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ABSTRACT: In this paper, a direct realization procedure is presented that brings a
general 2-D polynomial system matrix to generalized state space (GSS) form, such that
all the relevant properties including the zero structure of the system matrix are retained. It
is shown that the transformation linking the original 2-D polynomial system matrix with
its associated GSS form is zero coprime system equivalence. The exact nature of the
resulting system matrix in GSS form and the transformation involved are established.
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1. Introduction

tate space models play an important role in the theory of 1-D finite-dimensional linear systems. In

recent years attempts have been made toward extending the state space representation to more
general systems, e.g. time-delay systems or systems described by partial differential equations.
Another extension from 1-D to 2-D is the discrete linear state space model which has a number of
variants as given by Givone and Roesser (1972), Attasi (1973) or Fornasini and Marchesini (1976).
One of the limitations of these models is that they can only be used to describe 2-D proper transfer
functions. In other words, they are suitable only for the representation of northeast quarter plane 2-D
systems. Several authors have suggested a generalized state space description for 2-D systems. Zak
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(1984) suggested a generalized model based on Roesser’s model while Kaczorek (1988) proposed a
model based on that of Fornasini-Marchesini. The natural description of a system is not necessarily in
a state space form, and it is often desirable to reduce such a description into a simpler but equivalent
form. The reduction of an arbitrary 2-D polynomial system matrix to 2-D generalized state space
(GSS) form was first studied by Pugh et al. (1998). Their algorithm involves the application of a two
stage reduction procedure which includes the removal of factors from certain matrices to ensure that
the transformations linking the original system matrix with the final GSS form are polynomial. The
method does not give a priori the form of neither the resulting 2-D GSS system matrix nor the
transformation linking it to the original 2-D polynomial system matrix. In the present work, we
present a direct and simple procedure for the realization of a 2-D polynomial system matrix by an
equivalent 2-D polynomial system matrix in GSS form. The exact nature of the resulting GSS system
matrix and the transformation linking it with the original system matrix will be given. The
transformation linking the original system matrix to its corresponding GSS form is shown to be zero
coprime system equivalence. This type of equivalence has been studied by Levy (1981), Johnson
(1993) and Pugh et al. (1996) and has been shown by Pugh et al. (1998) to provide the connection
between all least order polynomial realizations of a given 2-D transfer function matrix.

2. 2-D System Matrices and System Equivalence

Consider the 2-D system matrix in the general form:

P(SIZ){T(S’Z) U(S’Z)} @.1)

-V (s,z) w (s,z)

where T(s,2), U(s,2), V(s,z) and W(s,z) are respectively rxr, rxn, mxr and mxn polynomial matrices
with T(s,z) invertible, in which case the system matrix in (2.1) is said to be regular. The transfer
function matrix of the system matrix in (2.1) is given by

G(s,2) = V (5,2)TY(s,2)U(s,2) +W(s,2) (2.2)

A special case of (2.1) is obtained from the system described by the following 2-D generalized state
space discrete equations (Kaczorek 1988),

Ex(i+1,j+1)=Ax (i +1,j)+AX (i, ] +1)
+ Ax (i, j)+Bu(+1,j)
+B,u(i, j + 1) + Bou(i, ), (2.33)
y(i, J) =Cx(i, ) + Du(i, j) (2.3b)

where x(i,j) is the state vector, u(ij) is the input vector, y(ij) is the output vector,
E,A,A,A,,B_,B,,B, ,Cand D are constant real matrices of appropriate dimensions and E may

be singular. Then, taking the 2-D z-transform of (2.3a) and (2.3b) and assuming zero boundary
conditions yields

szE—sAl—zAz—AO|SBI+ZBZ+BOHX(S,2)}{ 0 }

-C ‘ D —J(s,z) —)7(5,2)

(2.9)

The polynomial matrix over ]R[s ,Z ] ,
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SzE —sA, —zA, ~ A, | sB, +2B, + B,

P(s,z)= 2.5
(5.2) . 5)

in (2.4), is a system matrix in GSS form and the corresponding transfer function is given by
G(s,2) = C(SZE - SA; - A, - Ag)(sBy + 2B, + Bg) + D (2.6)

Definition 2.1 Two polynomial matrices P;(s,z) and S(s,z) of appropriate dimensions, are said to be
zero left coprime if the matrix

[Pi(s,2)  Si(s,2)] 2.7
has full rank for all (s,z) € C 2. 1 1

Similarly, P,(s,z) and Sy(s,z), of appropriate dimensions, are said to be zero right coprime if the matrix

[PZT (s,z) Sg (s,z)]T (2.8)

has full rank for all (s,z) € C 2.

Following the results of Youla and Gnavi (1979), it follows that the polynomial matrices P;(s,z) and
S1(s,2) are zero left coprime if and only if there exist zero right coprime polynomial matrices X(s,z)
and Y (s,z) of appropriate dimensions satisfying the Bezout’s relation

Pi(s,2) X(s,2) + Si(s,2)Y (5,2) = | (2.9)

One immediate result given by Sontag (1980) is that a necessary and sufficient condition for the
matrices P;(s,z) and S(s,z) to be zero left coprime is that the matrix in (2.7) is unimodular equivalent
to the matrix [1 0]. Similar results can be stated for zero right coprime matrices.

Definition 2.2 Given a pxq polynomial matrix P(s,z), the ith order invariant polynomial ¢(s,z) of
P(s,z) is defined by :

1<i <t

¢ (s.z)=4d;4(s.2)

if  1<i smin(p,q) (2.10)

where t is the normal rank of P(s,z ),do (s,z ) =1, do(s,2) =1 and d;(s,z) is the greatest common

divisor of all the ith order minors of the given matrix P(s,z).

As in 1-D case, the zero structure of 2-D systems is a crucial indicator of the system behavior.
Zerz (1996) has shown that the controllability and observability of a system is connected to the zero
structure of the associated polynomial matrix. However, unlike the 1-D case, the zero structure of a
multivariate polynomial matrix is not completely captured by the invariant polynomials. Therefore
the following concept of invariant zeros as given by Pugh and EI-Nabrawy (2003) is introduced.

Definition 2.3 Given a pxq polynomial matrix P(s,z), the ith order invariant zeros of P(s,z) are the
elements of the variety VR (I ; ) defined by the ideal Ii[P] generated by the ith order minors of
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P(s,2).

Definition 2.4 Let P (m,n) denote the class of (r+m)x(r+n) polynomial matrices where m, n are fixed
positive integers and r>- min(m, n). Two polynomial system matrices P;(s,z) and P,(s,z) are said to be
zero coprime equivalent if there exist polynomial matrices S;(s,z), S,(s,z) of appropriate dimensions
such that

S,(s.2)P(s.2)=P,(s,2)S,(s.2) (2.11)

where P4(s,2), Si(s,z) are zero left coprime and P,(s,z), Sy(s,z) are zero right coprime. Pugh et al.
(1996) and Pugh and EI-Nabrawy (2003) have shown that zero coprime equivalence exhibits
fundamental algebraic properties amongst its invariants:

Lemma 2.1 (Pugh etal. 1996) Suppose that two polynomial matrices P(s,z) and Q(s,z) e P (m, n), are

[P]

related by zero coprime equivalence and let ¢1[P],¢£P],...,¢,EP] ,where h =min (r +m, r[P] + n),

denote  the invariant  polynomials of P (s,z ) and l[Q] , ¢£Q] yeeos ¢|£Q] ,  Where
k =min (r[Q] +m, r[Q] + n) , denote the invariant polynomials of Q(s,z), then

g =c, ) for i=01...max(k -1,h-1) (2.12)
where ¢J[P} :1,¢J[Q] =1 forany j<Lc; eR\{0}

Lemma 2.2 (Pugh and El-Nabrawy 2003) Suppose that two polynomial matrices P(s,z) and Q(s,z)

eP(mn),are related by zero coprime equivalence and let IJ[P] for j=1...,h

:min(r[P]+m,r[P]+n)denote the ideal generated by the jxj minors of P(s,z) and

Ii[Q], fori =1,...,k =min (r[Q] +n ) denote the ideal generated by the ixi minors of Q(s,z). Then

Pl=ilfli=o,...h (213)

L
where ﬁzmin(h—l,k—l) and for any i>h,|£':]:<1> incase i <h or i<k.

A basic transformation proposed for the study of 2-D systems is zero coprime system equivalence
given by Levy (1981) and Johnson (1993). This transformation, based on zero coprime equivalence is
characterized by the following definition.

Definition 2.5 Two polynomial system matrices P;(s,z) and P,(s,z) P (m,n), are said to be zero
coprime system equivalent if they are related by the following

i |

S,(8,2) P,(s.,2)
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L wenls e
Py(s,2) Sy(8.2)

(2.14)

where P;(s,z), Si(s,z) are zero left coprime and Py(s,z), Sx(s,z) are zero right coprime and M(s,2),
N(s,z), X(s,2) and Y(s,z) are polynomial matrices of appropriate dimensions.

The transformation of zero coprime system equivalence is an extension of Fuhrmann’s strict system
equivalence from the 1-D to the 2-D setting and has been shown by Levy (1981), Johnson (1993) and
Pugh et al. (1996, 1998) to preserve important properties of the system matrix P(s,z) and plays a key
role in certain aspects of 2-D systems theory.

Lemma 2.3 (Johnson 1993) the transformation of zero coprime system equivalence preserves the
transfer function and in the sense described in Lemma 2.1, the invariant polynomials of the matrices:

*Ti(s,2),i=1, 2.
* Pi(s,2), i =1, 2.
* [Tis2) Ui(s2),i=1,2

. [TiT (s,z)—viT (s,z)}T =12

The following lemma is a direct consequence of Lemmas 2.2 and 2.3.

Lemma 2.4 The transformation of zero coprime system equivalence preserves, in the sense
described in Lemma 2.2, the invariant zeros of the matrices given in Lemma 2.3.

3. Realization in 2-D Generalized State Space Form

Let P (s,z ) € R(Hm)x(”n) [s,z] be a 2-D polynomial system matrix given by (2.1). First write
P(s,z) as
P9 o
P(s,z)= ZZP s'z) = 0’Osoz oy Povlsoz1 + Poyzsoz 2+ Pgs’ 2" (3.1)

j
where P;j,i=0,1,..,pand
the block matrices

=0,1,..,gare (r+m)x (r +n) real constant matrices. Now construct

E - 0(r+n)(pq—l),(r+n)pq (3.2a)
E, Equ - E;
where
e, =[P, P, ...Pl’j],j =1,2,....q. (3.2b)
Ao =Diag (1,0 1) ~Poo ). (33)
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O(Hn)p(q—l)v(wn)pq
A= O(r+n)(p-1)(r+n)(pa-p+1) ! (r+n)(p-1) ' (3.4)
Or+m)(r+n)p(a-1) ~ Pp.o ~Ppa0 "~ Pro
and
0(f+”)p(q—1),(f+n)p I(r+n)p(q—1)
A2 O(en)(p-1)r+n)pa (3.52)
AZ,q AZ,q—l A
where
Asj = [O(r+m),(r+n)(p—1) Y ] i=12,....q. (3.5b)

Theorem 3.1 Let the matrices E, Ay, A; and A, be as constructed in (3.2a), (3.3), (3.4) and (3.5a),
respectively. Then the [(r +n)pg +2m]x[(r +n)pg +m-+n] polynomial system matrix is in GSS form

(2.5)]
SzE —-sA, —zA, -A, -Z
| (3.6)

T . ..
where Z = [on‘[(m)pq”mfn] In} and Z :[Om’[(m)qum] ImJ is related to the original
system matrix P(s,z) by the following :

S.(s,2)P(s.2)=Q(s,z)S,(s.z) 3.7)
where
_ _ 1
0(r+n)(pq—1),r 0(r+n)(pq—1),m Y2
Si(s.z)= ' Orim S,(s,2)= : (3.8)
e O(m+n),r 0(m+n),m S Yq '
L Om,r Im h _\/ W
_On,r In |
. . AT
Y :[sp_lzq_J sP?7 9] ---zq_q I (3.9)
where j=1,2,...,qand &denotes the matrix Kronecker product.

Proof. The matrix Q(s,z) in (3.6) can be represented in the form
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Ip(r+n) -z p(r+n) 0 0 0 0
0 L p(rsn) 0 0 0o |o
Q(s.z)=| o0 0 R A A ¢
Qq Qq—l Q2 Ql _Zm 0
0 0 0 -Z, 0 |
0 0 0 0 I 0
where
|r+n sl r+n 0
0 |r+n O
Ql = :
0 0 sl .,
_ssz 1t stYO ssz_l'l + st_lO szPM + sPly0 + zPOY1 + Po,o_
[0 0 0 |
0 0 0
Q, = ,i=23..4
0 0 0
_ssz'j SzP, 4 ; SzP,; szPyj +7P
and

Z7n = [On,p(wn)—n

and the matrix S,(s,z) can be written as
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[ op-1,9-1
S Z |r+n
-2 -1

sPz97

S,(s,2)= : (3.14)

From which it can be easily verified that

0(r+n)(pq—l),r 0(H—n)(pq—l),n
T U
S.(s,2)P(s.2)=Q(s,z)S,(s.2)= . . (3.15)
vV w

Lemma 3.1 The matrices in (3.7), Q(s,z) and S;(s,z) are zero left coprime and P(s,z) and Sx(s,z) are
zero right coprime.

Proof. The matrix [ Q(s,2) Si(s,z) ] is given by

Loren) 2l pran) 0 0 0 0]0 0
0 o (rin) 0 0 0 0|0 0
0 0 Lorsn) “Zlpgeamy O O |1, 0 (3.16)
Qq Qg1 Q, Q, -Z, 0]0 0
0 0 0 -Z, I, |0 0
0 0 0 0 lm 00 I

It can be easily seen that the minor obtained by deleting the columns(r +n)(pg -1) +1, ...,(r +n)
pg from the matrix in (3.16) is equal to £1.
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Similarly, the matrix [

P(s,z)

S,(s.z)

} is given by

P(s.z)
Yl
YZ
_1|r+n

r+n

(3.17)

It is clear that the matrix in (3.17) contains a block identity matrix I..,, and therefore it has the highest

order minor which is equal to 1.

Theorem 3.2 If P(s,2) is an arbitrary (r+m)x(r+n) polynomial system matrix over ]R[S,Z] given by

(2.1) and Q(s,z) is the corresponding [(r+n) pg+2m]x[(r+n) pg + m + n] 2-D system matrix in GSS

form (3.6), then P(s,z) and Q(s,z) are zero coprime system equivalent.
Proof. The result follows immediately from Theorem 3.1 and Lemma 3.1.

4. Example
Consider the system matrix P (s,z ) e R*? [s ,Z ] given by

)

t(s,2) =(2>+ 1)s*- (222 -z2-3)s + 2° - 4z + 1,
u(s,z) =(z% - 2)s° - (- 2)s + 22 - z,
V(s,2) = - (2 + 2)s*+ (22 - 2)s + 4z + 1,
W(s,z) =(22° - 2)s* + 5zs + 7 -2+ 3

where

Here r=m=n=1and p=q=2.

Using Maple, the transfer function of the system matrix P(s,z) is given by :
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1

G[P](s,z)z[(zz+1)sz—(22 2_z —3)5 +2°% -4z +1T
x[—(23+22—22)s4+(z4—23+322—22 —4)53 4.3)
—(24—4z3+22)sz+(z4—6z3+13z +2)s +42°-27% -2z +3],

the invariant polynomials of P(s,z) are computed as :

g1
gp] =(224—223+22+z)s4+(—324+823+822—4)s3
(

4

+(22*-162° 4132 +122 +3)s° (4.4)

+(—z4+223—2422+13z +11)s
+z4—23+522—14z +3,

The reduced Grobner bases of the ideals generated by the minors of the matrices in Lemma 2.2
associated with P(s,z) are given by :

Matrix Order of | Ideal generated by the i xi minors
1 _minors
[t(s.z) u(s.2)] Voo (%227 +112° -322° +392

—27°-192% -4z +4,

165 +3z' —62°+352° 982"
+1372° ~502 — 272 +10)
{t(s,z) } 1 (2°+172°-352° + 222

+103z°-29z% —114z7 -9,

179880s +1879z ' —1563z °
+37934z ° — 93203z * + 202249z 3
685162 > —12719z +102237>

P(s.z) 1 (1)
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P(s,z)

2 <(224—223+zz+z)s4

+(—3z4 +82°+8z2° —4)53
+(2z4 —162° +132 % +12z +3)s2
+(—z“ +22°% — 2472 +132 +11)s

+2%—7%+52%-14z +3>

Writing P(s,z) in the form (3.1),

— —
PO,l Po,z
10 -2 -1
SlZO-i- slzl+ 5122
1 5 -1 0
— —_—
Pl‘l Pl,Z
0 1 1 1
SOZO+ 5221+ 5222
1 -1 0 2
| — —
PZ,l PZ‘Z

(4.5)

(4.6)

and constructing the 10x10 polynomial system matrix in GSS form Q(s,z) corresponding to (3.6)

gives
l, -z, 0 o0
T(s,z) U(s,z)| |Q Q —Z;]|0
Q(S’Z)E{—V (s,z) W (s,z)}= 0 —ZlT 0 |1
0 0 1 0
where
I, -sl,
%= _ssz’1 +8P, g szPy +SP g +ZFy + PO]O_
! 0 s 0
0 1 0 -S
s sz |sz+3s-4z+1 2s-12
Sz +2s -—sz sz -4z -1 55z -z +3
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0 0 0 0
0,, 0,, 0 0 0 0
Q,=| = ‘ = (4.9)
szP,, szP, +12P, Sz sz |-2sz Sz +z
0 2sz —Sz z
and Z, =Z, is the fourth column of ls.
The matrices E, Ay, A; and A, corresponding to (3.2a, 3.3, 3.4 and 3.5a) are given by
=|:06,4 06,4j|= 06,2 06,2 06,2 Oe,z
E 2 El PZ,Z Pl,Z P2,l Pl,l
[0 0lo o0 o0 0]
00/0 0|0 0|0 O
00/0 0|0 0|0 O , (4.10)
|oojo of0o 0f0 o0
“loolo 0|0 0|0 O
00/0 0|0 0|0 O
1 1(-2 -1{0 -1]|1 0
0 2|-1 0|1 -1|1 5]
10 0 0 0 0|0 O]
0 -1 0 0 0 0|0 O
0 0 -1 0 0 0|0 O
=l 0O 0 0 0 -1 0 00 O
A, = _ , (4.11)
0 -Py, 0 0 0 0 -1 0[0 O
0 0 0 0 0 -1/0 O
0 0 0 0 0 O0[-10
(0 0 0 0 0 0|1 -3
[0 00 0|/0 0|0 o]
0000O0/0 0/l0O O
000O0/0 0/l0O O
O4,4 04,2 04,2
A -lo 0 | |oooo0j0 0[O0 O 412)
1o s T22 21 looo0o0|0 0|1 o0} '
04 P ~Po] 000 0/0 0l0 1
000O0|-10|-3 -2
000 0[-20[0 0]
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| 022 02,2 I2 022
4.4 4
A =0 0 022 02,2 02,2 I2
2 = 2,4 24 | —
A A 022 022 02,2 022
2,2 21
022 P0202,2 I:)Ol
[0 o]0 o1 0|0 O]
0 0[O0 0|0 1|0 0
0 0[O0 0|0 0|1 O
o ojo oo o001
“looj0 0|0 0|0 O
0 0[O0 0|0 0|0 O
0 0[-1 -1/0 0[4 1
0 0|0 -1/0 0|4 1]

(4.13)

By virtue of Theorem 3.1 and Theorem 3.2, the polynomial matrix P(s,z) in (4.1) and the
corresponding system matrix in GSS form Q(s,z) in (4.7) are related by the zero coprime system
equivalence transformation Sy(s,2)P(s,z) = Q(s,2)S.(s,z), where

and
sz

S,(s.z)=

0
1
0

(z +2)52—(22+z )s -4z -1

0
1

(222—2)52+532 +2%-7+3

0

In fact it can be easily verified that

1
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06,1 06,1

t(s,z u\s,z
Si(s.z)P(s.2)=Q(s.2)S,(s.2)= (0 ) (o ) (4.16)

2,1 2,1

~ (s,z) w(s,z)

where t(s,2), u(s,z), v(s,z) and w(s,z) are given by (4.2a), (4.2b), (4.2c) and (4.2d), respectively.
The matrices Q(s,z), Si(s,z) are zero left coprime and the matrices P(s,z), S, (s,z) are zero right

coprime since the matrices

[Q(s2) Si(s2)]

P (s ,Z )

S, (s ' Z )
have respectively a 10x10 and a 2x2 minor which is equal to 1. The transfer function of the system
matrix Q(s,z) is given by :

G[Q](s,z):[(z2 +1)sz—(222—z —3)3 +z2%-4z +1T

x[—(23+22—22)s4+(z4—23+322—22 —4)3

and

1

3

4.17)
—(24—4z3+22)sz+(z4—623+132 +2)s +47°-22%-22 +3]
:G[P](s,z)
and the invariant polynomials of Q(s,z) are :
A49) = 2 < 91— 2 < 91— 2 = ) 0 - )
_ 47,
¢l[§] :(224—223+22+z)s4+(—3z4+823+822—4)s3
(4.18)

+(2z4 ~167° +1322 +12z +3)s2
+z4—23+522—14z +3

= ¢£P]
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The reduced Grobner bases of the ideals generated by the minors of the matrices in Lemma 2.2

associated with Q(s,z) are given by:

Matrix Order i Ideal generated by
of minors the i x i minors
i=1...8 (1)
<28 -22"+112°-32z +39z°
[T(s,2) U(s,2)] —27°-192% — 4z +4,
’ 16s +3z ' —6z° +352° —98z*
+1372° —502° 272 +10)
T (s,2) i=1...8 (1)
L/ (s,z)} (2° +172° -352° + 222
+103z° —29z % —114z -9,
9 179880s +1879z ' —1563z °
+37934z ° — 93203z * + 2022497 °
~685167 ° ~127197 +102237)
Q(s.z) i=1..,9 (1)
<(224223+z2 +7 )54
+(—3z “1+82°+82° —4)33
Q(s:2)
10 +(22" -162° +132° +12z +3)s°
+(—z Y4227 2477 4132 +11)s
424 —z%+52% —14z +3>

which is in accord with Lemmas 2.3 and 2.2.

5. Conclusions

(4.19)

In this paper, a new direct reduction procedure to obtain a realization in GSS form for an
arbitrary 2-D polynomial system matrix has been presented. The numerical operations required to
determine the GSS form are simple. The exact connection between the original system matrix with its
corresponding GSS form has been set out and shown to be zero coprime system equivalence. The zero
structure of the original polynomial system matrix is preserved making it possible to analyze the
polynomial system matrix in terms of its associated GSS form. The resulting 2- D system matrix may
be larger in size than the one obtained by the algorithm used by Pugh et al. (1998), however, the
method presented in this paper has the advantage of providing a priori both the final 2-D system
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matrix in GSS form and the transformation relating it to the original polynomial system matrix. To
reduce the size of the resulting system matrix while preserving its GSS form, a constant zero coprime
system equivalence transformation may be used.
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