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       محاكاة معدل سقوط الأمطار فوق مدينة نيروبي بكينيا  

 موزس مانينى و كورنيليوس جوزيف نديتى . جون نزيوكا موثاما، م 

عند دراسة تغير معدل سقوط الأمطار فوق كينيا وعلاقة ذلك بالعوامل المناخية الأخرى، وجد انه من الضروري                  :خلاصة
من أجل ذلك تم استخدام طريقة الانحدار خطوة بخطوة فـي هـذه             .  لسقوط الأمطار  تحليل المعدلات غير المنتظمة زمنيا    

مة بيانات سقوط الأمطار مـع      ءوقد تمت موا  . الدراسة التي تستهدف تحسين مراقبة سقوط الأمطار في نيروبي والتنبؤ به          
مـن أكتـوبر حتـى       و MAM)(عدة دوال رياضية وتم اختيار أفضل نموذج رياضي في الفترات من مارس حتى مايو               

 . من موسم سقوط الأمطار لثلاثة محطات رصد بطريقة الانحدار خطوة بخطوة) OND(ديسمبر 
ومن خلال النتائج المتحصل عليها، فقد انتقت طريقة الانحدار خطوة بخطوة كثيرة الحدود من الدرجة الرابعـة كأفضـل                   

 . الموضحة أعلاهOND و MAMمة لتحليل بيانات  ءموا
استنتجنا . للحصول على متغيرات كثيرة الحدود من الدرجة الرابعة       )  سنوات 10(مت دورة شمسية عشر سنوية      كما استُخد 

من هذه الدراسة انه يمكن استخدام دالة كثيرة حدود من الدرجة الرابعة للتنبؤ بأعلى معدل للأمطار وكذلك بالتصور العام                   
ذه المعلومات للتخطيط ولإدارة الموارد     هن الخطأ، ويمكن استخدام     لسقوط الأمطار الموسمية فوق نيروبي، بنسبة مقبولة م       

 . ى لمناطق أخراستعمال هذه الطريقةالمائية في نيروبي كما يمكن 
 

ABSTRACT: In investigating Kenya rainfall variability and its relationship to other climatic 
elements it has become imperative to analyze the irregularly distributed rainfall events in time. 
To meet this requirement, this study used a stepwise regression technique. The study seeks to 
improve existing rainfall monitoring and prediction in Nairobi. Monthly rainfall data was fitted 
to several mathematical functions. The best mathematical model which best simulated the 
March-May (MAM) and October -December (OND) seasonal rainfall over the three stations of 
analysis was chosen using a stepwise regression technique. The value of R-squared for the best 
fit was computed to show the percentage of rainfall information that is explained by the 
variation in the independent (time) variable. From the results obtained, the stepwise regression 
technique selected the fourth degree polynomial as the best fit for analyzing the March-May 
(MAM) and October -December (OND) seasonal rainfall data set. Solar cycle period of ten (10) 
years was employed to get the fourth degree polynomial variables. Hence from the study, it can 
be deducted that the 4th degree polynomial function can be used to predict the peak and the 
general pattern of seasonal rainfall over Nairobi, with acceptable error values.  This information 
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can be used in the planning and management of water resources over Nairobi. The same 
information can be extended to other areas.   
 
KEYWORDS: Stepwise regression; Rainfall variability; Polynomial function; Solar cycle period; 
Nairobi. 

1.   Introduction 

T here is an ongoing effort to better understand the coherent multidecadal fluctuations in the global climate 
system that result from interactions between the various components of the climate system itself, such as the 

oceans, land, and atmosphere. It is generally assumed that the slowly varying sea surface temperatures (SSTs) 
are the dominant source of this variability (e.g., Kawamura et al. 1995a,b; Livezey and Smith 1999; Mo et al. 
2001; Hoerling et al. 2001), which has prompted several extended climate simulations using general circulation 
models (GCMs) forced by the observed near-global SSTs (Graham 1994; Lau and Nath 1994). Chelliah and 
Bell, 2004 studied the coherent decadal fluctuations in tropical convection and surface temperatures over the 
central Pacific, the West African monsoon region, the Amazon basin, and the Indian Ocean, which are shown to 
constitute the dominant decadal-scale mode of variability in the global Tropics.  

The East African region is characterized by a complex topography. This topographical inhomogeneity 
includes large lakes, Rift Valleys, flat plains and snow-capped mountains on the Equator. Almost all facets of 
societal and economic activities in the region are critically dependent on the variability of seasonal rainfall, 
which occurs during boreal Spring (Long Rains, March-May) and Autumn (Short Rains, October-December). 
However, the societies are often unprepared to adjust quickly to dramatic deviations from normal rainfall 
regimes. Extremes in weather and climate may result in loss of lives and damage to property including massive 
disruptions of existing infrastructures. These negative impacts have been detrimental to the economy.  

The forecasting of severe weather and extreme climate events is one of the major challenges facing 
meteorological services worldwide and more so in the tropics. However, researchers have made enormous 
efforts in addressing the issue of accurate rainfall predictability. Amongst some of the techniques that have been 
employed to predict rainfall in East Africa include the use of numerical and statistical methods. Mathematical 
functions especially polynomial regressions have also been used to characterize weather elements including 
rainfall in different parts of the world. For instance, Christine et al (1998) used Polynomial regression to derive a 
simple model for each monthly climate variable to relate climate to position and elevation on Digital Elevation 
Model (DEM) in Ireland. Accuracy assessments with subsets of each climate data set showed that polynomial 
regression can predict average monthly climate in Ireland with mean absolute errors of 5 to 15 mm for monthly 
precipitation, 0.2 to 0.5°C for monthly averaged maximum and minimum temperature, and 6 to 15 min for 
monthly averaged sunshine hours. 

Camberlin and Philippon (2001) presented a forecast of the March-May 2001 rain season in East Africa, 
using complementary statistical techniques: the Multiple Linear Regression (MLR) and the Linear Discriminant 
Analysis (LDA) as in Folland et al. (1991). Their prediction scheme involved the use of sea Surface 
Temperatures (SST) indexes and atmospheric predictors. The March to May period corresponds to the main rain 
season in Equatorial Eastern Africa (so-called "long rains"). Although this rain season exhibits lesser interannual 
variability than that of October-December ("short rains"), it is the main agricultural period in East Africa, and 
droughts severely affect the entire economy (e.g., in 2000 in Kenya). Yet, these interannual variations are much 
less known than those of the "short rains". In particular, the teleconnections with sea surface temperature 
anomalies (both regional and global) are much weaker (Ogallo et al., 1988; Rowell et al., 1994 ; Mutai and 
Ward, 2000), and this precludes the definition of acute seasonal rainfall prediction models based on that sole 
variable.  

The rainfall over East Africa is of oscillatory character in time, and as shown by Ogallo (1977), the result 
of the spectral analysis indicated that there were some oscillations in the annual rainfall series. Potts (1971), and 
Rodhe and Virji (1996) showed that oscillatory peaks of 2-2.5, 3.5 and 5.6 years in addition to other peaks 
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associated with EL Nino (e.g., Ropelewski and Halpert 1987) exist in East Africa rainfall. However, it has never 
been clear as to when these oscillations occurred in the rainfall.  

In investigating Kenya rainfall variability and its relationship to other climatic elements, it has become 
imperative to analyze the irregularly distributed rainfall events in time. To meet this requirement, this study used 
stepwise regression technique. The study seeks to improve existing rainfall monitoring and prediction in Nairobi. 

2.   Data and methods 

Monthly totals rainfall data obtained from the Kenya Meteorological Department (KMD) was used in the 
study. The data was for three stations in Nairobi city, namely Dagoretti (10 18'S, 360 45'E), JKIA (10 19'S, 360 
55'E) and Wilson (10 19'S, 360 49'E) which are on the same homogeneous climatic zone. The data covers more 
than 30 years which was considered as sufficient climatic period.  

2.1  Data quality control and estimation of missing records 

Data quality control is important in order to detect any discontinuities in the data that may have occurred 
from non-natural influences like changes in observational schedules and methods, instrumental and other human 
processes (WMO, 1966).  Heterogeneity makes records not strictly comparable over long time periods and 
between different stations. 

It is therefore important to ascertain the homogeneity of any meteorological data before using it in any 
study. The single mass curve was used to check on homogeneity of the rainfall data.  The mass curve was 
obtained by plotting cumulative records of rainfall against time.  Basically, from plot of single mass curve, a 
straight line indicates a homogenous record whereas heterogeneity can be indicated by significant deviations, of 
some of the plots from the straight line.  

The missing rainfall records were less than 10% of the total data. The different methods of estimating 
missing data (WMO, 1962) include; the arithmetic mean method, the isopleths method, Thiessen polygon 
method, isohyetal method, finite differencing method, Correlation and regression method.  In this study the 
correlation method was used to estimate the missing records. 

The correlation method of estimating the missing data is computed as; 

 missing period periodX x y
y

= ⋅                                 (1) 

where yperiod refers to the period of the station with complete data set, x is the mean of the available data set for 
the station with missing records, y  is the long term mean of the station with complete data set and rxy is the 
correlation coefficient, and is given by; 
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2.2   Choosing the Best Fit Model 

Monthly rainfall data for the three stations (i.e Dagoretti, JKIA and Wilson) was fitted to several 
mathematical functions. These mathematical functions were grouped into five families based on their 
characteristic behaviour as given by Muthama (2002). These families include Exponential models which have 
the exponential or logarithmic functions involved, Growth models characterized by a monotonic growth from 
some fixed value to an asymptote, the yield density models which have the ‘asymptotic’ and ‘parabolic’ yield 
density relations, Processes producing sigmoidal or ‘S’ –shaped growth curves, and a miscellaneous family 
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described to include the sinusoidal fit, Gaussian model, Hyperbolic fit, Heat - capacity model, Rational function, 
etc. The best mathematical model which best simulated the March-May (MAM) and October -December (OND) 
seasonal rainfall over the three stations of analysis was chosen.  

 

Single Mass Curve for Dagoretti (1955-2002)
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Figure 1. Single mass curve for Dagoretti. 
 

Single Mass Curve for Wilson (1957-2002)
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Figure 2. Single mass curve for Wilson. 
 

Through the use of stepwise regression technique, the fourth degree polynomial was selected as the best fit 
for analyzing the data set. This technique involves choosing the variables, i.e., terms, to include in a multiple 
regression model. Forward stepwise regression starts with no model terms. At each step it adds the most 
statistically significant term (the one with the highest F statistic or lowest p-value) until there are none left. 
Backward stepwise regression starts with all the terms in the model and removes the least significant terms until 
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all the remaining terms are statistically significant. It is also possible to start with a subset of all the terms and 
then add significant terms or remove insignificant terms. 
 

Single Mass Curve for JKIA (1958-2002)
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Figure 3.  Single mass curve for JKIA. 
 
The oscillations of the MAM and OND rainfalls followed a unique repetitive pattern which may be 

associated with solar cycle. Recent observation shows a strengthening of tropical circulation associated with the 
decadal variability in the tropical mean radiative energy budget (Chen et al., 2002; Wielicki et al., 2002). Hence, 
solar cycle period of ten (10) years was employed to get the fourth degree polynomial variables.  The fourth 
degree polynomial function is of the form; 

2 3Y a bx cx dx ex= + + + + 4                                                               (3) 
where a,b,c, d and e are constants and x refers to the independent variable (also called the predictor) and Y is the 
dependent variable (also called the predictand). The error sum of squares (SSE) was computed for 5, 10 and 11 
years periods. The sum of squared prediction errors (SSPE) is given by;  

2

1
)ˆ( t

n

t
t yySSPE −= ∑

=

                                                                   (4)  

where  is the one-step predicted value and is the observed/recorded value. tŷ ty

3.  Results and discussion 

The results for data quality control tests and 4th degree polynomial fit of the MAM and OND rainfalls is as 
depicted below. 

3.1   Data quality control results 

The single mass curve was used to ascertain the quality of the data. Cumulative rainfall was plotted against 
time and the plot showed that data for the three stations used in the study were homogeneous. The rainfall 
records were therefore declared of good quality and hence suitable for climatological analysis. The single mass 
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curves are shown in Figures  1, 2 and 3. R-squared values (also called the coefficient of determination) have also 
been calculated by assuming a linear trendline. R-squared value is a number from 0 to 1 that reveals how closely 
the estimated values for the trendline correspond to the actual data. A trendline is most reliable when its R-
squared value is at or near 1. 

Figure 1  shows the single mass curve for Dagoretti, and it is clear from the plot that the data record over 
this station was of good quality as depicted in the almost straight line. The R2 value for the mass curve fit was 
very close to 1 and the linear trendline equation was of the form y mx b;= + ‘m’ being the slope and ‘b’ the 
intercept. 

From the single mass curve for Wilson, it is also evident that the data record used was of good quality as 
shown in Figure 2 above. The R2 value was also very close to 1, a clear indication that the trendline was most 
reliable.  

Figure 3 shows the single mass curve for JKIA. Similarly, the data record over this station was 
homogeneous as illustrated by the near straight line. The computed R2 value was also very close to 1 and the 
linear trendline equation was of the form  where ‘m’ was the slope and ‘b’was the intercept. 
Hence the data records used in this study were homogeneous for the three stations of interest, and hence the data 
was declared fit for use in the analysis. The linear trendlines for the various mass curve fits were reliable since 
they were very close to 1. 

y mx b ,= +

3.2   The error sum of squares (SSE) 

The error sum of squares (SSE) was used to assess the deviation of predicted rainfall values from the 
observed values. The computed SSE values for 10 years were lower in comparison to the SSE values for 5 or 11 
years. Hence, the sum of squared prediction errors (SSPE) was lower for 10 years as compared to 5 and 11 years. 
Table 1 below summarizes the SSPE value results obtained for 10 and 11 years respectively. 

It is evident from Table 1 that the SSPE values for 10 years cycle were lower as compared to the SSPE 
values for 11 years cycle. 

  
Table 1. SSPE values for 10 and 11 years cycles. 

 
10 Years Cycle 

Station Data period SSPE for MAM SSPE for OND 
Dagoretti 1957-2003 1139570.1 1371506 

JKIA 1958-2002 703804.56 1111207 
Wilson 1957-2002 1047649.8 1034849 

11 Years Cycle 
Station Data period SSPE for MAM SSPE for OND 

Dagoretti 1957-2003 1199634.3 1426785 
JKIA 1958-2002 764238.11 1164118 

Wilson 1957-2002 1158147.2 1091048 
 

3.3   Inter-seasonal rainfall variability 

Table 2 illustrates the rainfall variability during the March-May (MAM) and October-December (OND) 
seasons over Nairobi. 
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Table 2.  MAM and OND seasonal rainfall variability. Range here refers to the difference between maximum 
and minimum rainfall whereas Std dev is the standard deviation. 

 
March-May Season 

 Dagoretti JKIA Wilson 
 Range Std dev Range Std dev Range Std dev 
Sum of 5 years  625.9 204.1 692.2 248.0 1485.5 528.6 
Sum of 10 years  312.4 142.7 188.6 78.4 458.2 210.7 
Sum of 11 years 362.8 161.1 714.1 354.5 805.0 371.3 

October-December Season 
 Dagoretti JKIA Wilson 
 Range Std dev Range Std dev Range Std dev 
Sum of 5 years  1320.7 380.8 947.0 344.6  834.8 315.9 
Sum of 10 years 1327.1 553.8 1156.6 560.6 1468.9 664.4 
Sum of 11 years  1539.2 638.9 1303.8 600.2 1237.1 518.2 

 
As observed from Table 2, the sum of MAM rainfall had minimal variability over a decade (10 years) as 

compared to 5 and 11 years where the variability was more pronounced, as depicted in the range and standard 
deviation values. Information on the minimal variability in MAM seasonal rainfall over a ten year period can be 
used in water planning and management over Nairobi. 

The sum of October-December rainfall had minimal variability over Nairobi for 5 years period as 
compared to 10 and 11 years periods. Hence it is recommended that water planning and management over 
Nairobi for the OND season should be for a period of 5 years. 

 

Observed and Modelled MAM Rainfall in Dagoretti

50

150

250

350

450

550

650

750

850

950

1050

1150

19
57

19
62

19
67

19
72

19
77

19
82

19
87

19
92

19
97

20
02

Period

To
ta

l M
A

M
 R

ai
nf

al
l (

m
m

)

Obs

Modelled

 
Figure 4.  Recorded and simulated MAM rainfall at Dagoretti. 

 

 49



MUTHAMA NZIOKA JOHN, ET AL. 

Observed and Modelled OND Rainfall in Dagoretti
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Figure 5.  Recorded and simulated OND rainfall at Dagoretti. 
 

Observed and Modelled MAM Rainfall in JKIA
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Figure 6.  Recorded and simulated MAM rainfall at JKIA. 
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Observed and Modelled OND Rainfall in JKIA
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Figure 7. Recorded and simulated OND rainfall at JKIA. 
 

Observed and Modelled MAm Rainfall in Wilson
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Figure 8.  Recorded and simulated MAM rainfall at Wilson. 
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3.4   Fourth degree polynomial fit results 

Through various curve fitting analyses carried out, it was evident that the 4th degree polynomial function 
was the best fit for the three stations of analysis selected (i.e Dagoretti, JKIA and Wilson). The simulated March-
May (MAM) and October-December (OND) rainfalls using the 4th degree polynomial fit for the three stations of 
analysis is as depicted in Figures 4-9. 

Observed and Modelled OND Rainfall in Wilson
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Figure 9.  Recorded and simulated OND rainfall at Wilson. 

 
The 4th degree polynomial function used to get the simulated MAM rainfall over Dagoretti was of the form  

2 3Y a bx cx dx ex= + + + + , 
where  

a = 812.6,      b = -223.5,      c =  65.5, d = -8.6 ,       e = 0.385. 
From Figure 4, the March-May rainfall over Dagoretti seems to have a significant decadal cycle. This 10 

years cycle is analogous to the solar cycle. Though some of the peaks are not well captured, but the overall 
rainfall trend is clearly illustrated.  

The polynomial equation for the simulated OND rainfall over Dagoretti was of the form 
2 3Y a bx cx dx ex= + + + + , 

where  
a = 673.8,       b = - 433.1,      c = 151.1,       d = - 19.6,       e = 0.836. 

From Figure 5, the 4th degree polynomial fit depicts the mean rainfall over Dagoretti. The predicted rainfall 
seems also to have a unique oscillation pattern of 10 years. A comparison of Figures 4 and 5 shows that there is 
minimum variability in the March-May seasonal rainfall over Dagoretti as compared to the October-December 
seasonal rainfall. This variability may be associated with the systems that influence the short (OND) and the long 
(MAM) rainfalls over Kenya such as the inter-tropical convergence zone (ITCZ), easterly and westerly winds, 
monsoons and orographic features among others. 
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The polynomial equation for the simulated MAM rainfall over JKIA was of the form  
2 3Y a bx cx dx ex= + + + + 4

4

4

4

,     
where  

a = 654.4,     b = - 287.3,    c = 89.1,    d = - 11.6,    e = 0.523. 
From Figure 6, similar decadal cycle pattern as observed over Dagoretti for the same season was repeated. The 
rainfall peaks slowly decayed over a period of 10 years.   

The polynomial equation for the simulated OND rainfall over JKIA was of the form 
2 3Y a bx cx dx ex= + + + + , 

where  
a = 482.3,    b = -238.6,    c = 82.2, d = -10.5,    e = 0.432. 

Figure 7 depicts the mean rainfall over JKIA, and has the same decadal cycle pattern as Figure 5.  
The polynomial equation for the simulated MAM rainfall at Wilson was 

2 3Y a bx cx dx ex= + + + + , 
 where  

a = 843.3,    b = - 272.3,    c = 69.8, d = - 8.6,    e = 0.392. 
Figure 8 above has the same decadal cycle pattern as Figures 6 and 4. By the use of the 4th degree polynomial fit, 
the prediction of the peak and general rainfall for the March-May Season seems to be well simulated over 
Wilson as compared to Dagoretti and JKIA.  

The polynomial equation for OND rainfall over Wilson was 
2 3Y a bx cx dx ex= + + + + , 

where  
a = 686.7,    b = - 520.7,    c = 186.9,    d = - 24.5,    e = 1.051. 

Figure 9 has the same decadal cycle pattern as Figures 7 and 5 above. Even though Figure 9 does not predict the 
peaks well, but the general pattern of the mean seasonal rainfall has been captured.  

4.  Conclusions 

Amongst the numerous mathematical functions considered, the fourth degree polynomial was found to be 
the best fit for rainfall prediction purposes in Nairobi, for both the short rains (October-December) and the long 
rains (March-May). The ten years period cycle of rainfall which was used to generate the 4th degree polynomial 
function, corresponded to the sunspots cycle of approximately 11.3 years. The ten years period cycle had the 
least sum of squared prediction errors (SSPE), as compared to five and eleven years period cycles for both the 
long and the short rains.  

The sum of the March-May rainfall had minimal variability over a ten-year period as compared to 5 and 11 
years periods. Unlike the March-May rainfall, the sum of October-December rainfall had minimal variability 
over a 5-year period. 

The 4th degree polynomial function was found to predict the peaks and the general pattern of March-May 
seasonal rainfall over Nairobi with minimal/acceptable error values. For the October-December season, the 4th 
degree polynomial function simulated the general pattern of the mean values. From this study, it can be 
concluded that planning for water use and management over Nairobi for the March-May season should be for a 
ten year period, since we have minimal variability during this period.  For October-December season, it is 
recommended that planning and management of water over Nairobi should be for a period of 5 years. 
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	Amongst the numerous mathematical functions considered, the 

