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ABSTRACT: We obtain the conditional fault diameter of the k-ary n-cube
interconnection network. It has been previously shown that under the condition of
forbidden faulty sets (i.e. assuming each non-faulty node has at least one non-faulty
neighbor), the k-ary n-cube, whose connectivity is 2n, can tolerate up to 4n-3 faulty nodes
without becoming disconnected. We extend this result by showing that the conditional
fault-diameter of the k-ary n-cube is equal to the fault-free diameter plus two. This means
that if there are at most 4n-3 faulty nodes in the k-ary n-cube and if every non-faulty node
has at least one non-faulty neighbor, then there exists a fault-free path of length at most
the diameter plus two between any two non faulty nodes. We also show how to construct
these fault-free paths. With this result the k-ary n-cube joins a group of interconnection
networks (including the hypercube and the star-graph) whose conditional fault diameter
has been shown to be only two units over the fault-free diameter.

KEYWORDS: Fault-tolerance, multiprocessor systems, interconnection architectures, k-
ary n-cube, torus.
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1. Introduction

he node connectivity and the fault diameter have been used as measures of the fault-tolerance of

interconnection networks. These measures however do not reflect the real resilience of these
networks. It is true that when the number of faulty nodes is equal to the connectivity the network may
become disconnected. However, this is very unlikely to happen since only very special fault
distributions of these faults cause disconnection. For instance, in the k-ary n-cube, the node-
connectivity is 2n and 2n faulty nodes may cause disconnection. But the network becomes
disconnected only when all the 27 faults are adjacent to the same node which is very improbable.

In an attempt to better quantify the fault resilience of a network, the concept of forbidden faulty
sets has been introduced by Esfahanian (1989). The idea is to assume that each node has at least one
non-faulty neighbor. Under this forbidden faulty set condition, the number of tolerable faulty nodes is
significantly larger with a slight increase in the fault diameter. Esfahanian (1989) has proven that for
the binary n-cube, whose connectivity is n, 2n-3 nodes can fail (under the forbidden faulty set
condition) without disconnecting the network. Latifi (1993) has then showed that the corresponding
conditional fault diameter increases only by 2 over the fault-free diameter. In Rouskov et al. (1996)
similar results for the star graph network have been established. Latifi ef al. (1994) have generalized
this idea by assuming that each node has at least k£ non-faulty neighbors. Similar results for the m-ary
generalized n-cube network have also been obtained in Wu (1998).

It has been previously shown (Day, 2004) that for £ > 4 and n > 2, the k-ary n-cube, whose
connectivity is 2n, can tolerate up to 4n-3 faulty nodes without becoming disconnected. The
corresponding conditional node connectivity is therefore 4n-2. The result for the remaining small
values of k and n has also been obtained in Day (2004). We extend these results in this paper by
showing that the conditional fault-diameter of the k-ary n-cube is equal to n | k /2 ]+ 2 . We therefore

establish that the k-ary n-cube, like the hypercube and the star-graph, has conditional fault diameter
equal to two plus the fault-free diameter.

This paper is organized as follows: section 2 presents some notations; section 3 obtains some
preliminary results useful for the derivation of the conditional fault diameter in section 4. Section 5
concludes the paper.

2. Notations

The k-ary n-cube Q: has N = k" nodes each of the form X = x X

X 0 < x;< k, for 0<i<n.

Two nodes X = X X e X and Y=y DR A in Q,If are connected if, and only if, there exists

n-1

exactly one value of i, 0 <7<, such that x; = y; = 1 (mod k) and x; = y;, for /#j. It is shown in Bose et

al. (1995) that Q,f has degree 27 and diameter n| k /2| . Given two nodes X = X X X and Y= V.

2
A in Qﬁ , we denote by dH (X, Y) the Hamming distance between X and 7, i.e., the number of
dimensions in which X and Y differ. For the k-ary n-cube, dH (X Y) is not the length of a shortest path
between X and Y. The length of a shortest path between X and Y is equal to the Lee distance (Bose et
al. 1995) given by: dL Xrn==x ::01 w;, where w; = min (Jx;-y;l, k-x;-p;)).

The k-ary n-cube Q,f can be partitioned into & disjoint k-ary (n-1)-cubes. Let Q:_’a be the sub-

ki

graph of Q,f containing all Q,f nodes whose addresses are of the form X = [X .. X Clearly, 0,
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k-1

,.1 form a partition of O ,1: . For any node

is a k-ary (n-1)-cube and the sub-graphs Q :j? ,0 ,]:711 yeenr O

Ad=a  a .a in Q,f we denote by 4”, 0 < p <k, the node of the form 4” =p a ... a, obtained
from A by replacing its leftmost digit a . by p.

Definition 1: The node-connectivity C(G) (or point-connectivity) of a graph G is the minimum
number of nodes of G whose removal results in a disconnected or trivial graph. It has been shown in

Day and Al-Ayyoub (1997) that C(Q* ) = 2x.

Definition 2: The fault-diameter FD(G) of a graph G is the maximum distance between any two
nodes of G in the presence of at most C(G)-1 faulty nodes. It has been shown in Day and Al-Ayyoub

(1997) that FD(Q' )= n|k/2]+1.

Definition 3: The conditional node connectivity CC(G) of a graph G is the minimum number of nodes
of G whose removal results in a disconnected or trivial graph, provided that each of the remaining
nodes has at least one adjacent node in G that is not removed.

Definition 4: The conditional fault diameter CFD(G) of a graph G is the maximum distance between
any two nodes of G in the presence of at most CC(G)-1 faulty nodes, provided that each of the non-
faulty nodes has at least one non-faulty adjacent node in G.

We use the abbreviation FFSC for denoting the forbidden faulty set condition which
corresponds to the requirement that each non-faulty node must have at least one non faulty neighbor.

3. Preliminary Results

In this section we present some preliminary results that will be used in the next section for the
derivation of the conditional fault diameter of the k-ary n-cube. We start by the following result which
has been proven in by Day (2004):

Theorem 1. The conditional node connectivity of the k-ary n-cube for n > 2 and k > 4 is: CC(Q;‘ )=
4n-2.
We will denote by 7Z'*k (X,Y) a minimum-length path between nodes X and Y in Q: . The

following theorem established in by Bose et al. (1995) about the existence of a complete set of node

disjoint paths between any two nodes of the k-ary n-cube Q,I: will be used in the next section for

establishing the conditional fault diameter of erf . Additional results about node disjoint paths in the
k-ary n-cube can be found in Day and Al-Ayyoub (1997).

Theorem 2. LetX=x x
dH (X.Y) and of Lee distance / = dj (X,Y). There are a total of 2n node-disjoint paths between X and ¥

of which:
1) h paths have length /,
2) 2n-2h paths have length /+2, and
3) for each i such that w; > 0, there is a path of length /+k-2w; (h paths).

In preparation for the proof of the conditional fault-diameter of the k-ary n-cube given in the
next section, we present the corresponding result for the special case of the k-ary 2-cube (also called
the k-torus). The k-torus is a wrap-around mesh which consists of & rows and £ columns. Each row
and each column consists of a cycle of £ nodes. There are four node-disjoint paths connecting any two

A and Y=y » .- be two nodes in erf of Hamming distance 4 =
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nodes of the k-torus. The connectivity of the i-torus is therefore equal to 4. Any two nodes on the
same cycle (row or column) are connected by two paths along the cycle. One is called the shortest
path on the cycle and the other is called the longest path. We show that under the FFSC, the k-torus,
whose connectivity is 4, can tolerate up to 5 faulty nodes without becoming disconnected. The
conditional node connectivity of the k-torus is therefore 6. We also show that the conditional fault-
diameter of the k-torus is equal to its fault-free diameter plus two.

The proof of the following theorem consists of a lengthy manual construction of fault-free paths
between any two non faulty nodes of the k-torus considering all possible relative locations of the
source and destination nodes and those of the 5 faulty nodes. For brevity, we omit this lengthy
construction here. Interested readers can find it in Touzene and Day (2005).

Theorem 3. The conditional fault diameter of the k-torus under the FFSCis 2| k /2] +2.
The next result states that it is always possible to construct between any two non-faulty nodes of

0 * a fault-free path of length at most the diameter if the number of faults does not exceed two. This

n

result will be used in the next section to prove the conditional fault diameter of O f .

Lemma l. In QO f ,if k>4, n>2 and if there are two or less faulty nodes, then there exists between
any two non-faulty nodes at least one fault-free path of length at most n | k /2] .

Proof. Let X and Y be any two distinct non-faulty nodes in Q f . By Theorem 2, there exist between X

and Yin Q,f a first set of 1 = dH (X)) paths each of length dL (X,Y) (which is at most 4|k /2])and a
second set of 2n-2/h paths each of length dL (X, Y)+2 (which is at most & |k /2|+2). Hence we have

in total 2n-h paths between X and Y in Q: each of length at most 4|k /2|+2 . We distinguish the
following cases:
e If h=1then 2n-h=2n-1>3,and h|k/2|+2=|k/2|+2<n|k/2] (since n>2 and k>4).
Hence we have at least 3 paths each of length at most 7|k /2| and at least one of these paths

must be fault-free.
e If =2 and n = 2, the result is derived from the proof of the fault-diameter of the 2-ary n-cube
(k-torus) available in Touzene and Day (2005).

e Ifh=2and n >3 then 2n-h=2n-2>4and h|k/2|+2=2|k/2]+2<n|k/2] (since n>3
and k>4). Hence we have at least 4 paths each of length at most 7 |k /2|, one of which must be
fault-free.
e If 1 >3 then at least one of the first set of / paths each of length at most /| k /2 |<n|k /2] is
fault-free.

4. The Conditional Fault Diameter of the k-Ary n-Cube

The following result establishes a lower bound on the conditional fault-diameter of Q,f .
Lemma 2. CFD (QX)> n|k/2|+2, fork>4,n>2.

Proof. Let X and Y be two nodes in Q: at the maximum distance equal to the diameter n |k /2. Let

Z be a neighbor of Y and let T be a neighbor of Z other than Y (see Figure 1). Assume that all 2n-2
neighbors of Z other than Y and T are faulty and that all 2n-1 neighbors of T other than Z are faulty.
Notice that the former set of 2xn-2 faults and the latter set of 2# -1 faults must be disjoint since k>4
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Xand Y
at distance
X n|ki2] Y z T 2n-1
@-------——mmmmmmmmmmemme o faulty neighbors
of T
2n-2
faulty neighbors
of Z

Figure 1. 7|k /2|+2 is a lower bound of CFD (0 ).

(otherwise, if F were a faulty node appearing in both sets then Z F' T would form a cycle of length 3
which is impossible for & > 4). Assume there are no other faults. The total number of faults is
therefore 4n-3. A path from 7 to X must first go through Z then through Y then from Y to X in at least

n |k /2] moves and, hence, will be of length of at least n | k /2 ]+ 2 . Therefore, the conditional fault
diameter satisfies: CFD (Q;C )= n Lk / 2J + 2. Now we establish an upper bound on the conditional
fault-diameter of Q: .

Lemma 3. CFD (O )< n| k /2 |+2, fork>4,n>2.

Proof . We proceed by induction on n. The induction basis (n = 2) is given by Theorem 3. Now we
prove the result for » > 3 assuming it is true for smaller n values. Consider two arbitrary non-faulty

nodes X = X X X and Y = V.Y Y, in Q: . Assume the number of faulty nodes is at most 4n-3

and that the FFSC is satisfied. Our aim is to show that it is always possible to find a fault-free path
between X and Y of length at most | k /2 |+ 2 . We distinguish the following cases:

Case 1. there exists m, 0 < m < n, such that x =y =i (assume without loss of generality m = n-1),
then both nodes X and Y belong to the sub-graph O f Qf .
Case 1.1. Q:jli has at most 4(n-1)-3 = 4n-7 faults. By induction hypothesis there must exist a fault-

free path from X to Y'in Q:jf of length at most (n —1)[k /2] +2<n[k/2]+2.

Case 1.2, Q}f_’f has more than 4n-7 faults. This means that there are at most 3 faults outside Q}f_’f .
Case 1.2.1. each of X and Y has all its 2n-2 neighbors inside Q:_’f faulty.
There must exist at most one faulty node outside Q: _’f . Therefore either Q: _’f < or Q}f_’f s fault-

k,i-1
n—1

free (notice i-1 and i +1 are modulo k). Let X' (respectively X ") denote the neighbor of X in O
(respectively Q,f;f 1. Similarly for Y' and ¥ (see Figure 2).

. . ki1 kil
Since either O,  or O

4.1 is fault-free, at least one of the two paths:

X XU 7y LYY [ Y > Yoor

X X 7y KLY Y Y >y
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y
0.

A

A 4
<.
A

Figure 2. Path construction for Case 1.2.1.

is fault-free and is of length at most (n —1)| k /2 |+ 2 (since it is contained in a fault-free Qf _, sub-

graph except for two edges). The symbol || is used to denote path concatenation.

k,i-1 ki
0.1 (O

n—1

Figure 3. Path construction for Case 1.2.2.1.

Case 1.2.2. Xor Y has a non-faulty neighbor inside Q:_’f .

k,i-1
Qn—i

Figure 4. Path construction for Case 1.2.2.3.1.
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ki k, i+l
0, 0,1

k,i k,Jj k, j+1
Qn—i Qn—lj Qn—lﬁr

Figure 6. Path construction for Case 2.

Assume it is X which has a non-faulty neighbor X inside Q,f_’li (case of Y is similar). Since there are

ki
n-172

k,i+l
n-1

ki1 or Q

at most three faulty nodes outside Q ul

either O has at most one faulty node.

Assume Q:_’f ! has at most one faulty node (the other case is similar).
Case 1.2.2.1. X" is faulty (hence X ™' is the only faulty node in Qf;f - ).

Let X’/ be the neighbor of X* located in erfjf - (see Figure 3). By Lemma 1, there exists at least

one fault-free path 77 (X’ ™', ¥"") of length at most (n —1)| k /2] between X" ' and Y ™' in ijf -

We have, therefore, a fault-free path: X — X’ — X’ ™' || 7 (X "',¥"") || ¥'' = Y of length at most
(n —1)| k/2]+3 which is less than or equal to 7|k /2|+2 since k> 4.
Case 1.2.2.2. X" is non-faulty and ¥"' is non-faulty.
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1069 56
1009 O
110° %0
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133 053
123: : 223
1436, o243
I,

Figure 7. An Example of the 4n-2 node-disjoint paths in IT,. UII,, for » =3and k =7.
k,i-1
n—1

(n-D|k/2] in QX7 yielding the path: X » X ™' |7 (XY ") || Y "' - Y of length at most

(n=1)|k/2]+2<n|k/2] (since k> 4).
Case 1.2.2.3. X' non-faulty and Y"' faulty (the only fault in (@)

Since there is at most one fault in O , Lemma 1 gives a path 7 (X Uy Yy of length at most

k,i-1
n—1

Case 1.2.2.3.1. Y has a non faulty neighbor Y’ in er:—i .

k,i-1
n—1

Let ¥’ "' be the neighbor of Y~ located in Q (Figure 4). By Lemma 1, there exists at least one

fault-free path 77 (X *,Y" 1) of length at most (n —1)| k /2] from X/ to ¥’ ™' in Q%!
the path: X » X ' [|[z(X ", ™) | vV - Y™ — Y is fault-free and is of length at most
(n=1)|k/2]+3 < nlk/2]+2 (since k> 4).

Case 1.2.2.3.2. all neighbors of Y'in Q,l:j; are faulty.

. Therefore

In this case ¥ "' must be non-faulty (by the FFSC). We know that Q:Lf”
k,i+
n—1

has at most 2 faulty nodes.

If it has only one faulty node then it is possible to enter O ' from X going directly from X to X ™!
or from X to X’ then to X’ "' requiring in both cases at most two moves (see Figure 5). We can then

,]f;iﬂ to obtain a fault-free path of length at most (n —1) Lk / ZJ from X ! or from
X’ ""to Y™ and then make a final move from Y "' to Y. Hence we have a fault-free path from X to ¥

of length at most (n —1) I_k /ZJ +3 which is at most »n Lk /2_| + 2 since k > 4.

use Lemma 1 in Q
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If, however, in“ has two faulty nodes, then X must have a second non-faulty neighbor X inside

Qk’i (see Figure 5), otherwise the total number of faulty nodes would include 2r-2 faulty neighbors

of Y inside Q%! 2n-3 faulty neighbors of X inside Q! two faults inside Q""" and one fault
kyicl
n—1

(namely Y ') inside O
X located in Q1"

n-1

for a total of 4n-2 which exceeds 4n-3. Let X ! denote the neighbor of

. At least one of the three nodes X !, X” ! or X” ! must be non-faulty since

k,i+l

there are only two faults in Q" . Let X* 1 denote this non-faulty node. So it is possible to enter

k, i+l
n—1

free path of length at most (n —1)| k /2] from X* "' to Y ™' and then make a final move from ¥ ' to

Qk’ " starting from X in at most two moves. We can then use Lemma 1 in Q to obtain a fault-

n—1

Y. Hence we have in total a fault-free path from X to Y of length at most (n —1)| k /2 ]+3 which is
atmost n |k /2|+2 since k> 4.

Case 2. x £y forallm,0<m<n.

In this case, X and Y differ in all » dimensions. Let i = X, and j = Y., (i #j). We therefore have X €

0" and Y e 0/ Hence Xand Y are of the form: X = ix

n-1 n-1 x,,_

S X Xy and Y=jy .y ..V, Assume
without loss of generality that i, i+1, ... j is the shortest path between i and j on the cycle 0, 1, 2, ... k-

1. Let IT  be the set of 27-1 minimum-distance paths each joining either X to X ’ or any of the 2n-

2 neighbors X’ of X in QF

Ji .. . o k. j
™| to its isomorphic node X’ in O

i (see Figure 6). The notations

T (X, X /Y and T (X, X 7y will be used to denote these 2n-1 paths of IT, . Similarly, let IT = be

the set of 2x-1 minimum-distance paths each joining either Yto ¥ "or any of the 2n-2 neighbors Y’ of
Yin Q,fflj to its isomorphic node ¥’ in Q:ﬁf . The notations 7, (Y',Y)and 7T, (Y, ¥) will be

used to denote these 2n-1 paths of 11 , - The 4n-2 paths in IT, VIl , are all minimum-distance

paths. Each is of length equal to dL XX J ) = dL( Y i,Y) which is at most Lk / ZJ and they are all
mutually node-disjoint. Figure 7 illustrates the 4n-2 paths of I UII  forn =3, k=7, X =000, and

Y =333. These 4n-2 paths are mutually disjoint and therefore at least one of them must be completely
fault-free (since the total number of faults is at most 4n-3). Let 7z be this fault-free path and assume

that 7 € II  (the case 7 e II , is symmetric). Let X* denote the end node of X " located in Qk’j

n—1
(i.e. X* is either X 7 or one of the 21-2 nodes denoted X’ ). From the previous discussion we have:
|7|=d X X7)<|k/2].

k,1
n-1 >

Notice also that at most one of the sub-graphs O 0 </ <k, can possibly contain more than 4n-7

faulty nodes otherwise the number of faults would exceed 4n-3 since n > 3 (by assumption of the
induction step).

Case 2.1. Q" has at most 4n-7 faults.
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We can build a path 7| 7 (X*Y) of length at most n \_k /2J + 2, where 7 (X*)Y) is a fault-free path

between X* and Y in Qk’j of length at most (n —1) \_k /2_|+2 obtained using the induction

n—1
hypothesis in Q7.

Case 2.2. If O/ has more than 4n-7 faults (hence at most 3 faults outside Q*"/).

n-1

Case22.1. If 7, (Y',)is fault-free.

In this case we can build a path: 7 (X, Yi) I T, (Yi, Y) of length at most n I_k /2J + 2, where the
path 77 (X, Y') is a fault-free path of length at most (n —1)| k /2]+2 between X and Y in Qf_f
obtained using the induction hypothesis in Q:ﬁ{ . Notice here that the induction hypothesis applies in

Q,ffll since the number of faults outside Q:;ij (hence inside Q:ﬁf ) is at most 3 which is less than

k,i
n-1

4(n-1)-2 (since n > 3, by induction step assumption). Furthermore, the FFSC is satisfied in O

because it would take at least 2n-2 faults inside Qk"

.1 to make all the neighbors of one of its nodes

ki

faulty which is not possible since 2n-2 > 3 (because n > 3) and there are at most 3 faults in Q,”; .

Case2.22. 7, (Y', ¥)is faulty.

Case 2.2.2.1. X 7*'isnot faulty and ¥/*' is not faulty.
If d (X,Y)< n|k/2],wecanbuildapath: 7 | X~ — X /| z( X7, YY" >y

of length at most 7|k /2]+2, where 7 (X /"', Y/*') is a fault-free path between X ’*'and

Y7 of length at most (n —1)| k /2| obtained using Lemma 1 in Q,’;lf ! Notice that there are at

most three faults outside Q,lfflj and one of them is located on 77, (Y *, Y), therefore there are at most
two faults inside O /"'

n—1

and hence Lemma 1 applies in Q,f_lj A

If, however, d (X)Y) = n lk/2], let X 1 and X 2 be neighbors of X in Q:_{ corresponding to
minimum distance moves from X to Y along two different dimensions (these neighbors exist since n >
3). Consider the 3 paths joining X to X /"', X{ to X, 7+ and X; to X, " corresponding to the
sequence of moves i — i-1 - i-2 — ... = j+1 in dimension n-1. These paths are node-disjoint and

each is of length at most | k /2 |+1. Therefore, it is possible to enter the sub-graph Qfﬁlj ! from Xin

atmost | k /2 |+ 2 moves (in fact if we had started with the edge X— X ! then we would enter the
sub-graph Q,]fj'lj ! from Xin at most |k /2]+1 moves). Since in addition Q,]fjl/ *! has at most two
faults, Lemma 1 can be used to go from one of the nodes X7, X, 7 or )(2%r1 to Y’/*" in at most
(n —1)| k /2] moves (in fact in at most (n —1| k /2| —1 moves if we had started with edge X — Xl

or edge X > X 2 since the initial move is a minimum distance move) and then from Y oy
yielding an overall path from Xto Y of length at most n | k /2 |+ 2.
Case 2.2.2.2. Both X /"' and Y/*' are faulty.
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Case 2.2.2.2.1. Y7/ ™is not faulty.

In this case, the only faulty nodes outside Qf_lj are X 7', Y’/*" and one node other than Y’ on

ﬁy(Yi, Y). In this case we can build a path: 7-1 || 7(X’™, Y/ || Y/ > ¥, of length at most
nlk/2]+2, where 7(X’™, Y/™) is a minimum distance fault-free path between X’ and
Y’ in erfiif ! (notice that there are no faults in Q:_lj ! in this case) and 77-1 denotes the path

obtained from 77 by removing its last X I edge.
Case 2.2.2.2.2. Y/™is faulty.
ks J

The only faulty nodes outside Q-

n—1
. e k,j
one neighbor Y’ inside Q7

n-1

path: 7(X, Y| ﬂy(Y'i, Y)|| Y — Y of length at most n|k/2]+2 where T(XY " Yisa

are X /"' Y7/™ and Y’ In this case, ¥ must have at least

which is not faulty (by FFSC). We can, therefore, build a fault-free

minimum distance fault-free path between X and ¥ in ,1:7; (notice that there are no faults in Q,I,ii
in this case).

Case 2.2.2.3. X 7! is not faulty and Y’*' is faulty. Here ¥’*' is faulty and we have at least one
fault located on T, Y " Y) (condition of all sub cases under case 2.2.2). Therefore, there is at most

k, J
n—1
FFSC). We distinguish the following two sub-cases:
Case 2.2.2.3.1. Some neighbor ¥’ of ¥ inside 0/

n—1

one other fault outside Q") . Furthermore, node Y must have at least one non faulty neighbor (by

is not faulty. Hence, at least one of the following
two paths must be fault-free:

(X, Y )7, (Y, Y)Y -7, (here |7 (X, Y ) < (n=1)[k /2] (by Lemma 1)

7 IX > X7 XYY 1YY 5 Y - Y (all moves are minimum distance
moves except for the two moves X — X /" and Y/ > V).

The length of each of these two paths is clearly at most n |k /2|+2.

Case 2.2.2.3.2. The neighbor Y/ of Yis not faulty.

Let Y/~ and Y7/ denote two neighbors of Y’ inside Q*/™'. Obviously ¥/~ and ¥/~

k, j-1
n—1

cannot be on the path 7, (¥, ¥ "ysince Y/ is the only node on this path that is located in 0
(this is justified by the fact that the paths in IT , are minimum distance paths). Therefore, at least one
of the following two paths must be fault-free and is of length at most n | k /2 |+2 :

XYz, (Y Y)Y 5 YT sy

XY Dz, XYY S Y sy

where 77 (X, Y'i) and 77 (X, Y"") are paths of length at most (n —1)[k /2] obtained using Lemma 1
. ki

m Qn—l :

Case 2.2.2.4. X 7" is faulty and Y/*' is not faulty.
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If Y has anon faulty neighbor other than Y 7! then the same sub-cases 2.2.2.3.1 and 2.2.2.3.2 apply
for this case too. If, however, all the 2n-1 neighbors of Y other than Y I are faulty, then for at least
one of the 2n-2 neighbors X of X inside O/ we must have both X and its neighbor

X7 n Q,]fjl/ o non-faulty. Otherwise, there will be at least 2n-1 (neighbors of Y) plus 2n-2

(neighbors X~ of X in Qlf_lj or their corresponding X~ /™! in Q:Lii 1) plus one (X /") faults
for a total of 4n-2 faults which exceeds the number of faults 4n-3. In this case the path:

X 5> X > X N acxT Y vt sy

is fault-free, where 7 ( X T , Y J+ ) is a path of length at most (n —1) Lk / ZJ obtained applying

k, j+1
n-1

Lemma 1 in Q . The overall length would not exceed n Lk / 2J + 2 if the length of 7 is strictly

less than Lk / 2J. If however the length of 7 is at its maximum value Lk / 2J (i.e. X and Y are
diametrically opposite along dimension z-1) then a different path is needed. An alternative path can be
built going first from X to a non faulty neighbor ¥ Tof V! following edges of a minimum distance
path from X to Y " inside Qki (this is possible making use of Theorem 2 inside Q}f_i and

n—

remembering that X and Y differ in all dimensions and that Qki contains at most one faulty node). In

fact it is possible to find a non faulty neighbor ¥ ' of ¥’ such that ¥ /"' is also not faulty since we

-/ other than X /"' and Y/~ The path can then continue

are left only with one fault outside O
going from Y o Y correcting the digit at dimension n-1 along the opposite direction of that
followed along T, Y ! ,Y) (i.e. in the direction i —> i-1 — i-2 ... > j+1). Going in this direction
along dimension #-1 requires at most one extra move beyond the minimum distance since X and Y are
diametrically opposite along dimension n-1. The alternative path can be completed by the two moves

from Y /™ to Y/*" and then from Y/*' to Y . The overall length of this alternative path would not
exceed n|k /2|42 since all moves are along minimum distance paths except possibly for the one

extra move on the path from Y o Y (the opposite direction path) and the last move from Y 7
to Y.

Theorem 4. The conditional fault-diameter of the k-ary n-cube is equal to 7|k /2 |+2 for k>4 and n

>2.
Proof. Derived from combining the results of Lemma 2 and Lemma 3.

5. Conclusion

We have contributed to the study of the fault-tolerance of the k-ary n-cube interconnection
network by establishing its conditional fault-diameter under the FFSC (i.e., assuming that each non-
faulty processor has at least one non-faulty neighbor). We have shown that under this condition and

for k>4 and n > 2, the conditional fault-diameter of the k-ary n-cube is 7| k /2 ]+ 2 . This means that
if there are less than 4n-2 faults in the k-ary n-cube and if every non faulty node has at least one non-
faulty neighbor, then there is a fault-free path of length at most n |k /2 |+ 2 between any two non-
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faulty nodes. We have shown how to construct these fault-free paths. With this result the k-ary n-cube
joins a group of interconnection networks (including the hypercube and the star-graph) whose
conditional fault-diameter have been proved to be only two units over the fault-free diameter.
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