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ABSTRACT: In this paper, we prove uniform convergence of the standard finite element method for a Schwarz
alternating procedure for nonlinear elliptic partial differential equations in the context of linear subdomain problems
and nonmatching grids. The method stands on the combination of the convergence of linear Schwarz sequences with

standard finite element L™ -error estimate for linear problems.
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1. Introduction

he Schwarz alternating method can be used to solve elliptic boundary value problems on domains that consist of
two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions that
results from solving a sequence of elliptic boundary value problems in each of the subdomains.

There has been extensive analysis of the Schwarz alternating method for nonlinear elliptic boundary value
problems [1-4] and the references therein). Also, the effectiveness of Schwarz methods for these problems (especially
those in fluid mechanics) has been demonstrated by many authors.

In this paper, we are concerned with the finite element convergence analysis of overlapping Schwarz alternating
methods in the context of nonmatching grids for nonlinear PDEs, where the Schwarz sub problems are linear. This
study constitutes, to some extent, an improvement of the one achieved in [5], on a Schwarz method with nonlinear sub
problems.

For that, we develop an approach which combines the convergence result of Lui [6], with standard finite element
error estimate for linear elliptic equations.

For other works on finite element convergence analysis in the maximum norm of overlapping nonmatching
Schwarz method, we refer to [7-12].

The rest of the paper is organized as follows. In section 2, we state the continuous alternating Schwarz sub
problems and define their respective finite element counterparts in the context of nonmatching overlapping grids. In

section 3, we give L~ (Q) - convergence analysis of the method.
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2. Preliminaries

We begin by laying down some definitions and classical results related to linear elliptic equations.
2.1 Linear elliptic equations

Let Q be a bounded polyhedral domain of R?or R* with sufficiently smooth boundary 0Q. We consider the
bilinear form

a(u,v)= jVqudx 1)
Q
the linear form
(f ,v):j f (x)v(x)dx @)
Q
the right hand side:
f is aregular function, 3)
the space
Y, (g)={v eH'(Q) suchthatv =g on Q} (4)

where g is a regular function defined on 0Q2.

(9)
We consider the linear elliptic equation: Find & €V such that

a(Ev)+e(Ev)=(f v) v eH,(Q) (5)
where
ceR, c>0suchthatc > >0 (6)

Let V, be the space of finite elements consisting of continuous piece-wise linear functions,

¢, s=12,..,m(h) be the basis functions of V, , and m(h) denote the number of vertices of the triangulation in

0

Q. Letalso V 1 be the subspace of V| defined by

0
V., ={v eV, suchthatv =0 on oQ} @)
The discrete counterpart of (.,.) consists of finding &, € th } such that
0
a(&, v )re(g,v)=(f v) v eV, ®)
where V,? is the space of
V,@={veV, suchthatv=r,g onoQ} ©)

and 7, is the Lagrange interpolation operator on 0.

Theorem 1. [13] Under suitable regularity of the solution of problem (5), there exists a constant C independent of h

such that
”98_§h ||L°°(Q) <Ch’ |In h|
Lemma 1. [5] Letw e H'(Q)C (5) satisfy a(w, @) +c(w, ) >0 v non-negative o€ H, (), and W >0

on Q. Then W >0 on Q.
The proposition below establishes a Lipschitz continuous dependency of the solution with respect to the data.
Notation 1. Let (f .0 ), (f~, g) be a pair of data, and & za(f ,g) and §~:O'(f~, (j) be the corresponding

solutions to (5).
Proposition 1. Under the conditions of lemma 1, we have:

. 1 -
Hé_é L (Q) < maX{EHf —f

mm} (10)

L™ (802) }

L*(Q) ’”g —9
Proof. First, set

0= max{luf -f
B

L (@)
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Then
f<f+|f -],
L*(Q)
<t +2ff —f] .
Ig L= (Q)
<f +c max{iuf . Jo-g }
- Vi L= Q) ' L™ (o)
<f+cl
So

A P)* (& p)<a& p) +c(S0)+c(6,0) V920, peH(Q)

Sa(§+0,(p)+c((§+9),¢):(f +¢0,9)
On the other hand, we have
E+0—-&>00n0Q
So
a(§+9—§,(ﬁ)+C(§+9—§,(ﬂ)20
E+0—-&>00n0Q
Thus, making use of lemma 1, we get
E+0-520 On Q

Similarly, interchanging the roles of the couples (f 0| ), (f~, g~) we obtain

E+60-&>00n Q
which completes the proof.
Remark 1. Lemma 1 holds true in the discrete case.
Indeed, assume that the discrete maximum principle (d.m.p) holds, i.e. the matrix resulting from the finite element
discretization is an M-Matrix. Then we have:

Lemma 2. Let WeV, satisfy a(w,¢5s)+c(w,go)20 Vg =s=12,..,m(h)and W>0 on 0Q. Then w>0

onQ.
Proof. The proof is a direct consequence of the discrete maximum principle.

Let (f,g)and (f~, g) be a pair of data and ¢, =0, (f ,g) and ;. =0, (f~, g) be the corresponding solutions
Proposition 2. Let the d.m.p hold. Then, under conditions of lemma 2, we have

1 ~
$h—Sh < max Euf —f L” (8Q2)

Proof. The proof is similar to that of the continuous case. Indeed, as the basis functions ¢,> 0 of the space V, are
positive, it suffices to make use of the discrete maximum principle.

to problem (8).

Jo—g

L*(Q)

L"(Q)

Let (f,g)and (f~, g) be a pair of dataand ¢, =0, (f,g) and £, = o, (f~, g) be the corresponding solutions
to problem (8).

3. Schwarz Alternating Methods for Nonlinear PDESs

3.1 The nonlinear PDE

Consider the nonlinear PDE: Find U €C * () such that

{—Au+cu:f(u) in Q
(11)

u=0 on 0Q
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or in its weak form: Find U € Hé(Q) such that

a(u,v)+c(u,v)=(f(u),v) vveH;(Q) (12)
where

f () is a non-decreasing nonlinearity

We assume that f (.) is Lipschitz continuous, that is

f (x)-f (y)|<k|x-y| vx,y eR
such that

k<pg
where £ is defined in (6).
Theorem 2. [14] Under the above assumptions, Problem (11) has a unique solution.

3.2 The Linear Schwarz Sub problems

We decompose Q into two overlapping smooth subdomains €2, and €2, such that:
Q=0 00, (13)

We denote by 0C); the boundary of €, y, =0 NQ;, and I} =00QNCY. We assume that the
intersection of }7i and 7_/j ; 1# ] is empty. Let ug be an initial guess. We define the alternating Schwarz

sequences (U,"") on € such that U™ € C* (Ql) solves

AU +cu™ = f(U]) in Q

u™ =0 on T, (14)
UIHl — u2n+l on 7/2

and the sequence (ug*l) suchthat U;" € C?(€Q,) solves

AUyt +cu)t = f(U)) in Q,

n+l _

u, =0 on I, (15)

n+l n+1

u, =u, on y,

Note that Schwarz subdomain problems (14) and (15) are linear.
Theorem 3. [6] The sequences (14) and (15) converge uniformly in Cz(Ql)and c? (QZ), respectively, to

u, =u/Q,, 1=12, where U is the solution of (11).
3.3 The variational Linear Schwarz Sub problems
The corresponding variational problems read as follows: uln+1 €V, solves
0
bl(u{‘“,v):(f(uf),v) eV

u1n+1/7/1=u;/71

(16)
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1
and U, €V, solves

bz(u§+1,v)=(f(u2”),v) WeVs

17)
u;+l/7/2 =Ug Iy,
where

V, = Hl(Q) Hs (Q)) (18)
j VulVv +cuv )dx (19)

QI
= j u(x WV (x )dx (20)

Q

3.4 The Discretization

For i=12, letbe 7" be a standard regular and quasi-uniform finite element triangulation in €. ; hi , being the
mesh size. The two meshes being mutually independent on €2, M€, , a triangle belonging to one triangulation does
not necessarily belong to the other.

0
Let us define the discrete analog of spaces V, andV i, respectively, that is

A ={V€C(Qi)SUCh thatv/, e P VK thi}

0
Vi = {v €V, such thatv=0o0n Q|

and let Ty denote the Lagrange interpolation operator on y;

The discrete Maximum principle (see [15,16]).
We assume that the respective matrices resulting from the discretization of problems (16) and (17) are M-matrices.

3.5 The Finite Element Linear Schwarz Sub problems

Let uﬁz be the discrete analog of uothat is, uﬁz =r, (ug) where I, denotes the finite element interpolation

n+1

operator in Q. We define the sequence (u{:fl) such that Up,

bl(u{:l*l, )—(f(u{;),v) We\?hl

IS Vhl solves

(21)
n+1/7/l _ﬂ_hl (uh )
and the sequence (u )such that u th2 solves
b, (ur,v )=(f(uﬁz),v) WV E\?hz -

UrTerl/?/z = Ty, (unH/?/z)
4. L” - Convergence Analysis

This section is devoted to the proof of the main result of the present paper. To that end, we begin by introducing
two discrete auxiliary Schwarz sequences and prove a fundamental lemma.
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4.1 Auxiliary Discrete Schwarz Sub problems

We construct a sequence (a){::l) such that a)rr:;l eV, solves

bl(a),:‘l*l,v):(f (ul”)v) W eV by

(23)
+1
urr:l Iy, =T, (U: /7/1)
and the sequence (a),?:l) such that a)r:‘:l €V, solves
n+1 n y
bz(a)h2 ,v):(f(uz),v) Vv eV, o0

urr:;l/?/z =TTy, (Uln+1/72)

n+l n+l n+1

Then, it is clear that @, and w, ~are the finite element approximation of u and u;”l defined in (16) and

(17), respectively.
Notation 2. From now on, we shall adopt the following notations:

h=L"(n). I, =" () (25)
[H=t7(@) [ =t" () M, =L"(2) (26)
Ty, =y, =T, @7)

4.2 The Main Result

The following lemma will play a key role in proving the main result of this paper.

Lemma 3.
n . . n_l . .
n n 1 1 1 1
U DY THECN Y IR |
i=0 i=0
n . i n i i
n n 1 1 1 1
ug —ug [, < 2 fui -+ 2wz -
i=0 i=0

Proof. The proof will be carried out by induction. For n=1, we have in €, .
1 1 1 1 1 1
o =i, <[ =t + ks -
and, making use of Proposition 2, we obtain
1 1 < 1 1 1 f 0 f 0 0 0
HU1 —Ug, Hl s Hul — @y, Hl + max EH ;) - (ulh)Hl"ﬂhu2 — 7o |,

k
1 1 0 0 0 0
SHul ~ @, Hl + max {Euul ~Usp Hl’”uz _UZhHZ

We then have to distinguish between two cases

k 0 0 0 0 k 0 0
T
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and

2:max{ o g ot -us | =g -3
Case 1. implies that
1 1 1 1 k 0 0
o ], <[ =], o -ui],
and hence
o =], < Jut = @ + s -ui],
Case 2. implies that
o~ <[ - et +Joz -ua,
and, in both cases, we have
o i, <[ =t + o v, +fuz vz, @)
Similarly, we have in Q,

1 1 1 1 1 1
oz il <z = |+l —uial,
<fui-ah |, +max] S jut ol | Jmul-mub|
— 72 2h 2 ﬂ 2 2h 2! h~1 h*1h 2

k
<Juz - +maX{—HuS—uShH o i
2 ﬂ 2 1
Here also we need to consider the following two cases:

k 0 0 1 1 k 0 0
1 maf Kt | ot | = -
B B

k 0 0 1 1 1 1
2 ma g, - <[t -ui|

Case 3. implies that
k
1 1 1 1 0 0
oz vz, <Ju — b, + 2 vz,

S0
11 1 1 0,0
oz =l <[z =], + oz -ua ],
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Case 4. implies that
1 1 1 1 1 1
HUZ —Uzn Hz < HUZ ~ @an Hz +HU1 —Ui, Hl

1 1 11 0,0 0,0
] R R R R R A

Thus, in both cases, we have

11 1 1 1 1 0 .0 0 .0
Juz —ulal, <oz = @, [ = @b, +us —ui ], +uz vz, (29)
Forn=2
2 .2 2 2 2 2
Hul ~Uny Hl SH”l ~ @i H1+Ha)1h _uth1
% 2 1 £ Ub)—F (U 1 1
SUp — @y, T max E u;)-f (uy) K Uy — 71U, A
<l 2 2 K1 o1 1.1
<|us —af | + max r; Uy —Ug, |, +[Uz =Uznl,
Case 1.
T 11 K1 o1
maX{EHul — Uy, Hl ,HUZ —Uz Hz - EHUI ~Up, Hl
02 —u2 | <llu? — @2 +k 0t —u
1 Y|, =% a)lhlzl 1 [l
2 2 1.1
< Hul ~ i Hl +HU1 _uth1
2 2 1 1 0 .0 0 .0
SHul —a)th1+HU1 _a’thﬁHul —Usp H1+Hu2 _u2hH2
Case 2.

1 1 1 1 1 1 1
e N T

2 2 2 2 1 1 1 1 0 0 0 0
Jus v |, <[us = e [, + o = @, + o = d |, + o —ui ] +fuz -us],
So in both cases
2 2 2 2 1 1 1 1 0 0 0 0
Jus i, <fus - @b, +uz - @, +us e |+ Jur —ug ] 4z -], e

or
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2 1
2 2 i i i i
Jus —ui ], < 2fs =], + > Ju - eha (3)
i=0 i=0
On the other hand
2 2 2 2 2 2
Juz -], <[uz -], +ez -,
<|u? — @? max K ul—ul |l |lu?-u?
> 2_a)2h2+ E 2 "Han ||, M1 ~Ymn |,
Case 1.
k
2 2 2 2 1 1
oz~ <[z — ], + Sz va,
2 2 1 1
<fuz =@, +[uz -ui],
2 2 1 1 1 1 0 0 0 0
<fuz @i ], +lui =@, +Juz - k[, + ol —ui ], + oz -ui],
Case 2.
2 2 2 2 2 2
Juz —uzil, <z - @i, +us v,
2 2 2 2 1 1 1 1 0 0 0 0
<fui - @i, + o - @, +uz - @], +Jus - @ |+ Jur -ui ], +Juz -,
So in both cases
2 2 2 2 2 2 1 1 1 1 0 0 0 0
Juz il < uz =], +us e |, + oz —@n], +Juz - @b, +|ur —ui ], +uz vz,

or
, ) 2 . . 2 . .
1 1 1 1
2wl < 2 -+ s -, @)
i= i=
Now assume that
n n 1 1 1 1
Jur —us ], < 2 fui =+ 2 fuz -,
i=0 i=0
and
n n I I I I
‘UZ ~Uan, = ZHul ~ @ H1+ZHUZ _a)ZhHZ
i=0 i=0
and let us prove that
L L n+l . . n . .
n+. n+. 1 I I I
‘ul ~Un < zHul ~ @y Hl +ZHU2 _G)Zhuz
i=0 i=0
and
n+l n+1
n+1 n+l i i i i
Juz s, < 2 —ed |, + 2 fu: — e,
i=0 i=0

117



BOULBRACHENE, M.

Indeed, we have

n+l n+1

n+l n+l
- U, " —ay,

ul ulh

n+l _ n+l

X +Ha)1h Usn

<

1 1

k

n+l n+l n n n n

S‘Ul — @y, 1+max{z‘ul —Uy, 1,‘7zhu2 U |,
< n+l n+l max k n n n n
S @y |t E Uy —Ugs ]+ U2 —Uan |,

and, as above, we need to distinguish between two cases:

k n n n n k n n
X max{;‘ul ug e v o -ug)
and
2: max hu”—un u, —u, =us —u,
. g 1 1l r[M2 2n|l, (T M2 2h||,
Case 1. implies that
k
n+l n+l n+l n+1 n n
‘ul —Uyp lg‘ul — @y, 1‘*‘;‘“1 —Upp |,
<‘un+l_a)n+l +‘un_un
=1 1h ||y 1 thly
N L n . . n-1 . .
n+: n+. 1 1 1 1
S‘ul ~ @i 1+ZHU1 ~ @ H1+2Hu2 ~ @an Hz
i=0 i=0
while Case 2. implies that
n+l n+l n+l n+l n n
‘ul —Up, ls‘ul — Wy, 1"““2 —Uzn |,
1 1 < i i : i i
n+: N+ ] 1 1 1
S‘ul ~ @i 1+ZHU1 ~ @ H1+2Hu2 ~ @an Hz
i=0 i=0
So in both cases
n n
n+1 n+l n+l n+l i i i i
‘ul ) 1§‘u1 — W, l+§Hul_a)th1+iZ;,Hu2_a)2h
n+l . . n . i
1 1 1 1
<2 Jur =], + 2 Juz - @
i=0 i=0
Likewise
n+l n+l n+1 n+1 n+l n+l
‘uz —Uzn |, S‘uz — Wy 2""“2 —Uzn ||,
< un+1 n+l max k un un ul ul
S|y — @y, E 2 “Yan|l, o|Fnt1 ~ nlan |,
k
n+1 n+l n n n+1 n+1
<o -l 2+max{ﬁ‘u2 “ug e g
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}:h
B

Here also we need to discuss two cases:

n+l n+l
Uy —Ugy

n n

n n
2 —Uy,

u, —Us,

2

k
Case 1: max {— u )

implies
n+l n+l n+l n+1 n n
U, —Uy, S Uy =@y |, U2 —Uan |,
n
n+1 n+1l i i i
S|u2 T~ on +ZHU ~ @i Hl +ZHUZ ~ @an Hz
i =0
n n n+l n+l _ n+1 n+l
Case 2 max{ u, —u,, ) Uy T —Uyy, 1}— u, ~—Uy, A
implies
n+l n+l n+l n+1 n+l n+l
Uy ™ —Upp |, Sz — @ |, T |Us ™ —Un |,
n+l n+l n+l n+l
<Juz™ =] +ju T - +ZHU —colh” +ZHU2 a)ZhH
Then, in both cases, we have
n
n+l n+l n+l n+1 n+1 n+1 i i i
uz ™ —ug | <us =@+ us T - +ZHU a)lh“1+2“u2—a)2h“2
i=0

n+l
1 i [} i
< z”“l ~ Oy Hl +ZHU2 ~ @on Hz
i=0 i=0

which completes the proof.

Theorem 4. There exists h > 0with limh_ =0, such that

n—oo

Ilmuu H =0,1=12
(%)

n—o0

Proof. Let us give the proof for i=1, the case i=2 being similar.

Indeed, as
<t —oh ]+ St ot
and
U —ay |, <
Then,
uy —ug{, <(2n+1)Ch*[Inh| (33)
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Also

n n n n
Uy —Ug, i S‘ulh —U;

+|
1

n
U, —u 1”1

Let £>0. Theorem 3 implies that there exists N, € N suchthat,v n > n,

&
u/ —u 1H1 < 5

Taking account of (33), the Theorem follows by choosing hn > 0 such that

&

hZlinh,|< ———
- I, (2n+1)C

, Vn>n,

Conclusion

We have proved convergence of the standard finite element approximation for alternating Schwarz procedure in

the context of nonmatching grids. Other type of discretizations may also be considered like mixing finite elements and
finite differences. Also, the knowledge of a rate of convergence of the Schwarz procedure will enable derivation of
error estimate, in each subdomain, between the discrete Schwarz sequence and the exact solution of the nonlinear PDE.
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