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ABSTRACT: In this work, we have made some modifications to the definition of the incidence
matrices of a directed graph, to make the incidence matrices more suitable for X — Labeled

graphs. The new incidence matrices are called the incidence matrices of X — Labeled graphs,
and we have used the new definition to give a computer program for Nickolas™ Algorithm .
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1. Introduction

I n Abdu (1999), Nickolas described an algorithm to change two core graphs of one type of branch points to
core graphs with two or more types of branch points. Since incidence matrices of directed graphs do not deal
with labeled graphs, from this point we worked to make the incidence matrices to be more suitable for X —
Labeled graphs. This work is divided into three sections. In section 1, we give basic concepts about free groups

and graphs. In section 2, we give the definition of the incidence matrices of X — Labeled graphs, and some
definitions and results on incidence matrices of X — Labeled graphs. In section 3, we apply the concept of
incidence matrices of X — Labeled graphs to give a computer program for Nickolas™ Algorithm.

1.1 Basic concepts:
Let F be a group and X be a subset of F . Then we say that F is a free group on X, if for any
groupG and any mapping f :X —G,there is a unique homomorphism  :F —G , such that

w(X) = f(x)forall X € X . Two free groups F and K are called isomorphic if and only if F and K have
the same rank.
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If a graph [ is a collection of two sets, V (F)(V (T")is not empty set ) and E (I), called the set of
vertices and edges respectively of the graph I" together with two functions i : E(I') -V (T'),t 1 E(T') =V (),
we say that the edge € joins the vertex i (&) to the vertex t(e). The vertex i(€) is called the initial vertex of
e and t(e) is called the terminal vertex of €. Moreover for each € in E (') there is an element & #€ in
E ('), which is called the inverse of €, such that i(€) =t(e),t(€) =i(e) and € =€. A subgraph Q of a
graph I"is a graph with V (Q2) <V (I') and E (Q2) < E (') such that, if e € E(Q), then i,(e), t,(e) and

€ have the same meaning in I" asthey doin €. If Q=T , then we call €2 a proper subgraph. A component
of a connected graph I is a maximal connected subgraph of I". The number of edges incident with the vertex vV

is called the degree of the vertex v and denoted by d (v) The vertex V is called a branch point if d(v) > 3.

Now let F be agroup and X be asubset of F . Then the graph I'(F, X ) is called the Cayley graph of
the group F with respect to X, if T(F,X) has wvertex set Fand set of edges

Fx X :{(W,X):We F,xe X},such that the initial vertex of the edge (W,X)is i(W,X)=w, the
terminal vertex of the edge (W, X) is t(W, X) =WX and X is the labeled of the edge (W, X). The inverse
edge of (W, X) is (WX, X ") . The quotient graph or Cayley coset graph I'(F,X )/H for a subgroup H of F

has set of vertices {Hw :w € F,H <F}and set of edges {(Hw ,x):w e F,x € X }such that an edge
(Hw,x)eT(F,X)/H takes the vertex HW to HwX. It is also denoted by T'(H ). The Core of a coset

graph I'(H) is the smallest subgraph containing all cycles. It is denoted by T'"(H ) . For example, if F is a
free group on generators @ and b, then

I'(F): a C)Ob

The number of cycles in T (H ) is called the cyclomatic number and the cyclomatic number of I"* (H )
is the minimal number of edges that we can delete to make a tree. The rank of the finitely generated subgroup
H of a free group on X is the cyclomatic number of " (H ) and denoted by ( H ) .

Definition 1.1 A consistent graph is a directed X — Labeled graph I"on X ={a,b}, such that no reduced path
in T with labeled @aa™ , a™'a, bb™ or b™'b ever occurs in consistent graphs. Therefore T'(F,X ),
I'(H) and T'"(H) are consistent graphs.

Now if T"(H ) has vertices of degree 2, 3, 4, then as in [5] we can reduce the degree of the vertices into

vertices of degree 2 and 3 only, by isomorphic embedding of F into a free group K on {u,v} , via the map

0:F - K with 8(a) =uv",8(b) = v* and taking the graph into a new set of labels {U, V}.
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+1, where

. ) #Br(rC"(H
Proposition 1.2: If T"(H) has vertices of degree 2, 3 only, then r(H)=¥

#Br(I'"(H)) is the number of branch pointsin I (H ) .

Proof: » d () =2#E(I""(H)).

Z(d V)—-2)=2#E("(H))-#V (I'"(H))), and the number of edges in the spanning tree of I'"(H) =
#V (U (H))—1. Therefore we have the following :Z(d (v)—2) = (the number of edges in I'"(H) - the
number of edges in the spanning tree of T'"(H ) - 1). Since r(H ) = the number of edges in F*(H) - the
number of edges in the spanning tree of T"(H ), so Z (d(v)-2) = 2(r(H)-1) ---(1),andalso

d(v)—2)= 1 if | v isa branch point'
0 otherwise
Thus
Z(d (V)—2) = #Br(I"" (H)) . Therefore r(H) ZM—H

Definition 1.3: For any two branch points U and V in I'"(H), we say that U and V are neighboring branch
points if they are connected by a (reduced) path which does not contain any branch point.
Definition 1.4: The product of core graphs I (H) and T""(K) is the graph T (H) X I""(K) with set of
vertices V (I (H)) xV (T (K)) ={(u,v) :u e V(" (H)),v eV (I (K))}
and edges {((u,v), ¥) : (u, y) € E(T"(H)),(v,y) e E(T" (K)), y € X}.

If T°(H), T"(K)and I'""(H n K) are the core graphs of the finitely generated subgroups H,k and
H K respectively of a free group F on X ={a,b} and T (H) X I""(K) is the product of core graphs
I'"(H) and T (K) defined above, then I'" (H M K) may identified with a core of a connected component
of I"(H) XTI (K) and T""(H) has only four types of branch points as follows:

P TSP T U Y

b — sources b — sinks a - sources a - sinks
2. Incidence matrices of X -Labeled graphs

In this section we will give the definition of incidence matrices of X — Labeled graphs and some
definitions and results related to it. As we know there are two types of matrices to describe graphs, which are
called adjacency (or vertex incidence) matrices and incidence matrices. Recall that the incidence matrices of
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directed graphs 1" are without loops and with N vertices and M edges (i.e. it is Nx M matrices [Xij] , Where
1<i<nl< j<m)suchthat:

1 if v, =i(e;)
X; =10 if v;is notincedence with e;
-1 if v, =7(¢;)

All edges e in X - Labeled graphs (I'(H),I’"(H),T(F,X),I"(H)xT"(K),...)are labeled

X € X U X ! and the incidence matrices of directed graphs do not deal with the labels of edges, so we will put
more conditions on the incidence matrices of directed graphs as below.
Definition 2.1: Let I' be any X — Labeled graph without loops ( where X ={a,b}) , then the incidence

matrix of the X — Labeled graph I' isan nxm incidence matrix [X;], where 1<i<n1< j<m)with

X;; entries such that

x ifv,=i(e;) and e, lables xe X
X = Oifv, is  notincident with C
x*ifv,= z(e;) and e, labeles x e X

N.B. Incidence matrices of X — Labeled graphs I" will be denoted by M, (') .

Now if X ={a,b} and the X —Labeled graph I has loops with labeling @ or b, then choose a mid
point on all edges labeled a or b to make all of them two edges labeled aa or bb respectively. Therefore in
the rest of this work we will assume that all X — Labeled graphs I" are without loops.

Definition 2.2: Let M, (I) be an incidence matrices of X — Labeled graphsT". If M, (I) does not contain

any row I, with non zero entries X;and X, in X U X ~ such that X = X, then M, () is called a

consistent incidence matrix of X — Labeled graphs I".
Now let M, (I") be an nx m incidence matrix [Xij] of X — Labeled graphs I" and let I; and C; be a

row and a column in M, (') respectively. If X;; is a non — zero entry in the row I;, then I; is called an

incidence row with the column C; at the non - zero entry X; € X U X and if X; € X , then the row I; is

called the starting row ( denoted by S(Cj )) of the column C; and the row I; is called the ending row ( denoted

by e(cj) ) of the column C; if X; € X 71, 1f the rows I; and I, are incident with column C; at the non -

zero entries X;; and X,; respectively, then we say that the rows I; and I, are adjacent. If C; and C, are two

distinct columns in M, (") such that the row I; is incident with the columns C; and C, at the non — zero

entries X; and X;, respectively (where X;;, X, € X U X 1), then we say that C; and C,, are adjacent columns.
For each column ¢ there is an inverse column denoted by C such that S(C) = e(c),e(C) = s(c)and T =cC.

The degree of arow I; of M, (I) is the number of the columns incident on I; and is denoted by deg(r;). If
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the row I; is incident with at least three distinct columns C;, C, and C, at the non — zero entries, then the row

I; is called a branch row. If the row I; is incident with only one column C; at the non zero entry

X; € X W X ™ and all other entries of I; are zero, then the row T; is called isolated row. Ascalein M, (I')

is a finite sequence of form S =r,,c;*,r,,C,%,...,_;,C.5', I, where K >1, e=T, S(C?) =T, and
e(c;’) =rj,; =s(c;.;)1< j <K. The starting row of a scale S =r,C;",r,,C5?,...,,;,Cet Iy is the
starting row I, of the column C, and the ending row of the scale S is the ending row T of the column C, , and
we say that Sis a scale from 1, to I, and S is a scale of length k for 1< j<k-2.If 5(S)=e(S),
then the scale is called closed scale. If the scale S is reduced and closed, then S is called a circuit or a cycle. If
M, (') has no cycle, then M, (') is called a forest incidence matrix of X — Labeled graph T". Two rows

r. and 1 in M, (I") are called connected if there is a scale S in M, (I") containing I, and I, . Moreover,

M, (I") is called connected if any two rows I, and 1, in M (") are connected by ascale S . 1f M, (') is

i
connected and forest, then M, (I') is called a tree incidence matrix of X — Labeled graph I". Let Q be a
subgraph of T, then M, (Q)is called a subincidence matrix of M, (I"), if the set of rows and columns of
M, (Q) are subsets of M, (I") and if C is a columnin M, (A). Then s(c),e(C) and C have the same
meaning in M (I') as they do in M, (Q). If M, (Q)=M, (), then M, (Q) is called a proper
subincidence matrix of M, (I"). A component of M (I') is a maximal connected subincidence matrix of
M, (I'). If M, (Q)is a subincidence matrix of M, (I'), and every two rows I, and r, in M, (T) are

i
joined by at least one scale S in M, (Q), then M, (Q) s called a spanning incidence matrix of M, ('),
and M, (Q) is called a spanning tree of M (') if M « (Q) is a spanning and tree incidence matrix. The
inverse of M (I) is an incidence matrix of X - labeled graph I".
Now by direct calculations and the definition above, we can prove the following results.

Lemma 2.3: If M (') is a tree incidence matrix of X — Labeled graph I"with n rows, then M, (I') has
N -1 columns.

Lemma 2.4: If M (') is an incidence matrix of X — Labeled graph I"with n rows and m columns, then

Zdeg(ri) =2m,where 1<i<n.
i=1

Corollary 2.5: If M, (I')is a finite incidence matrix of X — Labeled graph I", then M (I) has even
number of rows of odd degree.
Lemma 2.6: The cyclomatic number C(M, (I")) of a finite incidence matrix of X — Labeled graph I"is

equal to #c—#r+K , where #C, #r and Kk are the number of columns, the number of rows and the
number of components of M, (I") respectively.

Corollary 2.7: If M, (') is a connected incidence matrix of X — Labeled graph I" with I rows and C
columns, then C(M (")) =#c—#r +1.
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3. An application of incidence matrices of X — Labeled graphs

In this section we will represent the core graphs I'"(H) of finitely generated subgroups H of a free

group F generated by X ={a,b} in the form of incidence matrices of core graphs M, (I'"(H)) and then

we will describe Nickolas™ Algorithm (Nickolas, 1985) in the form of incidence matrices of X — Labeled
graphs, but before that we give some results and definitions that will be used in the rest of the paper.

Since the core graphs I'"(H) of finitely generated subgroups H of a free group F generated by
X ={a,b}are X - Labeled graphs, they may be represented by incidence matrices of X — Labeled graphs I"
which are denoted by M, (I'" (H)).
Lemma 3.1: Let M, (I'"(H)) be an incidence matrix of a core graph I"* (H)) of a finitely generated subgroup
H of a free group F generated by X ={a,b} with n rows of degree two and three only and m columns ,
#Br(M, (" (H))

then C(M, (T"(H))) = )

+1, where #Br(M, (I""(H))) is the number of branch

rows of M, (I (H)).

Proof: Since Zn:deg(ri) =2m,so Y (deg(r;)—2) =2(m—n).

But Z(deg(ri) —2)=#Br(M, (" (H))) and C(M, (" (H)))-1=m—n.

#Br(M, (I'"(H
(M (T (H))
2
Corollary 3.2: Let M, (I'"(H)) be an incidence matrix of a core graph T'"(H) of a finitely generated
subgroup H of a free group F generated by X ={a,b} with n rows of degree two and three only, then
#Br(M, (' (H
Definition 3.3: Let M, (I'"(H))and M, (I'"(K)) be the incidence matrices of core graphs I'"(H)
andI"* (K) respectively, of a finitely generated subgroup H of a free group F generated by X ={a,b}. The
product of M, (" (H))and M, (I (K)) s the incidence matrix M, (I'"(H)) x M, (I""(K)) of X -
Labeled graph of the product of I'"(H) andI"*(K) with set of rows {(v,u):Vv and u are rows in
M, (T"(H))and M, (I""(K)) respectively } and set of columns {(C;,C;): C; and C; are columns in

Therefore C(M, (T (H))) =

M, (" (H))and M, (I""(K)) respectively} , and they have the same non — zero entries X € X U X .
Lemma 3.4: Let M, (" (H))and M, (I'"(K))be the incidence matrices of core graphs T'"(H)
and"" (K) respectively, of a finitely generated subgroup H of a free group F generated by X ={a,b}. Then
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the incidence matrices of the product I'"(H) x T"*(K) (denoted by M, (I'"(H) x I'"(K))) is the same as
the product M, (" (H)) x M, (T"(K)).

Proof: By the definition of the product of core graphs and definition 3.3 the result follows.

Lemma 3.5: Let M, (I'""(H))be defined as above and have 2n branch rows. If all branch rows of

M, (" (H)) are of one type b — sources, say , then there are at least n rows with only two non — zero entries
Xij = b, ;. =a and all other entries are zero.
Proof: Since all possibilities of scales joining two neighboring branch rows are S,,S,,S;,S,,Ss, S, such

is the starting row of the column C;, at the non — zero entry

h

that S; =K, C, I, C, =N, C; I, ; where
Xi i, =b and i, is the ending row of the columns C; at the non — zero entry X; =a’,

leradia

S, = h,C;,Ni,Cj, N C; N+ where I is the starting row of the column C; at the non — zero entry

Xi i, =b and T is the ending row of the column C; at the non-zero entry X ;

I+ 1m

=a,

S;=rc,r,C. --Ir,C. I ;where I isthe starting row of the column C. atthe non—zeroentryX,; =b
i kT LI [ h h hh

and I; is the ending row of the columns C; ~at the non-zero entry X; ;

n:b;84:ﬁﬁﬁf“%%ﬁw;

1

where T; is the starting row of the column C; at the non — zero entry X; ; = a and fi.. is the ending row of

the columns C;, at the non-zero entry X; =a’, Sy = h,Cy N, N C; N, where I isthe starting row
g+

1)g Ih 7~ Jn Ihe [

of the column C; at the non—zero entry X; ; =a and I; s the ending row of the columns C; at the non-

zeroentry X, . =a, and S, =rC. I, ---I; C. I; ;where I is the starting row of the column C. at the
It )t 6 b~ h'z la " Ja lds h h

non-—zeroentry X. . = altand r. isthe ending row of the columns C; atthe non-zeroentry X; . = a’.
h lts1 Jk et

Since M, (I'"(H)) is a consistent incidence matrix of X — Labeled graph ', so the scales

S1,5,,53,5,,S5 and Sy must contain rows I; with a non - zero entries X; ; = b, and X, =aor

X = a™" only and all other entries are zero. Also M, (I'*(H)) has 2n branch rows and all of them are of

one type b — source row, so suppose that M, (I'" (H)) has s, scales of type S, S, scales of type S,, S,
scales of type S;, S, scales of type S,, S: scales of type S. and S scales of type S,. Therefore we have

S, +S,+S;+S, +55 +Ss =3n ---(1). Since each branch row r, of M, (I'""(H)) has exactly one non —

zero entry X; =@, and the scale of type S, ending with the row I; atthenon - zero entries X; ; =a,

scales of types S, starting with the row I, at the non — zero entry X, =a and scales of types S; starting

and ending with the rows I, and I; atthe non — zero entries X; ; =a and X;; = a respectively. Therefore
M, (T"(H)) has S,+S, +2S;, =2n---(2). Hence from (2) we have S, +S, +S; <2n---(3). From (3)
and (1) we have S, +S, +Sg >N , since each of the scales S;,S; and Sg has at least one row with non —

zero entries X; = b~ and X;, = @&, and all other entries are zero.
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Nickolas [5] gave an algorithm to change core graphs I'"(H)and I'*(K) of two finitely generated
subgroups H and K of a free group F generated by X ={a, b}, which have only one type of branch points ,

b - sources,say, into new core graphs with two or more types of branch points. Therefore we will represent

Nickolas™ algorithm in the form of incidence matrices of X —Labeled graphs in order to give a computer
program to change the type of branch points of core graphs with only one type of branch points into two or more
types of branch points.

Now let M, (T"(H))and M, (I'"(K))be incidence matrices of X —Labeled core graphs
I'"(H)and T (K) respectively, such that M, (I'"(H)) and M, (I""(K)) have branch rows of one type,
b — sources, say, then we will use the representation of Nickolas™ algorithm to change M, (I'"(H)) and
M, (I'" (K)) into two incidence matrices of X —Labeled core graphs M, (T, (H)) and M, (T, (K)) with

two types or more of branch rows, after K — times . The steps are given below:
0) Delete all zero columns and zero rows if they appear;

0") If the branch rows are not of one type, then stop. Otherwise, change the non — zero entries to make all
branch rows of type b — sources by reversing the labeling of the columns and then proceed to step 1;

1) If r; is the ending and the starting row of the columns C; and C, at X; = b~ and X, =Db respectively

and all other entries of I; are zero, and I, is the ending row of the column C, , then add I, and I; to a new row
I, and if there is no such a row I;, then proceed to step I,

1) If 1, ry and I are rows such that I; is the ending and the starting row of the columns C; and  C, at

-1

Xij = b~ and Xy, = @ respectively, and Iy is the ending row of the columns C, and C, at X, =a ~ and

Xgh = bt respectively and all other entries of I} and r, are zero, and also I, is the starting row of the column

Cy at X, =Db, thenadd r,,r, and Iy to have a new row I, and if there is no such rows, then proceed to step
I,

1) If I; is the ending and the starting row of the columns C and C, at Xij = b~ and X, = @ respectively

and all other entries of I; are zero, and T, is the ending row of the column C, at X, = a, then add r, and [I;
to have a new row I, and if there is no such a row then return to step 0 above.

Note: In the program of the above Algorithm we will consider atandbtas —aand —b respectively and
then will represent @ and b by 1 and 2 respectively. The representation of Nickolas™ Algorithm in the form

of incidence matrices of X —Labeled graphs is well defined, which means the representation of Nickolas™
Algorithm satisfying the following conditions:
1) At each step of the representation of Nickolas™ Algorithm, we get consistent incidence matrices of X —

Labeled graphs because step | is applied to non — branch rows I; and I, to give a non — branch row I, with non
— zero entries Xy; = b~ and Xep =8 0r Xy, = a™", so step | always gives consistent incidence matrices of
X —Labeled graphs . Also step Il is applied on non — branch rows of M, (I'""(H)) which do not contain non

— branch rows I} with non — zero entries X = b~ and X;, =D so step Il always gives, either non - branch
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rows I, with non — zero entries Xi; = a™and Xy = b~ or a branch row with non — zero entries Xop = b,

Xy =@ and Xy = a™*. While step 111 is applied on non — branch row I; with non — zero entries X;; = b

and X; =a, and the row I, which is either a non — branch row with non — zero entries X, = a™ and
X = b or Xy, =a, or I, is a branch row of type b — sources , so when we apply step Il either we have a
non - branch row I, with non zero entries X = b~ and X, =b or Xy = b~*and X, =@, or Iis a
branch row with non - zero entries X,; =b™, X, =b and X, =a. Therefore step Il always gives

consistent incidence matrices of X —Labeled graphs.

2) The representation of Nickolas™ Algorithm preserves the number of branch rows in M, (I'" (H)) , because
it is applied on non — branch rows, so apply steps I, 1l and 11l reduce the non — branch rows only and then the
number of branch rows in M, (I'""(H)) will be still the same as before and the type of branch rows may

change only.
3)The representation of Nickolas™ Algorithm preserves the number of branch rows in

M, (C"(H))x M, (T"(K)), because each row in M, (I'"(H))x M, (I'"(K)) comes from the
product of two rows I; and I, in M, (" (H)) and M, (I'" (K)) respectively and the removed rows are

non — branch rows which contain a non zero entries X; = b~ and M, (I'"(H)) and M, (I (K)) have no
branch row with non —zero entry X;; = b~*. Therefore whatever happensto M, (I'"(H)) and M, (I'"(K)),
then will happen to the maximum connected submatrix of M, (" (H)) x M, (T"" (K)).

4) Each time we return to step 0" of the representation of Nickolas® Algorithm, we must apply one of the
steps 1, 2 or 3, because if step 1 and 2 do not apply , the step 3 must apply by Lemma 3.5.

5) In each time we return to step 0 we have fewer rows ; this comes from reducing at least two rows to a single
row.
6) The algorithm must stop after a finite time, because each time we reduce the total number of rows by at least

one row, and then we have at least two different types of branch rows of M, (I'"(H)) and M, (I'" (K)) .
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