relative pre@'%on of the ERSS regression estimator,
Yews | relative to thegER S, naiiye est et Pessss ) n

" var (YEfeg) ot ZERSS
]

ZE

(2.10)

whereas the relative precision of ERSS regrgﬁlan eﬁtlmator YE’GHGEH:@] to the RSS naive estimator Y rss
RSS

is given by RP (YEreng RSS) =

Var (Ve ) 05(1—/32){1&[2?55]}

Zg

(2.11)

For the varlzwces the

alve RSf_and %RSS estimators, see for exalmple Samawi %al (1996). Asitis
known that Y erss

Ysrs) | Shmawi et al, (1996) we|dnly compare E™®9 to ERSS and

Y
YRSS . Using (2.10), E"™¢ has the a greater precision tha:rj whenever

|p|2 1-
z:
o [1+E( SE§SS H
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Therefore, the regression method of-estimating Hy based on ERSS—JZ—S most preferable if P s large.

=

Y
Similarly, from (2.11), E"™¢ has a greater precisioﬂ-’c@ g%s whenevg
Y,
r < [i]
ol =1~

1
2 1+E Z_éRSS 2
y SZ

Ze

(o

2.5 Comparisons with Regression Estimators

2.5.1 Comparisons with SRS Regression Estimator

We consider the relative precision of our proposed ERSS regressiz)nxe$i5nator relative to the SRS

regression estimator. Table 2.1 presents the relative precision when has a bivariate normal

distribution with a correlaBon coefficient of zero. From the table we see that the relative precision is always
greater than 1 when P =Y Since the relative precision as given in (2.12) is independent of P+ the ERSS
regression estimator is always superior to the SRS regression estimator, regardless of the value of P

Table 2.1. Relative precision of ERSS regression estimator relative to the SRS
regression estimator.

Vi
I'(I"\

7\ A
Ergr Vreg ) WHen p=0

m/r 4 5 6 7 8

1.771401 1.396518 1.282631 1.213074 1.17554
1.054236 1.043639 1.038408 1.032832 1.02938

1.023997 1.019787 1.017815 1.015426 1.01390
1 1 1 1 1

8o |-

2.5.2 Comparisons with RSS Regression Estimator

Finally, we consider the relative precision of our proposed ERSS regression estimator relative ta the
RSS regression estimator, as presented by Yu and Lam (1997). Following, Yu and Lam (1997), since ~ERSS

does not utilize any information on the concor@'{ant variable X | it is fair to compare ERSS regression
estimator, 9, with the regression estimator, ", based on a SRS, (see Hedayat and Sinha, (1992)) and

: : _ Y _ .
with the regression estimator, "% based on RSS. When the sample is drawn from a bivariate normal

. . . Y ) Y., .
population the relative precision of ™9 relativeto "9 is
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RP (YEreg ’Yreg ) Var (YEreg ) 1+E (Z_ERSSJ

z 2.12)
Y Y. 11| Zess
and the relative precision of Ere_g relative to \?‘%?‘ G‘?Reg ) S;
RP (Vers Vo) = (Vo) . (22 R
Ereg 1+E( SEZQSS J
Ze (2.13)

Table 2.2 presents the relative precision for a bivariate normal distribution with zero correlation coefficient.
The table shows that the relative precision is always greater than 1 when P =" Since the relative
precision given in (2.13) is independent of P , We can again conclude that the ERSS regression estimator is
always superior to the RSS regression estimator regardless of the value of =

Table 2.2. Relative precision of ERSS regression estimator relative to the RSS
regression estimator

RP (Y_ Erg’ Vreg } when  p=0
m/r 4 5 6 7 8
1 1.096072 1.038646 1.029965 1.018206 1.015733
4 1.008527 1.004899 1.004976 1.003545 1.003144
8 1.003801 1.002274 1.00236 1.001684 1.001516
0 1 1 1 1 1

2.6 Evaluation of Departure from the Linearity Assumption

Generally, if the assumption of the linear relationship in (2.7) is invalid, the ERSS regression
estimator is a biased estimator. In such a case, we define the relative precision to be the ratio of the MSEs of
the estimators compared. As in Yu and Lam (1997), we evaluate the performance of the regression

estimator under the rdeparture from the linearity as tion b goPlackett’s class of bivariate
distributions with fix oG gnng)aTi&rﬁﬂqu) Tufl &Hé %{31)5 dm:(éﬂl The Jpptf”ls:gévgp_ by
H(xy)= 2(v-1)
F(x)G(y) ify =1,

where SCY) =1+ D[ F(x)+G(y)]
X and Y.

and the parameter v governs the dependence between
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Table 2.3. Relative precision of ERSS regression estimator relative to ERSS naive estimator when the
linearity assumption is violated (bold numbers indicate RP < 1).

r=4
Y
NCO 1)y u(o1)
M M
X v 1 4 8 1 4 8
N( [Z) 1) 0.05 1.3437 1.4061 1.5112 1.2469 1.3043 1.3604
0.3 0.9467 1.0188 1.0351 0.9099 1.0178 1.0343
1 0.8878 0.9735 0.9897 0.8741 0.9786 0.9909
3 0.9444 1.0183 1.0382 0.914 1.0149 1.0294
10 1.1241 1.2085 1.2466 1.0167 1.1686 1.1649
u(o,1) 0.05 1.3481 1.4636 1.4963 1.3333 1.4565 1.4647
0.3 0.9589 1.0303 1.0452 0.9511 1.0305 1.0464
1 0.9127 0.9913 0.9919 0.8908 0.9839 0.9929
3 0.9717 1.0289 1.0316 0.9411 1.0255 1.0438
10 1.1652 1.1947 1.2164 1.1018 1.1886 1.2483
r=5
Y
N( [ 1) u(0,1)
M M
X i 1 4 8 1 4 8
N( [Z) 1) 0.05 1.3485 1.3797 1.4031 1.2057 1.2991 1.2878
0.3 0.9692 1.0241 1.0395 0.975 1.0261 1.0355
1 0.9305 0.9836 0.9959 0.9336 0.9833 0.9962
3 0.9473 1.0165 1.0262 0.9627 1.0261 1.0336
10 1.1455 1.1612 1.1627 1.0535 1.1489 1.1671
u(o,1) 0.05 1.3668 1.3565 1.3876 1.3086 1.4015 1.4203
0.3 1.0039 1.0363 1.0383 0.9848 1.036 1.0529
1 0.9452 0.9885 0.9937 0.9508 0.9884 0.9956
3 0.9973 1.0291 1.028 0.9834 1.0306 1.0387
10 1.1845 1.1734 1.2056 1.1509 1.2088 1.2089

The reason for choozin? this class of)bivariate distributions is that it covers the full range of dependence:

@ ¥ > 0=F =1-G(y

ORd =1= Xand Y are independent
S F(x)=G(y)

In general, the relationship between X and Y is not linear. However, their relationship might be
close to linear when ¥ is close to 0 or % and their marginal distributions are the same and symmetric if
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Y is close to 0. For a more detailed description of Plackett’s distribution and its random generation, see

Johnson (1987), (P. 191-197).
First, we fix the set size r to be 4 and 5, and examine m = 1, 4, 8. Five types of dependence from
strongly negative to strongly positive corresponding to Vv = 0.05, 0.3, 1, 3, 10, and two marginal

distributions, normal (9 , 1), uniform (0,1), are considered here. Table 2.3 gives the relative precision of the
ERSS regression estimator relative to the ERSS naive estimator based on simulations of size 100,000.

The main conclusions from Table 2.3 are:

1. Clearly, if both X and Y have symmetric marginal distributions and Y is0.050r 10, the ERSS regression

estimator is superior to the ERSS naive estimator since the Plackett’s distribution in these cases is close to a
bivariate distribution with linearly related marginal.
2. The efficiency decreases as the value of Y increases from 0.05 to 1, and starts to increase as ¥

increases from 1 to 10 for any given value of m and for r =4 and 5.
3. Forany fix Y and any value of r, we note that as m increases the efficiency increases.

In general when Y is close to 1, the performance of the ERSS regression estimator is poor. This may
be due to the fact that when ¥ is close to 1, the two variables X and Y are independent.

3. Regression Estimators when Hxis Unknown

In this Section, we discuss how to obtain the extreme ranked set sample regression estimator by using
the method of double sampling (or two-phase sampling), when X is unknown.

3.1 Regression Estimation Using;rwo—phase Sampling

YEreg , Y Red and

. . Y . .
The regression estimators 0 involve the population mean Hxof the

concomitant variable X , Which is usually unknown in practical settings. If Hx s unknown, the method of

double sampling can be used to obtain an estimate of Hx  This involves the drawing of a large random
!

r
sample of size n, which is used to estimate #x. A sub-sample of sizeis then selected from the n

!
original (n ) selected units to study the primary characteristics of Y . Under an Extreme Ranked Set

" __ r_ 2
Sampling setting,phase sampling is SRS and the second -. Note that the first N"=Mgy N =rm
phase sampling is ERSS.

v ! 2 v !
Let X' be the sample mean of X pasedon I'M observation of X in the first-phase. Clearly, X
is an unbiased estimator for #x. If ERSS is the second phase sampling, the double sampling regression

Hy

estimator of the population mean is defined as

— — ~ — —

Yeas = Yerssa + Fa ( X' Xerssa ) ' (3.0)

where,
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m r/2 m r/2
Yerssa = kZ];JZ];( wp2j-k [r]2jk) ERSSa 21121( w2jik t X(r)2jk)
m r? ' ,
22 Xk
Croki=
nr , Ba isasin (2.9)and N=Mr,

Again, using basic properties of conditional moments, we have the following theorem.

Theorem 3.1: Assume that the model in (2.7) is satisfied and that the underlying marginals distribution
functions of Y and X are symmetric. Then the double sampling regression estimator for “ ¥ defined in

(3.1)]%& the fcﬂlowmg properties:
? VarY(\E(ds )=2 s % (1-p7) |14k (Zess =2)" ||, o2

Fas P S2_ —
(b)
where _

’ Z 0N 2
(I)“‘—,Z RS and “Ee as in Section 2
7 — — My
and Ox

Prog fA Beor 3 From the progf of Theorem 2.1, we have
) )3’“’ 1/2 2
Z Z( ERSSa)

2) e
2 o
Proof of (a): 2\ Ed :[Enxg%qu 4, (X=X rssa) ‘XJ ,
S54
- {%igZ(uy (X~ ))* 5, (X'~ X enssa) [ j
ey 8t R, ) (5 R ).
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X . . . . .
Since ” ERSSa jg an unbiased estimator for X (under the symmetry assumption, see Samawi et al.

(1996)) and X |s also an unbiased estimators for Hx then

E, (Vee | X) =, + ELB(Xenssa = )+ B(X = Kegssa )3 = 141

Y, . . .
and hence ' E9S s an unbiased estimator of ,uy.

Proof of Theorem 3.1 (B): Similar to the proof of Theorem 2.1,
Var(YEO,s [\/ar (YEds‘X )]+Varx[ Ey (VEdS‘X )]

First from the proof of part (a) above,
)]

Var, [E (Ves
Vary (Ey (Y_Eds‘x )) =Vary{uy + B(Xerssa — tx )+ BX' ~ Xerssa }

X )} =Var, [Ey (Y_ERSSa + Ba (x: - XERSSa)

—Varx[ﬁX] 522X "3 .
From (1) we'injé\vfﬂ{@t Eds Rd ﬂ)(_) E )E\yar'{eéRSSa a ﬂlgé)éRSSaﬁRR )S}t'
e —, | Var, (Venge| X ) # (X'~ Xensea) Var, (4,
(

+2COV(YERSSa ﬁ )z iERSSa) |X):| '

)

Similar to the proof of Theorem 2.1, we can show that
COV(YERSSa’ Ba(X' = X erssa
Ex B/ary (YEds‘ EQI:] EEQ‘
rm
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2 a A% 2
var(oy) =2 pr)|aee, | e )L o
ZE

Therefore,

For the double sami)ling regression estimator Yes pased on SRS, Sukhatme and Sukhatme (1970) showed

follows a bivariate normal distribution, "9 is an unbiased estimator of Hy with
variance o r-1 1 1 ,
Var(7,)= 2 1+ Ll Lt

that, when
r n-3

3.2 Relative Efficiency

Again since ERSS did not use any information on the concomitant variable X we can compare the

. . Y, Y,
two-phase ERSS regression estimator, ' E% | to the two-phase regressmn estimator 9 based on SRS, and

Y,
%rec@ion of Vea relative to 9

to the two-phase regression_estimator Yeas bas(@-oyp 3.4

Var (Y g
when (ﬁpr%msybi\)aﬁ RIS

n_.

Eds

P
r
(3.2)
(22 || 7
gl p 1+E ZRSSZ_ P
and the relatlveFJ) ecision of _EO‘i/m‘léﬁyg t)) Sz, r
( Eds’YRds) _Var (YEd ) (_ Z)Z 2
(1-p7)[1+E ZERSS%_ 2
- (3.3)

3.3 Numerical Comparison

. XY o o . .
Assuming that ( ) has a bivariate normal distribution, we compute various expressions for the
relative efficiencies obtained in the previous section. The set sizes examined are r = 4, 5, 6, 7 and 8 with

%(tl s of m = /42 )& and 00( A sm%jmy\ §|2)e of 100,000 is used to evaluate the values of
RSS

Zerss —
In the case of double sampling, note that the
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relative precision is less than the relative precision of the case when Hx is known. This is due to the extra

variation introduced when estimating the mean # X,

. . Y . Y . Lo
Table 3.1 shows the relative precision of Ed relative to 9 for an underlying bivariate normal

distribution. From the table we see that all the relative precision values are at least 1 indicating again in
precision when using ERSS instead of SRS.

The main conclusions from Table 3.1 are:

1.

When ranking is done on the variable X | the relative precision is best at pP= O. The efficiency

increases as the value of P decreases from .99 to 0.
For a fixed value of the set size, I', we note that a(srnS increases the efficiency converges rapidly to 1.
The efficiency decreases with increasing set size , for any given value of M.

For a given value of I', there is no change in the efficiency when the cycle is repeated more than 8,
(Efficiency stability). This may be due to the fact that when the sample size is large enough to
represent the population, the ranking has less impact on the regression estimator.

The double sampling ERSS regression estimator is always superior to the double sampling SRS
regression estimator no mater how large the correlation coefficient, is.

Table 3.1. The relative precision of double sampling ERSS regression estimator
relative to double sampling SRS regression estimator.

(7 N/

RP(Yess, YRdS) when p=0

m/r 4 5 6 7 8
1 1.63416 | 1.34607 |1.24611| 1.19055 | 1.15995
4 1.04718 | 1.03945 |1.03428| 1.03009 | 1.02665
8 1.02100 | 1.01802 |1.01588| 1.01399 | 1.01269
00 N 1 1 1

RP(Yess: Yres ) When p=0.9

m/r 4 5 6 7 8
1 1.3124 1.189 | 1.1501 | 1.1206 | 1.1029
4 1.0226 1.0212 | 1.0197 | 1.0186 | 1.0176
8 1.0100 1.0096 | 1.0093 | 1.0087 | 1.0082
00 1 1 1 1 1

Table 3.2 presents the relative precision under the assumption of an underlying bivariate normal
distribution. Again, the table shows that the relative precisions are all at least 1. We also note that the
double sampling ERSS regression estimator is always slightly better than the double sampling RSS
regression estimator no mater how large the correlation coefficient, is.
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Table 3.2. The relative precision of double sampling ERSS regression estimator
relative to double sampling RSS regression estimator.

\/

5P v\ A
RP{Yeas: Yras ) WHen p=0

m/r 4 5 6 7 8
1 [1.02771] 1.00935 | 1.00749 | 1.0046 | 1.00405
4 [1.00192] 1.00111 | 1.0011 | 1.00079 | 1.00071
8 [1.00081| 1.00053 | 1.00052 | 1.00035 | 1.00034
© l-\ll-\/\-_ \Ll \ 1 1r\n 1
RP{Yegr Yres ) When —p=0.9

m/r| 4 5 6 7 8

1 [1.0083| 1.0063 | 1.0047 | 1.0029 | 1.0025
4 |1.0008 | 1.00064 | 1.00061 | 1.0004 | 1.0004
8 [1.0003| 1.0002 | 1.0002 | 1.0002 | 1.0002
o0 1 1 1 1 1

4. Application to Bilirubin level in Jaundice Babies

We illustrate the methods discussed above using real data on bilirubin level in jaundice babies who
stay in neonatal intensive care. Hyper Bilirubinemia is defined as a total serum Bilirubin above 1.5 mg/dl
while neonatal jaundice is defined as yellowish discoloration of skin and sclera and it occurs if Bilirubin
level is more than 5 mg/dl. (see Nelson et al., 1994). Jaundice is observed during the first week of life in
approximately 60% of term infants (from 37 to less than 42 completed weeks) and 80% of pre-term infants
(less than 37 completed weeks) (see Nelson et al., 1994).

Neonatal jaundice is a common problem in full-term infants (42 completed weeks or more (294 days
or more)) and pre-term babies. It is possible that the generally accepted levels are too high and may produce
some high tone hearing loss. Most experts accept that 18.82 mg/dl to 20 mg/dl should not be exceeded in
full-term babies, who are less than three days of age, but that a mature baby can tolerate levels of up to
21.18 mg/dl or 22.35 mg/dl by the fifth day without evidence of damage. Pre-mature babies are probably
more susceptible and 17.64mg/dl should not be exceeded. Since most cases of neonatal jaundice appear on
the second day of life and most of normal newborn babies leave the hospital after 24 hours of life, our
primary concern will be on babies staying in neonatal intensive care.

Physicians are interested in jaundice because of its importance and risk on hearing, brain and death. It
will be really helpful to the physicians if we can estimate the populations mean of the amount of Bilirubin
in the blood for jaundice pre-term, mature, and full term babies. However, estimating the population mean
can be expensive and time consuming. Therefore, there is a need for a sampling scheme which can give
more accurate population mean estimates with a smaller sample size, and hence results in saving money and
time.

All babies who appear significantly jaundiced on clinical examination should have their plasma
Bilirubin estimated. This is done in a laboratory test that needs about half an hour or more to find the level
of Bilirubin in the blood. This test is expensive and time consuming. However, by using the regression
estimator calculated based on extreme rank set sample, we will show that the population mean of plasma
Bilirubin for babies who stay in neonatal intensive care, can be estimated with more precision without
measuring all units.
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4.1 Data Collection

The data were collected by Samawi and Al-Sagheer (2001) from five hospitals in Jordan. These
hospitals are Al-Qawasmeh Hospital, Prince Rahma Hospital, Irbid Specialty Hospital, Ibin al-Nafies
Hospital, and Queen Zein Al-Sharaf Hospital.

The data were limited to deliveries in the first six months of 1997. Herein, we find the population
mean estimate for the Bilirubin level for neonatal jaundice. Jaundice is measured by the level of Bilirubin in
the blood. This level is determined via a blood test (tsb). The unit of measurement is mg/dl. The test is
conducted on neonatal infants twice daily during the period of the neonatal in the intensive care. One
hundred and twenty cases are included in the study. The weight at birth is taken as the concomitant variable.
Since ranking on the concomitant variable X (weight) is easier and measuring X s less expensive than

ranking and measuring Y (tsb), we will rank on the variable X,

4.2 Parameters

The following are the exact po;%@‘ag(on V%HAS %thefg( 2 _1049.62

My :2.87 Oy :0.71 r) uy =1118 o, =508
120 120 120 ' '

ZY =1341.06 ZYZ =1806212 ) XY =3877.27

i=1

o =006

4.3 Using ERSS, RSS and SRS

ERSS and RSS and SRS sampling methods are used to obtain the samples shown in Table 4.1. The
following results are obtained from the samples:

1) Based on the ERSS sample, the regression estimate is Hy :11'46, with Var( Ereg) 0.675 and the
=11.47 with Var(YERss) = 0634
=1144 i

=1181 .. Var(Ygss) = 0.560

. ) Y,
naive estimate is = ERSS

Y Var (Y., )=0.685
2) Based on the RSS sample the regression estimate is Hy ( Reg )

and the naive estimate is YRss
3) Based on the SRS sample, the regression estimate is

’Lfyzll'67with Var( 'eg) 0.962 and the naive estimate s Ysrs =11.42
Var(Ygss ) = 0.746 Var (Y, ) =Var (¥ . Var (Y., ) =Var (Y., )

with

. Note that Ereg

For the data at hand, the naive estimators are doing better than the regression estimators. This may be
due to the fact that the correlation between the weight and TSB is very small. ﬁl augh %us 5 orlly Sn

illustration of the computations, the results confirm our earlier conclusions: Ereg’ “reg’

eff (¥, 1.01

Ereg? Reg )
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Table 4.1. The drawn samples.

ERSS RSS SRS

Cycle | Wt Tsh Wt Tsh Wt Tsb

1 2.83 6.67 2.83 6.67 2.83 6.67
350 | 1194 | 245 8.71 2.45 8.71
1.50 8.51 4.15 2.06 1.80 16.94
3.45 8.00 3.45 8.00 3.00 5.50
2 2.00 | 1094 | 2.00 | 10.94 2.50 10.58
260 | 16.76 | 2.50 | 16.60 2.50 19.79
1.50 5.90 2.75 5.60 2.75 5.60
350 | 1259 | 3.50 | 12.59 3.50 12.59
3 195 | 1576 | 195 | 15.76 4.40 16.60
3.70 | 12.28 | 3.40 8.00 3.70 12.82
250 | 25.12 | 3.25 5.60 2.85 15.20
3.00 6.90 3.00 6.90 2.70 14.20
4 1.80 | 2294 | 180 | 22.94 3.00 22.94
3.60 7.20 270 | 14.20 2.00 10.94
1.90 8.00 2.70 | 1547 2.50 15.19
3.70 5.50 3.70 5.50 2.50 10.58
5 245 | 1376 | 245 | 1376 2.45 13.76
3.30 9.53 3.10 | 12.30 3.15 7.80
195 | 1576 | 2.83 6.67 1.95 15.76
4.40 10.94 4.40 10.94 1.90 11.88
6 250 | 1276 | 250 | 12.76 3.25 5.60
360 | 16.46 | 3.20 | 11.60 3.20 11.60
1.85 9.20 2.60 | 2252 2.60 22.52
315 | 1153 | 3.15 | 1153 3.15 11.53
7 2.75 5.60 2.75 5.60 4.45 2.06
2.85 | 1520 | 245 8.71 2.45 13.76
1.75 8.53 2.30 | 18.29 1.75 8.53
3.6 16.46 | 3.60 | 16.46 2.20 7.60
8 2.00 | 11.00 | 2.00 | 11.00 3.40 8.00
3.50 11.94 2.70 7.45 2.85 13.94
3.00 5.90 3.25 8.90 3.65 7.50
260 | 2252 | 2.60 | 2252 1.80 16.94
9 2.70 7.45 2.70 7.45 2.70 7.45
3.75 8.20 3.40 | 16.50 3.40 16.50
1.50 5.90 350 | 2212 3.10 10.18
340 | 1650 | 3.40 | 16.50 2.10 14.59
10 1.20 8.76 1.20 8.76 3.20 11.60
3.85 | 1427 | 250 7.06 3.85 14.27
3.00 12.3 3.20 8.53 3.20 8.53
3.30 3.30 3.30 3.30 3.00 5.50
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