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ABSTRACT: The traditional dimensionality reduction methods can be generally classified into Feature Extraction (FE) 

and Feature Selection (FS) approaches. The classical FE algorithms are generally classified into linear and nonlinear 

algorithms. Linear algorithms such as Principal Component Analysis (PCA) aim to project high dimensional data to a 

lower-dimensional space by linear transformations according to certain criteria. The central idea of PCA is to reduce the 

dimensionality of the data set consisting of a large number of variables. In this paper, PCA was used to reduce the 

dimension of flow shop scheduling problems. This mathematical procedure transforms a number of (possibly) correlated 

jobs into a smaller number of uncorrelated jobs called principal components, which are the linear combinations of the 

original jobs. These jobs are carefully determined so that from the solution of the reduced problem multiple solutions of 

the original high dimensional problem can readily be obtained, or completely characterized, without actually listing the 

optimal solution(s). The results show that by fixing only some critical jobs at the beginnings and ends of the sequence 

using Johnson's method, the remaining jobs could be arranged in an arbitrary order in the remaining gap without 

violating the optimality condition that also guarantees minimum completion time. In this regard, Johnson's method was 

relaxed by terminating the listing of jobs at the first/last available positions when the job with minimum processing time 

on either machine attains the highest processing time on the other machine for the first time. By terminating Johnson's 

algorithm at an early stage, the method minimizes the time needed for sequencing those jobs that could be left 

arbitrarily. By allowing these jobs to be arranged in arbitrary order it gives job sequencing freedom for job operators 

without affecting minimum completion time. The results of the study were originally obtained for deterministic 

scheduling problems but they are more relevant on test problems randomly generated from uniform distribution 𝑈[𝑎, 𝑏] 

with lower bound 𝑎 and upper bound 𝑏 and normal distribution 𝑁[𝜇, 𝜎2] with mean 𝜇 and standard deviation 𝜎2.   

 

Keywords: Dimension reduction; Flow shop scheduling problems; Principal component analysis; Relaxation of 
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جهازين متجر التدفق في جدولةلمسألة جونسون  تخفيض وإسترخاء البعد لطريقة   

 ميكونين ريدي و محمد إكرام 

 FE يتم تصنيف خوارزميات. (FS)واختيارها  (FE) يمكن تصنيف طرق تخفيض الأبعاد التقليدية عمومًا بالاقتراب من استخراج الصفات :لخصمال

إلى عرض البيانات عالية الأبعاد  (PCA) الكلاسيكية عمومًا في خوارزميات خطية وغير خطية. تهدف الخوارزميات الخطية مثل تحليل المكونات الرئيسية

لأبعاد لمجموعة البيانات التي تتكون من عدد كبير المركزية هي تخفيض ا PCA على فضاء أقل بعداً باستخدام التحويلات الخطية وفقاً لمعايير معينة. إن فكرة

في هذه الورقة لتخفيض البعد لمسائل جدولة متجر التدفق. يحول هذا الإجراء الرياضي عدد )ممكن( من الوظائف  PCA من المتحولات. لقد تم استخدام

موعات خطية من الوظائف الأصلية. يتم تحديد هذه الوظائف بعناية المرتبطة إلى عدد أصغر من الوظائف غير المرتبطة تسمى المكونات الرئيسية، وهي مج

مثلى. تظهر النتائج حيث أن حل مسألة التخفيض يؤدي إلى حلول متعددة للمسألة الأصلية عالية الأبعاد، أو تمييزها بشكل كامل، بدون جدولة فعالية للحلول ال

ت ونهايات المتسلسلة باستخدام طريقة جونسون، أنه يمكن ترتيب الوظائف المتبقية بشكل عشوائي أنه من خلال تثبيت عدد من الوظائف الحرجة فقط في بدايا

في هذا الصدد، تم استرخاء طريقة جونسون بإنهاء قائمة الوظائف في الفجوة المتبقية دون انتهاك شرط الأمثلية الذي يضمن الحد الأدنى أيضا لاكتمال الزمن. و

ى/الأخيرة عندما تكون الوظيفة مع زمن المعالجة الأدنى على أحد الأجهزة التي تصل لأعلى زمن للمعالجة على جهاز آخر لأول في المواضع المتاحة الأول
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ن خلال السماح من خلال إنهاء خوارزمية جونسون في مرحلة مبكرة، فإن الطريقة تقلل الزمن اللازم لتسلسل تلك الوظائف التي يمكن تركها بشكل عشوائي. م

الأصل تم الحصول على  بترتيب هذه الوظائف عشوائيا يتم الحصول على حرية التسلسل لمؤثرات الوظيفة بدون التأثيرعلى الحد الأدنى لاكتمال الزمن. ففي

والحد   a مع الحد الأدنى U[a,b]نتائج الدراسة لمسائل الجدولة الحتمية، لكنها كانت أكثر صلة بمسائل الاختبار التي تم إنشاؤها عشوائياً من التوزيع المنتظم 

 .σ^2والانحراف المعياري  μمتوسط مع الN[μ,σ^2] والتوزيع الطبيعي    bالأعلى

 

.نسترخاء خوارزمية جونسوإجر التدفق ، تحليل المكون الرئيسي ، جدولة مت مسائل، تخفيض البعد: المفتاحيةالكلمات   

1. Introduction 

wo machines flow shop scheduling problem has been considered as a major problem in machine sequencing 

because it appears independently and as a sub-problem in the '𝑛-Jobs, m-Machines Problem'. The criterion of 

optimality in a flow shop scheduling problem is usually specified as minimization of makespan, which is defined as the 

time gap between the beginning of the first job on the first machine and finishing of the last job on the last machine to 

ensure that all jobs are completed on all machines. The objective of minimizing makespan in The Two Machines Flow 

Shop Scheduling model is also known as Johnson's problem.  

The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling tasks 

problem, which serves as a basis for many heuristic algorithms. This rule is a complete list of ordering the jobs by filling 

the first or the last available space based on minimum operation times in the two machines from the waiting list into the 

optimal list until finally only one free space in the optimal list and one last job to be assigned remain in the waiting list.   

In this procedure, 𝑛! comparisons are needed to obtain the optimal sequence. This needs large computation time for 

large size problems. To overcome this limitation, the current study identified a relaxation of Johnson's algorithm by 

developing an early stopover criteria, due to the fact that, after listing only some important jobs at the beginning and end 

of the optimal sequence using Johnson's method, it does not matter in whichever order the remaining jobs are operated 

as far as makespan is concerned. These criteria minimize the time needed for further computations of ordering the 

remaining jobs in either direction (first/last available positions) and it reduces the dimension of the problem. By 

allowing the remaining jobs to be arranged in an arbitrary order irrespective of Johnson's method without violating the 

optimality condition, the study creates job sequencing freedom for job operators to give priority without affecting 

minimum completion time.  

2. Literature Review  

Johnson [1] produced a pioneering work on machine sequencing literature and great advancements have been 

made in the field after other researchers also started to investigate solutions to many related problems.  The studies 

discussed in this literature review are mainly concerned with relaxations that were oriented to produce alternate optimal 

solutions of the problem different from the strict Johnson's rule. In this regard, an early work on the relaxation of 

Johnson's method for The Two Machines Flow Shop Scheduling Problem was that of Ikram [2]. The study produced 

alternate ways of performing jobs in a way different from the one specified by Johnson's method without affecting 

minimum completion time by interchanging two jobs at a time from the optimal Johnson's sequence subject to the 

existence of certain conditions.  In [3] also, the concept of [2] was used to find alternate optimal solutions for ‘𝑛-Jobs, 2-

Machines Flow Shop Scheduling Problem with transportation time and equivalent job-block’. In [4] the idea was 

extended to ‘𝑛-Jobs, 3-Machines’ Flow Shop Scheduling Problem' based on the work of [2]. These studies are indicators 

of increasing pressures on alternate ways of performing the same set of jobs in different ways without affecting 

minimum completion time. Alternate ways enable the assigning of priorities between jobs, and give freedom for job 

operators.  For those groups of studies that generate alternate optimal sequences by interchanging two jobs at a time 

from the optimal Johnson's sequence, the total number of such alternate sequences is 2𝑘 where 𝑘 is the number of all 

interchangeable pairs. 

In the original paper [1], Johnson also solved the 'n-Jobs, 3-Machines Flow Shop Scheduling Problem' in which 

the processing order for all the jobs in three machines A, B and  C is A → B →  C for two particular cases for which all 

jobs ji;  i = 1, 2, 3, … , n;; satisfy max{B} ≤  min{A} or max{B} ≤  min{C}. Few relaxations were made to this condition. 

The same assumption was made in [4] to the formulation of their alternate solution for the three machine problem. 

Conway, Maxwell and Miller [5] have shown that the same rule works if B is a non-bottleneck machine, i.e., is a 

machine that can process any number of jobs at the same time.  Maggu, Alam and Ikram [6] also developed an 

algorithm for a special type of 'n -Jobs, m-Machines Scheduling Problem' which is an extension of Johnson's ‘𝑛-Jobs, 

m-Machines’ sequencing rule.    

The general '𝑛-Jobs, m-Machines Problem' becomes NP-complete [7] for all 𝑚 ≥ 3 (cannot be solved optimally in 

polynomial time) and the Johnson's algorithm can be applied only for some few particular cases that obey some primary 

conditions. The general '𝑛-Jobs, m-Machines' flow shop scheduling problems are NP-Hard, so exact optimization 

techniques are impractical for large size problems. In other words, classical optimization methods such as the branch 

and bound method, dynamic programming, etc. can be used only for small size problems. Problem size has been the 

main challenge for the development of solution methods for these problems because the solution space in its original 

form is of combinatorial order of number of jobs, which makes it more difficult to solve the problems in polynomial 

time for large 𝑛.  Therefore, large size problems are solved by heuristic methods.   

T 
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Many heuristic methods reduce the 𝑚 machines into two virtual machines and apply Johnson's algorithm based on 

some specific rules or decisions.  Important and earlier heuristic algorithms are due to Palmer [8], Gupta [9] and 

Campbell, Dudek, and Smith’s (CDS) heuristic [10]. The other heuristic is due to Nawaz, Enscore, and Ham [11], and is 

known as the NEH Heuristic. Both CDS and NEH are constructive heuristics. This means that they produce a sequence 

of at most 𝑚 − 1 solutions from which the best sequence is chosen. In these methods, all 𝑚 machines are first divided 

into two groups which are considered as two virtual machines, and the problem is solved by applying Johnson's 

algorithm. The other heuristic, the HFC heuristic of Koulamas [12] on the other hand, is an improvement heuristic. In 

contrast, an improvement heuristic starts with a given sequence and searches for improvement, but the computational 

effort is unpredictable. Improvement heuristics are usually based on generic methods such as neighborhood search. They 

also use the algorithm of Johnson in the first phase, and then by specific rules, make better solutions, starting from an 

existing feasible solution in a sequence of steps.  
In another heuristic, Rapid Access (RA) heuristic [13], two virtual machines are defined, and as in the CDS 

heuristic, method and weights are assigned, one for each virtual machine. Finally, the flow shop scheduling problem is 

solved by applying Johnson's algorithm. In [7] also, two variants of heuristic algorithms were developed to solve the 

classic flow shop scheduling problem. The first algorithm was a constructive heuristic, in which each job was placed in 

the optimal schedule based on a greedy-type selection. The second algorithm changes the construction of an optimal 

schedule in a stochastic manner. In [14] also, genetic algorithms were used to solve The Two Machines Flow Shop 

Problem with the objective of minimizing makespan.  

The multi-objective flow shop scheduling problems have been the subject of extensive studies. The majority of bi-

criteria flow shop investigations consider the combination of makespan with other performance measures [15-19]. In 

multi-objective problems, creating alternate solutions for the makespan objective by applying the results of this study 

will relax the other objectives and open more space for the applicability of multi-criteria decision making. 

All the above works emphasize the importance of The Two Machines Flow Shop Scheduling Problem and the 

high reliance of solution methods on Johnson's algorithm. According to [7], even though the various studies have 

suggested many approaches, it is difficult to find the simplest approach to find an optimal sequence for solving the 𝑛-

Jobs, 𝑚-Machines Flow Shop Scheduling Problems. Problem size has been the major challenge for all these heuristic 

methods. Researchers point out the need for scheduling algorithms to minimize makespan for the ‘𝑛-Jobs 𝑚-Machines’ 

flow shop scheduling problems with the simplest steps as an alternative. However, little attempt has been made in the 

previous studies to decrease problem size for the applicability of the exact (heuristic) methods developed so far. 

Dimension reduction would create enough room for the application of these methods. Once the optimal sequence for the 

reduced problem is identified, it enables the complete characterization of all alternative optimal solutions of the original 

high dimensional problem. This research therefore considers dimension reduction for The Two Machine Flow Shop 

Scheduling Problem to be an important first step to decrease problem size, while at the same time creating alternative 

ways of sequencing jobs that guarantee the non-increase of total elapsed time on the fictitious machines formed by 

reducing the 𝑚 machines into two virtual machines. 

3. Problem Statement and Basic Assumptions 

In this problem two machines (𝐴 and 𝐵) of high automation and unlimited buffer size are working together in such 

a way that machine 𝐴 is always available to start the next job as soon as  it finishes the current job. The finished jobs in 

machine 𝐴 are then immediately transferred to the queue in machine 𝐵, and machine 𝐵 operates the jobs in the same 

order as they have been executed in machine 𝐴. If there is no job in the queue, machine 𝐵 has to wait until machine 𝐴 

finishes the current job. In this case an idle time occurs for machine 𝐵 between its finishing of previous job and until 

machine A finishes its current one. The objective of the problem is therefore to minimize the sum of all these idle times 

in machine 𝐵 for all the jobs from start to end. The criterion of optimality in a flow shop scheduling problem is usually 

specified as minimization of makespan, which is defined as the time gap between the beginning of the first job on the 

first machine and finishing of the last job on the last machine to ensure that all jobs are completed on both machines.  

Many variants of the problem have evolved since its formulation. As an objective function, mean flowtime, completion 

time variance and total tardiness can also be used.  

The results originally obtained in [1] are among the very first formal results in the theory of scheduling. The 

objective of minimizing makespan in The Two Machines Flow Shop Scheduling model is also known as Johnson's 

problem.  The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling 

tasks problem which serves as a basis for many heuristic algorithms [20].   The values of the processing times of a job  𝑗
𝑖
 

on machines 𝐴 and 𝐵 are denoted by 𝑎𝑗𝑖
 and 𝑏𝑗𝑖

 respectively for 𝑖 = 1, 2, … , 𝑛 are deterministically known, constant and 

positive. They include also all the necessary auxiliary times involved in the technological process. The following 

important assumptions are made in the problem.  

Assumption 1: A set of 𝑛 unrelated, multiple-operation jobs are available for processing at time zero. (Each job requires 

2 operations, and each operation requires a different machine.) 

Assumption 2: Both machines are continuously available. 

Assumption 3: Only one operation is carried out on a machine at a time. 

Assumption 4: Once an operation begins in a machine, it proceeds without interruption. 
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Assumption 5: Processing times are known in advance and are deterministic, constant and positive. 

Assumption 6: Setup times for the operations are sequence independent and are included in processing times. 

Assumption 7: The time required in moving jobs from one machine to another is negligibly small. 

Assumption 8: The same job-sequence is maintained over each machine, in other words no passing is allowed. 

3.1. Algorithm: Johnson's Rule 

Johnson's Rule: Job 𝑗
𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
) precedes job 𝑗

𝑙
= (𝑎𝑗𝑙

, 𝑏𝑗𝑙
) in an optimal sequence {𝑗∗

𝑖
, 𝑖 = 1, 2, 3, … , 𝑛} 

if 𝑚𝑖𝑛{𝑎𝑗𝑖 , 𝑏𝑗𝑙}≤ 𝑚𝑖𝑛{𝑎𝑗𝑙 , 𝑏𝑗𝑖}. 
In practice, an optimal sequence is directly constructed with an adaptation of Johnson's Rule. The positions in 

sequence are filled by a one-pass mechanism that, at each stage, identifies a job that should fill either the first [last] 

available position. 

 Step 1 

Examine the columns of 𝐴 and 𝐵 for processing times on machines 𝐴 and 𝐵 and find the smallest processing time 

among unscheduled jobs (waiting list). 

 Step 2a 

If the smallest processing time occurs for the first machine, then place the corresponding job in the first available 

position in the sequence (optimal list). (Ties may be broken arbitrarily.) Go to step 3.  

 Step 2b 

 If the smallest processing time occurs for the second machine, then place the corresponding job in the last available 

position in the sequence (optimal list). (Ties may be broken arbitrarily.) Go to step 3. 

 Step 3 

Remove the assigned job from consideration (waiting list) and return to Step 1 until all sequence positions are filled. 

3.2. Algorithm: Alternate formulation of Johnson's Rule 

An alternative way to describe Johnson's Rule [21] that provides a different perspective on the structure of optimal 

schedules is used for this study. In this formulation, the problem is considered as a sequencing problem put 

mathematically as 𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} where 𝑎𝑗𝑖
 and 𝑏𝑗𝑖

 are processing times of job 𝑗
𝑖
 on machines 𝐴 

and 𝐵, respectively with no passing of jobs on the two machines in the order 𝐴 → 𝐵. The jobs in 𝑃 are then partitioned 

into two disjoint clusters 𝐽
1
 and 𝐽

2
 where 𝐽

1
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈ 𝑃: 𝑎𝑗𝑖

≤ 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛} and 𝐽

2
=

{𝑗
𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)   ∈ 𝑃: 𝑎𝑗𝑖

> 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛}.  

We call jobs in 𝐽
1
 jobs of the first kind and jobs in 𝐽

2
 jobs of the second kind. It is important to note that jobs in 𝐽

1
 

have longer processing time (at least equal) on the second machine while jobs in 𝐽
2
 have strictly longer processing time 

on the first machine.  Then in the optimal Johnson's sequence, jobs in 𝐽
1
 are first arranged in a non-decreasing order of 

their processing times on the first machine and then jobs in 𝐽
2
 are arranged in a non-increasing order of their processing 

times on the second  machine.  The present approach is often helpful and easy to apply and implement. Therefore, we 

follow this procedure to describe the optimal Johnson's sequence for The Two Machines Flow Shop Scheduling 

Problem. 

 Step 1:  

Let 𝐽
1
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈ 𝑃: 𝑎𝑗𝑖

≤ 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛}  and 𝐽

2
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈ 𝑃: 𝑎𝑗𝑖

> 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛} 

 Step 2: 

Arrange the members of set 𝐽
1
 in non-decreasing order of 𝑎𝑗𝑖

 to get an ordered set 𝐽∗
1
,  and arrange the members of set 

𝐽
2
 in non-increasing order of 𝑏𝑗𝑖

 to get an ordered set 𝐽∗
2
. 

 Step 3:  

An optimal sequence is the ordered set 𝐽∗
1
 followed by the ordered set 𝐽∗

2
. 

 

Notation  

The optimal Johnson's sequence for 𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} is denoted by {𝑗∗
𝑖
= (𝑎𝑗∗𝑖 , 𝑏𝑗∗𝑖);  𝑖 =

1, 2, 3, … , 𝑛} = 𝑗∗
1
→ 𝑗∗

2
→ ⋯ → 𝑗∗

𝑛
  with an asterisk (*) on 𝑗. We represent by 𝑗∗

𝑖
= (𝑎𝑗∗𝑖 , 𝑏𝑗∗𝑖) a job at the 𝑖𝑡ℎ 

position in an optimal Johnson's sequence with corresponding processing times on machines 𝐴 and 𝐵, equal to 𝑎𝑗∗𝑖
 units 

and 𝑏𝑗∗𝑖
 units, respectively, and we denote its completion times on machines 𝐴 and 𝐵 by 𝐶1(𝑗

∗
𝑖
) and 𝐶𝑚𝑎𝑥(𝑗

∗
𝑖
) , 

respectively. We represent by 𝑗
𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) a job at the 𝑖𝑡ℎ position in a sub-optimal sequence with corresponding 
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processing times on machines 𝐴 and 𝐵, equal to 𝑎𝑗𝑖
 units and 𝑏𝑗𝑖

 , respectively, and its completion times on machines 𝐴 

and 𝐵 by 𝐶1(𝑗𝑖) and 𝐶𝑚𝑎𝑥(𝑗𝑖) , respectively. 

4.  Data Mining and Dimension Reduction 

Real-world data are typically noisy, enormous in volume, and may originate from a jumble of heterogenous 

sources [22]. Powerful and versatile tools are very much needed to automatically uncover valuable information from the 

tremendous amounts of data and to transform such data into organized knowledge. This necessity has led to the birth of 

data mining. Data mining is the process of discovering interesting patterns and knowledge from large amounts of data, 

having made a closer investigation of attributes and data values. As a general technology, data mining can be applied to 

any kind of data as long as the data are meaningful for a target application.   

The state-of-art data mining tools could be employed for Flow Shop Scheduling Problems to overcome the 

limitations of the solution methods for large size problems. Due to the limited number of studies so far which have 

applied the state-of-the-art dimension reduction methods for Flow Shop Scheduling Problems, this paper examines The 

Two Machines Flow Shop Scheduling Problem more closely because of its significant contribution to Other Flow Shop 

Problems.  

In the absence of real-world data for a typical study, generated data play an important role. For this study, 

generated data from a uniform distribution 𝑈[𝑎, 𝑏] with lower bound 𝑎 and upper bound 𝑏 and a normal distribution 

𝑁[𝜇, 𝜎2] with mean 𝜇 and standard deviation 𝜎2 were used for different parameter values, and alternatives were 

analysed to describe a large size problem in terms of a small number of parameters.  The effort was to discover 

important features of Flow Shop Scheduling Problems. This knowledge discovery process involves a sequence of 

logical understanding of the basic features of the high dimensional problem to extract a low dimensional representation 

of its key features.  

As was suggested in [22], data mining involves a sequence of procedures that require the planners' understanding 

of the problem at hand. We further elaborate these steps in the context in which they have been applied to this study. 

Some of these procedures were applied in earlier studies of Flow Shop Scheduling Problems with a different context. 

For example, the first step, data integration (where multiple data items may be combined), was studied by equivalent job 

blocks. The concept of equivalent job blocking was introduced in [23] in the theory of scheduling. In the context of this 

study, however, multiple jobs were, for simplicity, represented by a single representative job, which may be different 

from the context of equivalent job blocks. 

In the second step of data mining, data selection, data relevant to the analysis task are retrieved from the database. 

The other, following, steps of data mining were contextually used for Flow Shop Scheduling Problems to use them for 

the proposed study to fill the research gap in applying these techniques for dimension reduction.  

In the third step, data transformation, data are transformed and consolidated into forms appropriate for mining. 

This step was used for this study to group jobs with identical processing times that hold equal priority in the optimal 

sequence. Thus it is enough to represent jobs with equal priority by a single representative job to reduce the dimension 

of the problem. This step was used in the principal component analysis (see Section 4. 1). 

The fourth step, the data mining step, is an essential process where intelligent methods are applied to extract data 

patterns and to understand how only important patterns are exhibited. This step was used to develop mini-max criteria 

(see Section 4.2) to reduce the dimension of jobs of the first kind (see Section 4.2.1) and jobs of the second kind (see 

Section 4.2.2). 

The fifth step, the pattern evaluation step, consists of identifying the truly interesting patterns representing 

knowledge based on interestingness measures, and checking whether further conclusions could be reached about the 

high dimensional problem from its low dimensional representation. This step was carried out in this research by 

formulating the results in the form of theorems and giving analytic mathematical proofs (see Section 4.2).  

In the sixth step, the knowledge presentation step, illustrations are made to confirm the findings on a theory of 

knowledge; it aims to present mined knowledge convincingly to other users. This involves the organization of this study 

in a form of publication with all the necessary background information to acceptable competency levels. In particular, 

the illustration example in Section 5 also plays this role. 

In the next sub-sections the main findings of the study are organized as theorems and algorithms. In section 4.1 

Principal Component Analysis (PCA) is discussed in the sense of its application for dimension reduction of Flow Shop 

Scheduling Problems. In Section 4.2 further dimension reduction is carried out using mini-max criteria. Here, two 

investigations are made independently for the two kinds of jobs discussed earlier.  

For jobs with more processing time on the second machine, an early stopover criteria was achieved when the job 

assigned to the first available position with minimum processing time criteria, for the first time, attains the highest 

processing time on the second machine for all jobs of the first kind (see Section 4.2.1). Similarly, for jobs with more 

processing time on the first machine, an early stopover criteria was achieved when the job assigned to the last available 

position with minimum processing time criteria, for the first time, attains the highest processing time on the first 

machine for all jobs of the second kind  (see Section 4.2.2). Finally, these results are formulated in the form of 

algorithms. The first algorithm is a dimension reduction algorithm and it combines the dimension reductions carried out 
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in Section 4.1 and Section 4.2 together. The second algorithm is a relaxation of Johnson's algorithm and it combines the 

early stopover criteria achieved in Section 4.1 and Section 4.2 as termination criteria for Johnson's algorithm.  

4.1. Dimension Reduction by Principal Component Analysis  

The state-of-the-art Dimensional Reduction (DR) methods are divided into projective methods and methods that 

model the manifold on which the data lies. Perhaps the simplest approach is to attempt to find low dimensional 

projections that extract useful information from the data, by maximizing a suitable objective function [25].  Cluster 

analysis is one of the major data analysis methods which are widely used for many practical applications. The purpose 

of clustering is to group together data points, which are close to one another [26]. 

Let problem  𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} be the original high dimensional problem where the notation 

𝑗
𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛 means job 𝑗

𝑖
 has processing time equal to 𝑎𝑗𝑖

 units on machines A and processing time 

of 𝑏𝑗𝑖
 units on machine 𝐵 , and the aim is to find the optimal sequence S = {𝑗∗

𝑖
;  𝑖 = 1, 2, 3, … , 𝑛} that minimizes total 

elapsed time of operating all jobs in the same order in the two machines uninterrupted with no passing of jobs on the 

two machines in the order A → 𝐵.   

Now we partition all jobs in 𝑃 into two clusters, by defining a function  𝐽: 𝑃 → {0,1} given by the formula (1). 

 

𝐽(𝑗𝑖) = 𝐽 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = {
0 𝑖𝑓 𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖)   ∈ 𝑃: 𝑎𝑗𝑖 ≤ 𝑏𝑗𝑖
1 𝑖𝑓 𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖)   ∈ 𝑃: 𝑎𝑗𝑖 > 𝑏𝑗𝑖

    (1) 

Let  

𝐽
1
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)   ∈ 𝑃: 𝐽(𝑗

𝑖
) = 𝐽 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 0} and 𝐽

2
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)   ∈ 𝑃: 𝐽(𝑗

𝑖
) = 𝐽 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 1}. 

 

Define the projection mapping : 𝑓: 𝑃 → {0,1} × ℜ given by the formula (2). 

 

𝑓(𝑗𝑖) = 𝑓 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = {
(0, 𝑎𝑗𝑖) 𝑖𝑓 𝐽 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 0

(1, 𝑏𝑗𝑖) 𝑖𝑓 𝐽 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 1
     (2) 

 

This map specifies the kind of job and the corresponding processing time of the job that is relevant for assigning it to the 

optimal Johnson’s sequence.  

Let the image of 𝑃 under 𝑓 be given by 𝐼𝑚(𝑃) = 𝑓(𝑃) = {𝑥: 𝑥 = 𝑓(𝑗𝑖) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑗𝑖 ∈ 𝑃}. We call the elements of 𝑓(𝑃) 
Principal Components of 𝑃. 

Then the inverse image of 𝑓 is given by 𝑓−1(𝑃): 𝑓(𝑃) → 𝑃 given by the formula (3). 

 

𝑓−1(𝑥) = {𝑗
𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)   ∈ 𝑃: 𝑓(𝑗

𝑖
) = 𝑓 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 𝑥}  (3) 

 

Equation (3) clusters all jobs into disjoint equivalence classes consisting of exactly those jobs in 𝐽
1
 that have equal 

processing times on the first machine or those jobs in 𝐽
2
 that have equal processing times on the second machine.  In the 

optimal Johnson's sequence the jobs in each cluster are arranged successively. Let there be 𝐾 principal components 

𝑥1, 𝑥2, … , 𝑥𝐾 with 𝜂
1
, 𝜂
2
, … , 𝜂

𝐾
 number of jobs in 𝑓−1(𝑥1), 𝑓

−1 (𝑥2), … , 𝑓
−1(𝑥𝐾) , respectively, such that 𝜂

1
+ 𝜂

2
+

⋯+ 𝜂
𝐾
= 𝑛. 

Thus all jobs in the same cluster could be represented by a single job from the group and number of reserved 

positions for these jobs by 𝜂
1
, 𝜂
2
, … , 𝜂

𝐾
. In particular if we determine to represent each cluster with the job that has the 

longest total processing time on the two machines, then a unique identifier is assigned to each job.  

Define 𝑓∗: {𝑥1, 𝑥2, … , 𝑥𝐾} → 𝑃 given by the formula (4). 

 

𝑓∗(𝑥𝑘) = 𝑗
𝑘
= (𝑎𝑗𝑘

, 𝑏𝑗𝑘
) where 𝑎𝑗𝑘

+ 𝑏𝑗𝑘
= 𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖)∈𝑓

−1(𝑥𝑘)
{𝑎𝑗𝑖 + 𝑏𝑗𝑖}  (4) 

 

This is a choice function selecting the job with highest total processing time on the two machines from each 

cluster. The collection 𝑃∗ = {(𝑓∗(𝑥𝑘), 𝜂𝑘, 𝑓
−1(𝑥𝑘)) , 𝑘 = 1, 2, … , 𝐾} characterizes all jobs in 𝑃 that occupy equal 

priority in the optimal Johnson's sequence by 𝑓−1(𝑥𝑘), the total number of jobs in the group by 𝜂
𝑘
 and a representative 

job 𝑓∗(𝑥𝑘) for 𝑘 = 1, 2, … , 𝐾. This way the original high dimensional problem is represented by a lower dimensional 

sub-problem 𝑃∗. For each job 𝑗
𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝑃, there is a unique identifier (𝑓∗(𝑥𝑘), 𝜂𝑘, 𝑓

−1(𝑥𝑘)) ∈ 𝑃
∗ such that 

𝑓 ((𝑎𝑗𝑖 , 𝑏𝑗𝑖)) = 𝑓((𝑎𝑗𝑘 , 𝑏𝑗𝑘)) and 𝑓∗(𝑥𝑘) = (𝑎𝑗𝑘
, 𝑏𝑗𝑘

).  
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Thus, the original high dimensional Flow Shop Scheduling Problem was defined in terms of the low dimensional 

sub-problem from which the solution of the original Two Machines Flow Shop Scheduling Problem could be obtained 

more readily by replacing the representative job by the block of jobs it corresponds to. More specifically, the original '𝑛 

-Job 2-Machine Problem' is reduced into 𝐾 clusters with 𝜂
1
, 𝜂
2
, … , 𝜂

𝐾
 number of jobs respectively where 𝜂

1
+ 𝜂

2
+

⋯+ 𝜂
𝐾
= 𝑛. At this stage of dimension reduction there are at least  𝜂

1
! ∗ 𝜂

2
! ∗ … ∗ 𝜂

𝐾
! alternative optimal sequences to 

this problem.  

4.2. Dimension Reduction of Jobs by Means of Mini-Max Criteria 

The traditional and the state-of-the-art dimension reduction methods can be generally classified into Feature 

Extraction (FE) and Feature Selection (FS) approaches. FE algorithms aim to extract features by projecting the original 

high-dimensional data to a lower-dimensional space through algebraic transformations [26]. The classical FE algorithms 

are generally classified into linear and nonlinear approaches. In contrast to the FE algorithms, FS algorithms have been 

widely used on large-scale data and aim at finding out a subset of the most representative features according to some 

objective function. It is optional that we assume dimensional reduction by PCA method discussed in the previous 

section has already been carried out for the problem before we apply Mini-Max Criteria in this section.  

Principle of Mathematical Induction (PMI) 

We use the Principle of Mathematical Induction (PMI) to prove the results of the next section. It states as follows: 

Let 𝑃(𝑛) be a property that depends on natural numbers 𝑛 satisfies the following two conditions: 

i. 𝑃(𝑘0) holds true and  

ii.  𝑃(𝑘 + 1) holds true whenever 𝑃(𝑘) holds true. 

Then  𝑃(𝑛) holds true for all natural numbers 𝑛 ≥  𝑘0. 

4.2.1.   Dimension Reduction of Jobs with More Processing Time on the Second Machine 

Theorem 1 

Let the '𝑛- Jobs, 2- Machines' sequencing problem 𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} be in the reduced form 

after dimension reduction using PCA has been performed where the notation 𝑗
𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) means 𝑎𝑗𝑖

 and 𝑏𝑗𝑖
 are 

processing times of job 𝑗
𝑖
 on machines 𝐴 and 𝐵  respectively for all   𝑖 = 1, 2, 3, … , 𝑛 and the machine order is 𝐴 → 𝐵 

with no passing rule. Suppose we partition all jobs in 𝑃 into two disjoint classes 𝐽
1
 and 𝐽

2
 where 𝐽

1
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈

𝑃: 𝑎𝑗𝑖
≤ 𝑏𝑗𝑖

;   𝑖 = 1, 2, 3, … , 𝑛} and 𝐽
2
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈ 𝑃: 𝑎𝑗𝑖

> 𝑏𝑗𝑖
;   𝑖 = 1, 2, 3, … , 𝑛}. Let there be 𝑛1 jobs in 𝐽

1
 

and 𝑛2  jobs in 𝐽
2
 with 𝑛1 + 𝑛2 = 𝑛. Let the sequence {𝑗∗

𝑖
; 𝑖 = 1, 2, 3, … , 𝑛} = 𝑗∗

1
→ 𝑗∗

2
→ 𝑗∗

3
→ ⋯ → 𝑗∗

𝑛
  be an 

optimal Johnson's sequence obtained by the second alternative rule.  Consider the jobs in 𝐽
1
 only. Let 𝑏𝑗∗𝑘

=

𝑚𝑎𝑥𝑎𝑗𝑖≤𝑏𝑗𝑖
{𝑏𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝑃} = 𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽1

{𝑏𝑗𝑖} occur in the optimal sequence for some job 𝑗∗
𝑘
= (𝑎𝑗∗𝑘

, 𝑏𝑗∗𝑘
)  

where 1 ≤ 𝑘 ≤ 𝑛1. If this job is not unique, choose the first occurrence of all such jobs. That is, choose the job 𝑗∗
𝑘
=

(𝑎𝑗∗𝑘
, 𝑏𝑗∗𝑘

) such that 𝑏𝑗∗𝑘
=𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽1

{𝑏𝑗𝑖} and 𝑎𝑗∗𝑘
=𝑚𝑖𝑛𝑏𝑗𝑖=𝑏𝑗∗𝑘

{𝑎𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝐽1}.  Then the block of jobs  

𝑗∗
𝑘+1

→ 𝑗∗
𝑘+2

→ 𝑗∗
𝑘+3

→ ⋯ → 𝑗∗
𝑛1

 could be arranged in an arbitrary order within the block while keeping all the 

remaining jobs fixed in their position in the optimal Johnson's sequence without violating the optimality condition.  

Moreover, these jobs do not create any idle time for machine  , and the completion time of job 𝑗∗
𝑘+𝑚

 on machine 𝐵 is 

given by the formula (5) for 𝑘 ≤ 𝑘 + 𝑚 ≤ 𝑛1. 

 

𝐶𝑚𝑎𝑥(𝑗
∗
𝑘+𝑚
) = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) + ∑ 𝑏𝑗∗𝑘+𝑖

𝑚
𝑖=1                    (5) 

 

Consequently, the completion time of all jobs of the first kind on machine 𝐵 is given by the formula (6) irrespective of 

the order of operation of the jobs   𝑗∗
𝑘+1

→ 𝑗∗
𝑘+2

→ 𝑗∗
𝑘+3

→ ⋯ → 𝑗∗
𝑛1

. 

 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) + ∑ 𝑏𝑗∗𝑖

𝑛1
𝑖=𝑘+1     (6) 

Proof 

Let {𝑗∗
𝑖
; 𝑖 = 1, 2, 3, … , 𝑛} = 𝑗∗

1
→ 𝑗∗

2
→ 𝑗∗

3
→ ⋯ → 𝑗∗

𝑛
 be an optimal Johnson’s sequence, and 𝑗∗

𝑘
 be the job 

described in the theorem.  

Let machine 𝐴 finish job 𝑗∗
𝑘
 at 𝐶1(𝑗

∗
𝑘
) and machine 𝐵 finish job 𝑗∗

𝑘
 at 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) and let the sequence of jobs 𝑗

k+1
→

𝑗
k+2

→ 𝑗
k+3

→ ⋯ → 𝑗
n1

be any permutation of the sequence 𝑗∗
k+1

→ 𝑗∗
k+2

→ 𝑗∗
k+3

→ ⋯ → 𝑗∗
n1

. 
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For any job 𝑗
𝑖
; 𝑖 = 1, 2, 3, … , 𝑛 the following relation (7) holds. 

 

𝐶1(𝑗𝑖) + 𝑏𝑗𝑖 ≤ 𝐶𝑚𝑎𝑥(𝑗𝑖)    (7) 

 

from which we get also   𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘 ≤ 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
).  

 

For any job 𝑗
𝑘+𝑖
; 𝑖 = 1, 2, … , 𝑛1 − 𝑘 the following relations (8)-(9) hold. 

 

𝑎𝑗𝑘+𝑖
≤ 𝑏𝑗𝑘+𝑖

≤ 𝑏𝑗∗𝑘
                        (8) 

𝑎𝑗∗𝑘
≤ 𝑎𝑗𝑘+𝑖

≤ 𝑏𝑗𝑘+𝑖
                 (9) 

 

Let us consider the starting and finishing times of the jobs in {𝑗
𝑘+𝑖
; 𝑖 = 1, 2, … , 𝑛1 − 𝑘} on the two machines 𝐴 

and 𝐵. It is important to note that at any stage of machine sequencing, if machine 𝐵 finishes job 𝑗
𝑖
 at 𝑡 = 𝐶𝑚𝑎𝑥(𝑗𝑖) and 

machine 𝐴 finishes the next job 𝑗
𝑖+1

 at 𝑡 = 𝐶1(𝑗𝑖+1), then machine 𝐵 starts job 𝑗
𝑖+1

 at 𝑚𝑎𝑥{𝐶1(𝑗𝑖+1), 𝐶𝑚𝑎𝑥(𝑗𝑖)}. 

1. Machine 𝐴 starts job 𝑗
𝑘+1

 at 𝑡 = 𝐶1(𝑗
∗
𝑘
) and completes it at 𝑡 = 𝐶1(𝑗𝑘+1) = 𝐶1(𝑗

∗
𝑘
) + 𝑎𝑗𝑘+1 . Using equations 

(7)-(9), the finishing time of job 𝑗
𝑘+1

 on machine 𝐴 satisfies the relations (10)-(13) below. 

 

𝐶1(𝑗𝑘+1) = 𝐶1(𝑗
∗
𝑘
) + 𝑎𝑗𝑘+1                    (10) 

𝐶1(𝑗𝑘+1) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1                   (11) 

𝐶1(𝑗𝑘+1) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘                   (12) 

𝐶1(𝑗𝑘+1). ≤ 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
)                                   (13) 

 

The right side of (13) is the finishing time of job 𝑗∗
𝑘
 on machine B. Hence machine B starts job 𝑗

𝑘+1
 at 

𝑚𝑎𝑥{𝐶1(𝑗𝑘+1), 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
)} = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
). Thus, this job does not create any idle time for machine 𝐵. The finishing 

time of this job on machine 𝐵 is given by equation (14). 

 

𝐶𝑚𝑎𝑥(𝑗𝑘+1) = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) + ∑ 𝑏𝑗𝑘+𝑖

1
𝑖=1   (14) 

 

Thus, the theorem holds true for 𝑚 = 1.  

 

2. Machine 𝐴 starts job 𝑗
𝑘+2

 at 𝑡 = 𝐶1(𝑗𝑘+1) and completes it at 𝑡 = 𝐶1(𝑗𝑘+2) = 𝐶1(𝑗𝑘+1) + 𝑎𝑗𝑘+2 . Using equations 

(7)-(9), the finishing time of job 𝑗
𝑘+2

 on machine 𝐴 satisfies the relations (15)-(18) below. 

 

𝐶1(𝑗𝑘+2) = 𝐶1(𝑗
∗
𝑘
) + 𝑎𝑗𝑘+1 + 𝑎𝑗𝑘+2      (15) 

𝐶1(𝑗𝑘+2) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2     (16) 

𝐶1(𝑗𝑘+2) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗∗𝑘     (17) 

𝐶1(𝑗𝑘+2) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘 + 𝑏𝑗𝑘+1     (18) 

𝐶1(𝑗𝑘+2) ≤ 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 = 𝐶𝑚𝑎𝑥(𝑗𝑘+1)   (19) 

 

The right side of (19) is the finishing time of job 𝑗
𝑘+1

 on machine 𝐵. Hence machine 𝐵 starts job 𝑗
𝑘+2

 at 

𝑚𝑎𝑥{𝐶1(𝑗𝑘+2), 𝐶𝑚𝑎𝑥(𝑗𝑘+1)} = 𝐶𝑚𝑎𝑥(𝑗𝑘+1). Thus, this job does not create any idle time for machine 𝐵. Using (14) the 

finishing time of this job on machine 𝐵 is given by equations (20)-(21). 

 

𝐶𝑚𝑎𝑥(𝑗𝑘+2) = 𝐶𝑚𝑎𝑥(𝑗𝑘+1) + 𝑏𝑗𝑘+2 = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
)  + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2   (20) 

𝐶𝑚𝑎𝑥(𝑗𝑘+2) = 𝐶𝑚𝑎𝑥(𝑗𝑘+1) + 𝑏𝑗𝑘+2 = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + ∑ 𝑏𝑗𝑘+𝑖

2
𝑖=1    (21) 

 

Thus, the theorem holds true for 𝑚 = 2.  
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Induction assumption 

3. Suppose the formula works for 𝑚 such that 𝑘 + 1 ≤ 𝑘 + 𝑚 ≤ 𝑛1 i. e.  machine 𝐵 finishes  job 𝑗
𝑘+m

 at formula (22). 

𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚) = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
)  + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+𝑚

    (22) 

𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚) = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + ∑ 𝑏𝑗𝑘+𝑖

𝑚
𝑖=1      (23) 

    

Then machine 𝐴 finishes job 𝑗
𝑘+m+1

 at time 𝑡 = 𝐶1(𝑗𝑘+𝑚+1) given by equation (24) 

 

𝐶1(𝑗𝑘+𝑚+1) = 𝐶1(𝑗
∗
𝑘
) + 𝑎𝑗𝑘+1 + 𝑎𝑗𝑘+2 + ⋯+ 𝑎𝑗𝑘+𝑚+1

    (24) 

 

Using equations (7)-(9), the finishing time of job 𝑗
𝑘+m+1

 on machine 𝐴 satisfies the relations (25)-(29) below. 

 

𝐶1(𝑗𝑘+m+1) = 𝐶1(𝑗
∗
𝑘
) + 𝑎𝑗𝑘+1 + 𝑎𝑗𝑘+2 + ⋯+ 𝑎𝑗𝑘+m+1

    (25) 

𝐶1(𝑗𝑘+m+1) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+m+1

   (26) 

𝐶1(𝑗𝑘+m+1) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+m

+ 𝑏𝑗∗𝑘
   (27) 

𝐶1(𝑗𝑘+m+1) ≤ 𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘 + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+m

   (28) 

𝐶1(𝑗𝑘+m+1) ≤ 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+m

= 𝐶max(𝑗𝑘+m)  (29) 

The right side of (29) is the finishing time of job 𝑗
𝑘+m

 on machine 𝐵. Hence machine 𝐵 starts job 𝑗
𝑘+m+1

 at 

𝑚𝑎𝑥{𝐶1(𝑗𝑘+𝑚+1), 𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚)} = 𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚). Thus, this job does not create any idle time for machine 𝐵. The 

finishing time of this job on machine 𝐵 is given by equations (30)-(31). 

 

𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚+1) = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑘+𝑚+1

   (30) 

𝐶𝑚𝑎𝑥(𝑗𝑘+𝑚+1) = 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + ∑ 𝑏𝑗𝑘+𝑖

𝑚+1
𝑖=1     (31) 

 

Hence the formula also works for 𝑚+ 1. Thus, by the principle of mathematical induction, formula (5) holds for all m 

such that 𝑘 + 1 ≤ 𝑘 + 𝑚 ≤ 𝑛1.  

 

 

 

Thus, the finishing time of job 𝑗∗
𝑛1

 is given by: 

 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) + 𝑏𝑗∗𝑘+1 + 𝑏𝑗∗𝑘+2 + ⋯+ 𝑏𝑗∗𝑛1

  (32) 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) = 𝐶𝑚𝑎𝑥(𝑗

∗
𝑘
) + ∑ 𝑏𝑗∗𝑖

𝑛1
𝑖=𝑘+1     (33) 

Equation (33) is identical to (6). 

The total elapsed time to finish 𝑛1 jobs of the first kind on machine 𝐵 is 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘+1 + 𝑏𝑗∗𝑘+2 + ⋯+ 𝑏𝑗∗𝑛1

 and it 

is independent of the order of the jobs 𝑗
𝑘+1
, 𝑗
𝑘+2
, 𝑗
𝑘+3
, … , 𝑗

𝑛1
 and it creates no additional idle time for machine 𝐵 after 

job 𝑗∗
𝑘
. Since the jobs 𝑗

𝑘+1
, 𝑗
𝑘+2
, 𝑗
𝑘+3
, … , 𝑗

𝑛1
 are permutations of the jobs 𝑗∗

𝑘+1
, 𝑗∗

𝑘+2
, 𝑗∗

𝑘+3
, … , 𝑗∗

𝑛1
, we get 

𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗𝑘+1 + 𝑏𝑗𝑘+2 + ⋯+ 𝑏𝑗𝑛1

= 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘+1 + 𝑏𝑗∗𝑘+2 + ⋯+ 𝑏𝑗∗𝑛1

. The optimal sequence is also 

obtained by one of these permutations and the total elapsed time in the optimal sequence to finish 𝑛1 jobs of the first 

kind is 𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑘+1 + 𝑏𝑗∗𝑘+2 + ⋯+ 𝑏𝑗∗𝑛1

. If, further, we keep all jobs in 𝐽
2
 fixed in the optimal sequence, the 

total elapsed time to finish all jobs with the above freedom will be equal to the optimal value.  Hence any sequence 

obtained by the above sequencing freedom is optimal. Since we are free to arrange the jobs  𝑗∗
𝑘+1
, 𝑗∗

𝑘+2
, 𝑗∗

𝑘+3
, … , 𝑗∗

𝑛1
  

in an arbitrary order, the above machine sequencing freedom creates (𝑛1 − 𝑘)! sequences all of which are optimal.  

For references, we call the job 𝑗∗
𝑘
 in the above theorem formulation the minimal job of {𝑗∗

𝑖
; 𝑖 = 1, 2, 3, … , 𝑛} = 𝑗∗

1
→

𝑗∗
2
→ 𝑗∗

3
→ ⋯ → 𝑗∗

𝑛
 and we call the block of jobs  𝑗∗

𝑘+1
→  𝑗∗

𝑘+2
→  𝑗∗

𝑘+3
→  … →  𝑗∗

𝑛1
 the free jobs of first kind. 
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4.2.2. Dimension Reduction of Jobs with More Processing Time on the First Machine 

Theorem 2 

Let the '𝑛- Jobs, 2- Machines' sequencing problem 𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} be in the reduced form 

after dimension reduction using PCA has been performed where the notation 𝑗
𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) means 𝑎𝑗𝑖

 and 𝑏𝑗𝑖
 are 

processing times of job 𝑗
𝑖
 on machines 𝐴 and 𝐵  respectively for all   𝑖 = 1, 2, 3, … , 𝑛 and the machine order is 𝐴 → 𝐵 

with no passing rule. Suppose we partition all jobs in 𝑃 into two disjoint classes 𝐽1 and 𝐽2 where 𝐽1 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈

𝑃: 𝑎𝑗𝑖 ≤ 𝑏𝑗𝑖;  𝑖 = 1, 2, 3, … , 𝑛} and 𝐽2 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝑃: 𝑎𝑗𝑖 > 𝑏𝑗𝑖;  𝑖 = 1, 2, 3, … , 𝑛}. Let there be 𝑛1 jobs in 𝐽1 and 𝑛2  

jobs in 𝐽2 with 𝑛1 + 𝑛2 = 𝑛. Let the sequence {𝑗∗
𝑖
; 𝑖 = 1, 2, 3,… , 𝑛} = 𝑗∗

1
→ 𝑗∗

2
→ 𝑗∗

3
→ ⋯ → 𝑗∗

𝑛
  be an optimal 

Johnson's sequence obtained by the second alternative rule.  Consider the jobs in 𝐽2 only. Let 

𝑎𝑗∗𝑞 = 𝑚𝑎𝑥
𝑎𝑗𝑖

>𝑏𝑗𝑖

{𝑎𝑗𝑖: (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝑃} = 𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽2
{𝑎𝑗𝑖} occur in the optimal sequence for some job 𝑗∗

𝑞
= (𝑎𝑗∗𝑘 , 𝑏𝑗

∗
𝑘
)  

where 𝑛1 + 1 ≤ 𝑞 ≤ 𝑛. If this job is not unique, choose the last occurrence of all such jobs. That is, choose the job 

𝑗∗
𝑞
= (𝑎𝑗∗𝑞 , 𝑏𝑗

∗
𝑞
) such that 𝑎𝑗∗𝑞 =𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽2

{𝑎𝑗𝑖} and 𝑏𝑗∗𝑞 =𝑚𝑖𝑛𝑎𝑗𝑖=𝑎𝑗∗𝑞
{𝑏𝑗𝑖 , (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝐽2}. Let the sequence 

{𝑗𝑖; 𝑖 = 𝑛1 + 1, … , 𝑞 − 2, 𝑞 − 1} = 𝑗𝑛1+1 → ⋯ → 𝑗𝑞−2 → 𝑗𝑞−1 be any permutation of the sequence {𝑗∗
𝑖
; 𝑖 = 𝑛1 + 1,

… , 𝑞 − 2, 𝑞 − 1} = 𝑗∗
𝑛1+1

→ ⋯ → 𝑗∗
𝑞−2

→ 𝑗∗
𝑞−1

. Then individual jobs in the block of jobs 𝑗∗
𝑛1+1

→ ⋯ → 𝑗∗
𝑞−2

→

𝑗∗
𝑞−1

 could be arranged in an arbitrary order among themselves while keeping all the remaining jobs fixed in their 

position in the optimal sequence without violating the optimality condition. In other words, the sequence 𝑗∗
1
→ 𝑗∗

2
→

𝑗∗
3
→ ⋯ → 𝑗∗

𝑛1
→ 𝑗𝑛1+1 → ⋯ → 𝑗𝑞−2 → 𝑗𝑞−1 → 𝑗∗

𝑞
→ 𝑗∗

𝑞+1
→ 𝑗∗

𝑞+2
→ 𝑗∗

𝑞+3
→ ⋯ → 𝑗∗

𝑛
 is also optimal. 

More specifically, the completion time of the job 𝑗∗
𝑞
 on machine 𝐵 is independent of the order of jobs 

𝑗
𝑛1+1

, … , 𝑗
𝑞−2
, 𝑗
𝑞−1

 and is given by equation (34). 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1 }.        (34) 

Proof 

Let the sequence 𝑗
𝑛1+1

→ ⋯ → 𝑗
𝑞−2

→ 𝑗
𝑞−1

 be any permutation of the sequence 𝑗∗
𝑛1+1

→ ⋯ → 𝑗∗
𝑞−2

→ 𝑗∗
𝑞−1

. 

Let us consider the finishing times of the job 𝑗∗
𝑞
 starting from any job 𝑗

𝑛1+1
, … , 𝑗

𝑞−2
, 𝑗
𝑞−1

 downward. 

First, observe that for all jobs 𝑗
𝑛1+1

, … , 𝑗
𝑞−2
, 𝑗
𝑞−1

 we see that the following relations (35) - (36) hold. 

 

𝑏𝑗𝑞−𝑖
< 𝑎𝑗𝑞−𝑖

≤ 𝑎𝑗∗𝑞
      (35) 

𝑏𝑗∗𝑞
≤ 𝑏𝑗𝑞−𝑖

≤ 𝑎𝑗𝑞−𝑖
     (36) 

 

We use induction on the number of jobs in between 𝑛1 and 𝑞.  

1. We first show the theorem holds for the case when there is no job in between 𝑛1 and 𝑞 i. e. 𝑞 − 1 = 𝑛1. In this case, 

machine 𝐴 starts job 𝑗∗
𝑞
 at 𝐶1 (𝑗

∗
𝑛1
) and completes it at 𝐶1 (𝑗

∗
𝑞
) given by equation (37). 

 

 𝐶1 (𝑗
∗
𝑞
) = 𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞                             (37) 

 

Thus machine 𝐵 starts job  𝑗∗
𝑞
 at 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
)}, and completes it at 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞
) given by 

equation (38) 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗∗𝑞}   (38) 

 

If we replace 𝑚 = 0 in the formula in equation (34), we get equations (39)-(41). 

𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑞−0−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
0
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−0−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
0
𝑖=1 }         (39) 

= 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑞−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗
∗
𝑞
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−1

) + 𝑏𝑗∗𝑞}    (40) 

= 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗

∗
𝑞
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗∗𝑞}    (41) 

 

Equation (41) is identical to equation (38). 
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Thus, the theorem holds true for the case when 𝑞 − 1 = 𝑛1. 

2. We next show the theorem holds for the case when there is only one job in between 𝑛1 and 𝑞 i. e. 𝑞 − 2 = 𝑛1. In 

this case, machine 𝐴 starts job 𝑗
𝑛1+1

 at 𝐶1 (𝑗
∗
𝑛1
) and completes it at 𝐶1 (𝑗𝑛1+1) = 𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗𝑛1+1

 and machine 

𝐵 starts job 𝑗
𝑛1+1

 at 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗𝑛1+1

, 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
)}, and completes it at 

𝐶𝑚𝑎𝑥 (𝑗𝑛1+1) = 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑏𝑗𝑛1+1
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗𝑛1+1

}. 

Then, machine 𝐵 starts job 𝑗∗
𝑞
 at 𝐶1 (𝑗𝑛1+1) and completes it at 𝐶1 (𝑗

∗
𝑞
) = 𝐶1 (𝑗𝑛1+1) + 𝑎𝑗

∗
𝑞
 and machine 𝐵 starts 

job 𝑗∗
𝑞
 at 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞
) , 𝐶𝑚𝑎𝑥 (𝑗𝑛1+1)}. 

 𝑚𝑎𝑥  {𝐶1 (𝑗𝑛1+1) + 𝑎𝑗
∗
𝑞
, 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑏𝑗𝑛1+1
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗𝑛1+1

}} (42) 

𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑎𝑗∗𝑞
, 𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑏𝑗𝑛1+1
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗𝑛1+1

}     (43) 

But since 𝑏𝑗𝑛1+1
≤ 𝑎𝑗𝑛1+1

≤ 𝑎𝑗∗𝑞
, we get 𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑏𝑗𝑛1+1
≤ 𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑎𝑗∗𝑞
. Thus, the maximum 

of the three numbers in equation (43) reduces to a maximum of two numbers in equation (44). 

 

𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗𝑛1+1

+ 𝑎𝑗∗𝑞
, 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗𝑛1+1

}                        (44) 

 

Thus, the finishing time of job 𝑗∗
𝑞
 on machine 𝐵 is given by the equation (45) 

 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + 𝑎𝑗𝑛1+1

, 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + 𝑏𝑗𝑛1+1

}                                       (45)       (11) 

If we put 𝑚 = 1, in the formula (34) we get (46)-(49)  

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞−1−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
1
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−1−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
1
𝑖=1 }                              (46) 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞−2
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + 𝑎𝑗𝑞−1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−2
) + 𝑏𝑗∗𝑞 + 𝑏𝑗𝑞−1}             (47) 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + 𝑎𝑗𝑞−1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + 𝑏𝑗∗𝑞 + 𝑏𝑗𝑞−1}                            (48) 

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + 𝑎𝑗𝑛1+1

, 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + 𝑏𝑗𝑛1+1

}                         (49) 

 

Equation (49) is identical to equation (45). 

 

Thus, the formula works for  𝑚 = 1. 

Thus, the theorem holds for the case when 𝑞 − 2 = 𝑛1. 

Induction assumption 

3. Suppose for any 𝑚 such that 𝑛1 + 1 ≤ 𝑞 − 𝑚 ≤ 𝑞, the finishing time of the job 𝑗∗
𝑞
 on machine 𝐵 is independent 

of the order of jobs 𝑗
𝑞−𝑚

, … , 𝑗
𝑞−2
, 𝑗
𝑞−1

 and is given by equation (50). 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1 }                   (50) 

 

We want to show that the formula works for 𝑚 + 1. It is sufficient that we show the finishing time of the job 𝑗∗
𝑞
 on 

machine 𝐵 is independent of the order of jobs 𝑗
𝑞−𝑚−1

, 𝑗
𝑞−𝑚

, … , 𝑗
𝑞−2
, 𝑗
𝑞−1

 and is given by equation (51). 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {𝐶1 (𝑗

∗
𝑞−𝑚−2

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚+1
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−𝑚−2

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1 }          (51) 

Machine 𝐴 starts job 𝑗
𝑞−𝑚−1

 at 𝐶1 (𝑗
∗
𝑞−𝑚−2

) and completes it at 𝐶1 (𝑗𝑞−𝑚−1) = 𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1  and machine 

𝐵 starts job 𝑗
𝑞−𝑚−1

 at 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 , 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

)} and the finishing time is given by equation 

(52). 

 𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗𝑞−𝑚−1 , 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗𝑞−𝑚−1}   (52) 
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Since there are 𝑚 jobs 𝑗
𝑞−𝑚

, … , 𝑗
𝑞−3
, 𝑗
𝑞−2
, 𝑗
𝑞−1

, by induction assumption, the finishing time of the job 𝑗∗
𝑞
 on machine 𝐵 

is independent of the order of jobs 𝑗
𝑞−𝑚

, … , 𝑗
𝑞−3
, 𝑗
𝑞−2
, 𝑗
𝑞−1

 and is given by equation (53). 

 

𝑚𝑎𝑥  {𝐶1 (𝑗
∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1 , 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1 }                   (53) 

 

Equation (53) is rewritten as equation (54) to save space, and substituting equation (52) in equation (54), we get 

equation (55). 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

}                      (54) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  

{
 
 

 
 𝐶1 (𝑗𝑞−𝑚−1) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖

𝑚
𝑖=1

𝑚𝑎𝑥  {
𝐶1 (𝑗

∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗𝑞−𝑚−1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗𝑞−𝑚−1

} + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

}
 
 

 
 

                (55) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  

{
 
 

 
 𝐶1 (𝑗𝑞−𝑚−1) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖

𝑚
𝑖=1

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1 }

 
 

 
 

                  (56) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  

{
 
 

 
 𝐶1 (𝑗

∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1 }

 
 

 
 

                 (57) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  

{
 
 

 
 𝐶1 (𝑗

∗
𝑞−𝑚−2

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚+1
𝑖=1

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1 }

 
 

 
 

                     (58) 

 

But since 𝑏𝑗𝑞−𝑖
< 𝑎𝑗𝑞−𝑖

≤ 𝑎𝑗∗𝑞
, the second number in (58) is less than the first number. 

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗𝑞−𝑚−1 + 𝑏𝑗∗𝑞 + ∑ 𝑏j𝑞−𝑖
𝑚+1
𝑖=1                       (59) 

< 𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗∗𝑞 + 𝑏𝑗
∗
𝑞
+ ∑ 𝑎j𝑞−𝑖

𝑚+1
𝑖=1                         (60) 

The maximum of the three numbers in equation (58) reduces to a maximum of two numbers given in equation (61). 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚+1
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1

}                                      (61) 

If we substitute 𝑚+ 1 in place of 𝑚 in the formula in equation (34) also, we get 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

}        (62) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−1−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚+1
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−1−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1

}                                     (63) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−2

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚+1
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−2

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚+1
𝑖=1

}                                     (64) 
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Equation (64) is identical to equation (61). 

 

Hence we have shown that the theorem also holds for 𝑚 + 1. Thus, by the principle of mathematical induction the 

theorem holds for all 𝑚 such that 𝑛1 + 1 ≤ 𝑞 − 𝑚 ≤ 𝑞 − 1.  

 

If 𝑞 − 𝑚 = 𝑛1 + 1 i. e. 𝑚 = 𝑞 − 𝑛1 − 1 the formula (64) yields equations (65)-(66). 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−𝑚−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑚
𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−𝑚−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑚
𝑖=1

}              (65) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑞−(𝑞−𝑛1−1)−1

) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖
𝑞−𝑛1−1

𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑞−(𝑞−𝑛1−1)−1

) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖
𝑞−𝑛1−1

𝑖=1

}                       (66) 

 

By simplification, the formula (66) for 𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) reduces to the formula (67) 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑞−𝑖

𝑞−𝑛1−1

𝑖=1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑞−𝑖

𝑞−𝑛1−1

𝑖=1

}                            (67) 

 

Changing the index 𝑞 − 𝑖 by the index 𝑛1 + 𝑖,  the formula (67) for 𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) reduces to the formula (68) and (69). 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑛1
) + 𝑎𝑗∗𝑞 + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑖

𝑞−1

𝑖=𝑛1+1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + ∑ 𝑏𝑗𝑖

𝑞−1

𝑖=𝑛1+1

}                         (68) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗𝑖

𝑞

𝑖=𝑛1+1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + ∑ 𝑏𝑗𝑖

𝑞

𝑖=𝑛1+1

}                                     (69) 

 

Formula (69) gives the completion time of the job 𝑗∗
𝑞
 explicitly as maximum of the sum of processing times of the 

jobs in the two machines and that of job 𝑗∗
𝑞
.   In this formula the maximum of the two numbers 𝐶1 (𝑗

∗
𝑛1
) + 𝑏𝑗∗𝑞 +

∑ 𝑎j𝑖
𝑞

𝑖=𝑛1+1
 and 𝐶𝑚𝑎𝑥 (𝑗

∗
𝑛1
) + ∑ 𝑏j𝑖

𝑞

𝑖=𝑛1+1
 is symmetric with respect to jobs and so it is independent of the order of 

operations. Thus, the theorem was proved. 

Since the jobs 𝑗
𝑛1+1

, … , 𝑗
𝑞−2
, 𝑗
𝑞−1

 are permutations of the jobs  𝑗∗
𝑛1+1

, … , 𝑗∗
𝑞−2
, 𝑗∗

𝑞−1
, and the optimal sequence is 

also obtained by one of these permutations and  the total elapsed time in the optimal sequence to finish 𝑞 jobs 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
)given by formula (69)  reduces to formula (70). 

 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1 (𝑗
∗
𝑛1
) + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗∗𝑖

𝑞

𝑖=𝑛1+1

𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) + ∑ 𝑏𝑗∗𝑖

𝑞

𝑖=𝑛1+1

}                  (70) 

 

If further we keep all jobs in  𝐽
1
 fixed in the optimal sequence, the total elapsed time to finish all jobs with the 

above freedom will be equal to the optimal value.  Hence any sequence obtained by the above sequencing freedom is 

optimal. Since we are free to arrange the jobs  𝑗∗
𝑛1+1

→ ⋯ → 𝑗∗
𝑞−2

→ 𝑗∗
𝑞−1

  in an arbitrary order, the above machine 

sequencing freedom creates (𝑞 − 𝑛1 − 1)! sequences, all of which are optimal. For reference, we call the job 𝑗∗
𝑞
 in the 

above formulation the maximal job of {𝑗∗
𝑖
; 𝑖 = 1, 2, 3, … , 𝑛} = 𝑗∗

1
→ 𝑗∗

2
→ 𝑗∗

3
→ ⋯ → 𝑗∗

𝑛
 and we call the block of 

jobs  𝑗∗
𝑛1+1

→ … → 𝑗∗
𝑞−3

→ 𝑗∗
𝑞−2

→ 𝑗∗
𝑞−1

 the free jobs of second kind. 
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Concluding Remark 

Combining the results of Section 4.2.1 and Section 4.2.2, by substituting 𝐶𝑚𝑎𝑥 (𝑗
∗
𝑛1
) in formula (70) by the right 

hand side in formula (33), 𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) reduces to the formula (71) and (72). 

 𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1(𝑗
∗
𝑘
) + ∑ 𝑎𝑗∗𝑖

𝑛1
𝑖=𝑘+1 + 𝑏𝑗∗𝑞

+ ∑ 𝑎𝑗∗𝑖
𝑞

𝑖=𝑛1+1

𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + ∑ 𝑏𝑗∗𝑖

𝑛1
𝑖=𝑘+1 + ∑ 𝑏𝑗∗𝑖

𝑞

𝑖=𝑛1+1

}               (71) 

𝐶𝑚𝑎𝑥 ( 𝑗
∗
𝑞
) = 𝑚𝑎𝑥  {

𝐶1(𝑗
∗
𝑘
) + 𝑏𝑗∗𝑞 + ∑ 𝑎𝑗∗𝑖

𝑞

𝑖=𝑘+1

𝐶𝑚𝑎𝑥(𝑗
∗
𝑘
) + ∑ 𝑏𝑗∗𝑖

𝑞

𝑖=𝑘+1

}        (72) 

 

At this point by looking at the formula in (72) only, we suggest not to conclude that the union of the free jobs of 

first and second kind could also be arranged in an arbitrary order because there are just a few particular cases for which 

this conclusion does not hold true. Thus, we need to compute the sequence dependent starting and completion times of 

the remaining jobs 𝑗∗
𝑞+1

→ 𝑗∗
𝑞+2

→ 𝑗∗
𝑞+3

→ ⋯ → 𝑗∗
𝑛
  on the two machines to find total elapsed time. 

4.3. Algorithm: Dimension Reduction 

Thus we have proved the following algorithm. 

Let problem  𝑃 = {𝑗𝑖 = (𝑎𝑗𝑖 , 𝑏𝑗𝑖);  𝑖 = 1, 2, 3, … , 𝑛} with no passing of jobs on the two machines in the order 𝐴 → 𝐵 be 

given where 𝑎𝑗𝑖
 and 𝑏𝑗𝑖

 are processing times of job 𝑗
𝑖
 on machines 𝐴 and 𝐵, respectively for 𝑖 = 1, 2, 3, … , 𝑛. 

 Step 1: 

Partition all jobs in 𝑃 into two clusters, 𝐽
1
 and 𝐽

2
 where 𝐽

1
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)  ∈ 𝑃: 𝑎𝑗𝑖

≤ 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛}  and 

𝐽
2
= {𝑗

𝑖
= (𝑎𝑗𝑖

, 𝑏𝑗𝑖
)   ∈ 𝑃: 𝑎𝑗𝑖

> 𝑏𝑗𝑖
;  𝑖 = 1, 2, 3, … , 𝑛}. Identify all jobs in 𝐽

1
 and 𝐽

2
. Let there be 𝑛1 jobs in 𝐽

1
 and 

𝑛2 jobs in 𝐽
2
. 

 Step 2: 

Let 𝐴̅ = {𝑎𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽1} be the set of distinct operation times on machine 𝐴 for all jobs of the first kind and let 

𝐵̅ = {𝑏𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽2} be the set of distinct operation times on machine 𝐵 for all jobs of the second kind.  

 Step 3: 

Define 𝑓
1
: 𝐴̅ → ℜ by the map given by 𝑓

1
(𝑎𝑗𝑙) = 𝑚𝑎𝑥

{𝑎𝑗𝑖=𝑎𝑗𝑙}
{𝑏𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽1}      𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑗𝑙 ∈ 𝐴̅. This definition 

assigns the highest processing time on machine 𝐵 for each distinct processing time on machine 𝐴. 

 Step 4: 

Define 𝑓
2
: 𝐵̅ → ℜ by the map given by 𝑓

2
(𝑏𝑗𝑙) = 𝑚𝑎𝑥

{𝑏𝑗𝑖=𝑏𝑗𝑙}
{𝑎𝑗𝑖 : (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽2}    , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑗𝑙 ∈ 𝐵̅. This definition 

assigns the highest processing time on machine 𝐴 for each distinct processing time on machine 𝐵. 

𝐽
1̅
= {(𝑎𝑗𝑖 , 𝑓1(𝑎𝑗𝑖))} 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑗𝑖 ∈ 𝐴̅ and 𝐽

2̅
= {(𝑓

2
(𝑏𝑗𝑙), 𝑏𝑗𝑖)}𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑗𝑖 ∈ 𝐵̅ give distinct equivalence classes. 

  Step 5: 

Therefore, the reduced problem at the end of the first phase of dimension reduction becomes sequencing jobs in 

𝑃̅ = J
1̅
∪ J

2̅
. 

 Step 6: 

Let 𝑏1 = 𝑚𝑎𝑥
{𝑎𝑗𝑖∈𝐴̅}

{𝑓
1
(𝑎𝑗𝑖)} and 𝑎1 = 𝑚𝑎𝑥

{𝑏𝑗𝑖∈𝐵̅}
{𝑓

2
(𝑏𝑗𝑖)} Let 𝑎∗ = 𝑚𝑖𝑛

{𝑓1(𝑎𝑗𝑖)=𝑏1}
{𝑎𝑗𝑖} and 𝑏∗ =

𝑚𝑖𝑛
{𝑓2(𝑏𝑗𝑖)=𝑎1}

{𝑏𝑗𝑖} 

 Step 7a: 

Identify the job 𝑗𝑙1 = (𝑎𝑗𝑙1 , 𝑏𝑗𝑙1) ∈ 𝐽1 such that 𝑎𝑗𝑙1 + 𝑏𝑗𝑙1 = 𝑚𝑎𝑥𝑎𝑗𝑖>𝑎
∗{𝑎𝑗𝑖 + 𝑏𝑗𝑖 , (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽1}.Identify the job 

𝑗𝑙2 = (𝑎𝑗𝑙2 , 𝑏𝑗𝑙2) ∈ 𝐽2 such that 𝑎𝑗𝑙2 + 𝑏𝑗𝑙2 = 𝑚𝑎𝑥𝑏𝑗𝑖>𝑏
∗{𝑎𝑗𝑖 + 𝑏𝑗𝑖 , (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝐽2} 

 Step 7b: 

𝐽
1̅
̅ = {(𝑎𝑗𝑖 , 𝑓1(𝑎𝑗𝑙)) : 𝑎𝑗𝑖 ≤ 𝑎∗𝑓𝑜𝑟 𝑎𝑙𝑙 𝑎𝑗𝑖

∈ 𝐴̅} ∪ {𝑗
𝑙1
} and 𝐽

2̅
̅ = {(𝑓

2
(𝑏𝑗𝑙), 𝑏𝑗𝑖)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑗𝑖 ∈ 𝐵̅} ∪ {𝑗𝑙2}. 

 Step 8 

Therefore, the reduced problem at the end of the second phase of dimension reduction becomes sequencing jobs in 

𝑃̅̅ = 𝐽
1̅
̅ ∪ 𝐽

2̅
̅. 
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4.4. Algorithm: Relaxation of Johnson's Algorithm 

The Johnson's algorithm is an exact solution method of the two machines, one-way, no-passing scheduling tasks 

problem, which serves as a basis for many heuristic algorithms. This rule is a complete list of ordering the jobs by filling 

the first or the last available space based on minimum operation times in the two machines from the waiting list until, 

finally, only one free space and one last job to be assigned remain in the waiting list.  We make 𝑛! comparisons to obtain 

the optimal sequence. To overcome the problem of computation time, the current study identified a relaxation of 

Johnson's algorithm by developing an early stopover criteria due to the fact that after listing only some critical jobs at 

the beginning and end of the optimal sequence using Johnson's procedure, it does not matter in whichever order the 

remaining jobs are operated as far as makespan is concerned. 

 Step 0:  

Compute 𝑑 = 𝑏𝑗𝑖 − 𝑎𝑗𝑖;  𝑖 = 1, 2, 3, … , 𝑛.  Waiting list 1 is 𝐽
1
= {𝑗

𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝑃: 𝑏𝑗𝑖 − 𝑎𝑗𝑖 ≥ 0;  𝑖 = 1, 2, 3, … , 𝑛}.  

Waiting list 2 is 𝐽
2
= {𝑗

𝑖
= (𝑎𝑗𝑖 , 𝑏𝑗𝑖) ∈ 𝑃: 𝑏𝑗𝑖 − 𝑎𝑗𝑖 < 0;  𝑖 = 1, 2, 3, … , 𝑛}.  

 Step 1a 

Identify the job 𝑗∗
𝑘
= (𝑎𝑗∗𝑘

, 𝑏𝑗∗𝑘
) such that 𝑏𝑗∗𝑘

=𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽1
{𝑏𝑗𝑖} and 𝑎𝑗∗𝑘

=𝑚𝑖𝑛𝑏𝑗𝑖=𝑏𝑗∗𝑘
{𝑎𝑗𝑖 , (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝐽1} 

 Step 1b 

Identify the job 𝑗∗
𝑞
= (𝑎𝑗∗𝑞

, 𝑏𝑗∗𝑞
) such that 𝑎𝑗∗𝑞

=𝑚𝑎𝑥(𝑎𝑗𝑖 ,𝑏𝑗𝑖) ∈𝐽2
{𝑎𝑗𝑖} and 𝑏𝑗∗𝑞

=𝑚𝑖𝑛𝑎𝑗𝑖=𝑎𝑗∗𝑞
{𝑏𝑗𝑖 , (𝑎𝑗𝑖 , 𝑏𝑗𝑖)  ∈ 𝐽2} 

 Step 2 (Johnson’s algorithm main) 

Examine the columns of 𝐴 and 𝐵 for processing times on machines 𝐴 and 𝐵 and find the smallest processing time 

among unscheduled jobs (waiting list). Apply Johnson’s algorithm on 𝑃 and remove the scheduled job from 𝑃, waiting 

list 1 and waiting list 2 until jobs  𝑗∗
𝑘
 or 𝑗∗

𝑞
 are assigned. Go to step 3. 

 Step 3a (Mini-max criteria 1) 

If 𝑗∗
𝑘
 is scheduled, then remove all unscheduled jobs in waiting list 1 from 𝑃 and terminate this step. Go to step 2. 

  Step 3b (Mini-max criteria 2) 

If 𝑗∗
𝑞
 is scheduled, then remove all unscheduled jobs in waiting list 2 from 𝑃 and terminate this step. Go to step 2. 

 Step 4 (Relaxation of Johnson’s algorithm) 

If  both 𝑗∗
𝑘
 and 𝑗∗

𝑞
 are assigned, then terminate Johnson's algorithm main. Go to step 5. 

 Step 5a 

If waiting list 1 is non-empty, then choose at random a job in waiting list 1 and assign the corresponding job in the first 

available position in sequence and remove the assigned job from the waiting list 1. Repeat this step until waiting list 1 is 

empty. 

 Step 5b 

If waiting list 2 is non-empty then choose at random a job in waiting list 2 and assign the corresponding job in the last 

available position in sequence and remove the assigned job from the waiting list 2. Repeat this step until waiting list 2 is 

empty. 

 Step 6 

Repeat steps 5a and 5b until all 𝑃, waiting list 1 and waiting list 2 are empty. 

In the relaxation algorithm above, we did not violate Johnson's algorithm except termination criteria. Thus, ties for jobs 

with equal processing time on the two machines may be broken arbitrarily. 

5.  Illustrative Example 

In the following example, The Two Machines Flow Shop Sequencing Problem of 100 jobs indexed 

𝑗
1
, 𝑗
2
, 𝑗
3
… , 𝑗

100
 was generated from a normal distribution  𝑁[𝜇, 𝜎2] with mean 𝜇 and standard deviation 𝜎2 in Microsoft 

Excel spreadsheet user interface for different values of the parameters. The processing time on machine 𝐴 was assumed 

to follow a normal distribution with mean 𝜇 = 58  and standard deviation 𝜎2 = 2  and the processing time on machine 

𝐵 was assumed to follow a normal distribution with mean 𝜇 = 51  and standard deviation 𝜎2 = 8. The procedure was as 

follows: in columns 2 and 3 random numbers were generated from [0, 1] representing the probabilities of processing 

times on machines 𝐴 and 𝐵 respectively. In column 4 we computed the inverse of the Cumulative Normal Distribution 

Function for probability values defined in column 2, with distribution mean 𝜇 = 58 and standard deviation 𝜎2 = 2. 

Similarly, in column 5 we computed the inverse of the Cumulative Normal Distribution Function for probability values 

defined in column 3, with distribution mean 𝜇 = 51 and standard deviation 𝜎2 = 8.  Thus, the numbers in columns 4 

and 5 represent the corresponding processing times on machines 𝐴 and 𝐵. In column 6, jobs were assigned the value 0 if 

the value in column 4 was less than or equal to the value in column 5, and 1 otherwise to partition all jobs into two 

clusters 𝐽
1
 and 𝐽

2
 as explained before. Then the jobs were sorted in ascending value on column 6 to arrange all jobs of 
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the first kind before jobs of the second kind. Next all jobs of the first kind only were selected and sorted by ascending 

value on column 4  to arrange all jobs of the first kind in a non-decreasing order of processing time on the first machine. 

Similarly, all jobs of the second kind only were selected and sorted in ascending value on column 5 to arrange all jobs of 

the second kind in a non-increasing order of processing time on the second machine. The resulting sequence was, 

therefore, an optimal Johnson's sequence and the corresponding sequence positions for all jobs were assigned in column 

1, starting from beginning to end. Table 1 below gives the results. 

The formulas for starting and completion of jobs on the first machine A were entered in columns 7 and 8. 

Similarly, the formulas for starting and completion of jobs on second machine B were entered in columns 9 and 10. The 

formula to calculate the idle time (slack time) due to each job was entered in column 11 so that the formulas 

automatically run for any other permutations of the jobs.  

After identifying the optimal Johnson’s sequence, applying the mini-max criteria discussed earlier, the maximum 

processing time on the second machine for all jobs of the first kind was identified to be 65 , and its first occurrence was 

in the 𝑗∗
8
 in the optimal Johnson’s sequence. Similarly applying the mini-max criteria discussed earlier, the maximum 

processing time on the first machine for all jobs of the second kind was identified to be 63 and its last occurrence was in 

the 𝑗∗
82

 in the optimal Johnson’s sequence.  

In the next step the concept of random numbers was used to generate multiple alternate optimal sequences and to 

verify the findings of this study. In column 12, a new sequence in terms of random numbers was defined for all jobs as 

follows. For the jobs up to and including the minimal job, the same sequence order as the optimal Johnson's sequence 

was maintained. Also, for jobs starting from the maximal job onward, the same sequence order as the optimal Johnson's 

sequence was maintained. But for free jobs of the first kind, a random number between 0 and 1 was added to the 

minimal job position number, and for free jobs of the second kind a random number between 0 and 1 was subtracted  

from the maximal job position and all jobs are sorted in increasing order of the values in column 12. Then a new 

sequence was defined in column 13 to get an alternate optimal sequence.  Then comparisons were made between the 

Johnson's sequence in Table 1 and the alternate sequence in Table 2. 

 

Table 1.  Optimal Johnson's sequence for the generated problem in the illustration example. 

 

Joh 

seq 

Rand 

A 

Rand 

B 

A B J1/ 

J2 

In 

A 

Out 

A 

In 

B 

Out 

B 

Idle Relax Alt 

seq 

1 0.071 0.782 55 57 0 0 55 55 112 55 1.000 1 

2 0.060 0.837 55 59 0 55 110 112 171 0 2.000 2 

3 0.070 0.718 55 56 0 110 165 171 227 0 3.000 3 

4 0.163 0.786 56 57 0 165 221 227 284 0 4.000 4 

5 0.106 0.743 56 56 0 221 277 284 340 0 5.000 5 

6 0.157 0.951 56 64 0 277 333 340 404 0 6.000 6 

7 0.211 0.951 56 64 0 333 389 404 468 0 7.000 7 

8 0.327 0.954 57 65 0 389 446 468 533 0 8.000 8 

9 0.676 0.972 57 62 0 446 503 533 595 0 9.173 12 

10 0.694 0.852 57 60 0 503 560 595 655 0 9.398 15 

11 0.630 0.834 58 59 0 560 618 655 714 0 9.931 22 

12 0.323 0.915 58 64 0 618 676 714 778 0 9.401 16 

13 0.693 0.864 58 62 0 676 734 778 840 0 9.480 18 

14 0.805 0.870 59 60 0 734 793 840 900 0 9.306 13 

15 0.379 0.862 59 61 0 793 852 900 961 0 9.505 19 

16 0.572 0.947 59 63 0 852 911 961 1024 0 9.995 23 

17 0.852 0.995 59 61 0 911 970 1024 1085 0 9.016 9 

18 0.503 0.909 59 59 0 970 1029 1085 1144 0 9.046 10 

19 0.718 0.897 59 59 0 1029 1088 1144 1203 0 9.108 11 

20 0.964 0.990 60 62 0 1088 1148 1203 1265 0 9.475 17 

21 0.922 0.920 60 60 0 1148 1208 1265 1325 0 9.322 14 

22 0.543 0.833 61 62 0 1208 1269 1325 1387 0 9.843 21 

23 0.683 0.934 62 64 0 1269 1331 1387 1451 0 9.626 20 

24 0.770 0.675 58 57 1 1331 1389 1451 1508 0 24.300 43 

25 0.785 0.715 61 57 1 1389 1450 1508 1565 0 24.570 58 

26 0.376 0.415 60 56 1 1450 1510 1565 1621 0 24.046 25 

27 0.029 0.555 57 56 1 1510 1567 1621 1677 0 24.870 72 

28 0.274 0.310 57 56 1 1567 1624 1677 1733 0 24.199 37 
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29 0.578 0.497 60 56 1 1624 1684 1733 1789 0 24.434 53 

30 0.755 0.500 57 55 1 1684 1741 1789 1844 0 24.443 54 

31 0.943 0.323 59 55 1 1741 1800 1844 1899 0 24.013 24 

32 0.855 0.396 56 55 1 1800 1856 1899 1954 0 24.924 77 

33 0.970 0.458 55 54 1 1856 1911 1954 2008 0 24.987 80 

34 0.143 0.582 55 54 1 1911 1966 2008 2062 0 24.663 66 

35 0.320 0.269 57 54 1 1966 2023 2062 2116 0 24.654 64 

36 0.909 0.432 61 54 1 2023 2084 2116 2170 0 24.384 51 

37 0.270 0.731 56 53 1 2084 2140 2170 2223 0 24.185 34 

38 0.727 0.561 60 53 1 2140 2200 2223 2276 0 24.583 61 

39 0.456 0.534 56 53 1 2200 2256 2276 2329 0 24.357 47 

40 0.766 0.567 59 53 1 2256 2315 2329 2382 0 24.848 71 

41 0.316 0.277 58 53 1 2315 2373 2382 2435 0 24.489 55 

42 0.855 0.225 59 52 1 2373 2432 2435 2487 0 24.200 38 

43 0.461 0.768 54 52 1 2432 2486 2487 2539 0 24.050 27 

44 0.785 0.254 58 52 1 2486 2544 2544 2596 5 24.202 39 

45 0.946 0.380 59 52 1 2544 2603 2603 2655 7 24.240 40 

46 0.104 0.389 58 51 1 2603 2661 2661 2712 6 24.372 48 

47 0.178 0.608 60 51 1 2661 2721 2721 2772 9 24.616 62 

48 0.493 0.477 57 51 1 2721 2778 2778 2829 6 24.891 74 

49 0.235 0.217 58 51 1 2778 2836 2836 2887 7 24.084 29 

50 0.617 0.354 60 51 1 2836 2896 2896 2947 9 24.535 57 

51 0.951 0.645 58 51 1 2896 2954 2954 3005 7 24.907 75 

52 0.370 0.230 59 51 1 2954 3013 3013 3064 8 24.087 30 

53 0.806 0.734 61 50 1 3013 3074 3074 3124 10 24.196 36 

54 0.229 0.705 61 50 1 3074 3135 3135 3185 11 24.935 79 

55 0.463 0.591 62 50 1 3135 3197 3197 3247 12 24.158 33 

56 0.663 0.397 58 50 1 3197 3255 3255 3305 8 24.919 76 

57 0.839 0.498 57 50 1 3255 3312 3312 3362 7 24.742 67 

58 0.938 0.768 58 50 1 3312 3370 3370 3420 8 24.837 70 

59 0.464 0.279 61 49 1 3370 3431 3431 3480 11 24.316 45 

60 0.395 0.404 55 49 1 3431 3486 3486 3535 6 24.347 46 

61 0.827 0.591 57 49 1 3486 3543 3543 3592 8 24.047 26 

62 0.806 0.499 59 49 1 3543 3602 3602 3651 10 24.526 56 

63 0.394 0.359 57 49 1 3602 3659 3659 3708 8 24.581 60 

64 0.280 0.637 60 49 1 3659 3719 3719 3768 11 24.137 32 

65 0.436 0.178 57 48 1 3719 3776 3776 3824 8 24.781 68 

66 0.096 0.643 59 48 1 3776 3835 3835 3883 11 24.383 50 

67 0.268 0.459 57 48 1 3835 3892 3892 3940 9 24.647 63 

68 0.382 0.376 57 47 1 3892 3949 3949 3996 9 24.056 28 

69 0.484 0.250 61 47 1 3949 4010 4010 4057 14 24.122 31 

70 0.423 0.437 63 47 1 4010 4073 4073 4120 16 24.926 78 

71 0.599 0.595 58 46 1 4073 4131 4131 4177 11 24.798 69 

72 0.305 0.735 58 46 1 4131 4189 4189 4235 12 24.572 59 

73 0.023 0.265 57 46 1 4189 4246 4246 4292 11 24.267 41 

74 0.377 0.505 54 46 1 4246 4300 4300 4346 8 24.881 73 

75 0.454 0.512 60 46 1 4300 4360 4360 4406 14 24.306 44 

76 0.549 0.446 57 46 1 4360 4417 4417 4463 11 24.188 35 

77 0.164 0.711 57 45 1 4417 4474 4474 4519 11 24.376 49 

78 0.996 0.297 57 45 1 4474 4531 4531 4576 12 24.999 81 

79 0.951 0.460 57 45 1 4531 4588 4588 4633 12 24.397 52 

80 0.067 0.652 60 45 1 4588 4648 4648 4693 15 24.284 42 

81 0.235 0.226 58 44 1 4648 4706 4706 4750 13 24.662 65 

82 0.990 0.189 63 44 1 4706 4769 4769 4813 19 82.000 82 

83 0.220 0.172 56 43 1 4769 4825 4825 4868 12 83.000 83 

84 0.475 0.147 58 43 1 4825 4883 4883 4926 15 84.000 84 

85 0.465 0.154 58 43 1 4883 4941 4941 4984 15 85.000 85 

86 0.757 0.152 59 43 1 4941 5000 5000 5043 16 86.000 86 
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87 0.855 0.157 60 43 1 5000 5060 5060 5103 17 87.000 87 

88 0.411 0.126 58 42 1 5060 5118 5118 5160 15 88.000 88 

89 0.482 0.108 58 41 1 5118 5176 5176 5217 16 89.000 89 

90 0.548 0.101 58 41 1 5176 5234 5234 5275 17 90.000 90 

91 0.623 0.086 59 40 1 5234 5293 5293 5333 18 91.000 91 

92 0.626 0.083 59 40 1 5293 5352 5352 5392 19 92.000 92 

93 0.758 0.070 59 39 1 5352 5411 5411 5450 19 93.000 93 

94 0.812 0.074 60 39 1 5411 5471 5471 5510 21 94.000 94 

95 0.575 0.059 58 38 1 5471 5529 5529 5567 19 95.000 95 

96 0.279 0.051 57 38 1 5529 5586 5586 5624 19 96.000 96 

97 0.159 0.040 56 37 1 5586 5642 5642 5679 18 97.000 97 

98 0.266 0.038 57 37 1 5642 5699 5699 5736 20 98.000 98 

99 0.853 0.030 60 36 1 5699 5759 5759 5795 23 99.000 99 

100 0.744 0.017 59 34 1 5759 5818 5818 5852 23 100.000 100 

                   767     

 

Observe first from Table 1 the following values: 

Machine 𝐴 completes the minimal job at time 𝐶1(𝑗
∗
8
) = 𝟒𝟒𝟔 and machine 𝐵 completes it at time 𝐶𝑚𝑎𝑥(𝑗

∗
8
) = 𝟓𝟑𝟑.  

Machine 𝐴 completes all jobs of the first kind at time 𝐶1(𝑗
∗
23
) = 𝟏𝟑𝟑𝟏 and machine 𝐵 completes the same jobs at time 

𝐶𝑚𝑎𝑥(𝑗
∗
23
) = 𝟏𝟒𝟓𝟏.  Machine 𝐴 completes the maximal job at time 𝐶1(𝑗

∗
82
) = 𝟒𝟕𝟔𝟗 and machine 𝐵 completes it at 

time 𝐶𝑚𝑎𝑥(𝑗
∗
82
) = 𝟒𝟖𝟏𝟑.  Machine 𝐴 completes the last job at time 𝐶1(𝑗

∗
100
) = 𝟓𝟖𝟏𝟖 and machine 𝐵 completes it at 

𝐶𝑚𝑎𝑥(𝑗
∗
100
) = 𝟓𝟖𝟓𝟐.  All the values described here are outlined in Table 1 by dark line in the corresponding rows 

containing the values. 

Also observe the following values: 

The sum of the processing times of free jobs of the first kind on machine 𝐵 is ∑ 𝑏𝑗∗𝑖
23
𝑖=9 = 𝟗𝟏𝟖. Thus, 𝐶𝑚𝑎𝑥(𝑗

∗
8
) +

∑ 𝑏𝑗∗𝑖
23 
𝑖=9 = 533 + 918 = 𝟏𝟒𝟓𝟏 = 𝐶𝑚𝑎𝑥(𝑗

∗
23
). Thus equation (6) is verified. 

The sum of the processing times of free jobs of the second kind on machine 𝐴 is ∑ 𝑎𝑗∗𝑖
(81)

𝑖=24 = 𝟑𝟑𝟕𝟓 and the sum of the 

processing times of free jobs of the second kind on machine 𝐵 is ∑ 𝑎𝑗∗𝑖
(81)

𝑖=24 = 𝟐𝟗𝟐𝟖. 

Therefore, 𝐶1(𝑗
∗
23
) + 𝑎𝑗∗82  + 𝑏𝑗∗82 + ∑ 𝑎𝑗∗𝑖

(81)

𝑖=24 = 1331 + 63 + 44 + 3375 = 𝟒𝟖𝟏𝟑 and 𝐶𝑚𝑎𝑥(𝑗
∗
23
) + 𝑏𝑗∗82 +

∑ 𝑏𝑗∗𝑖
81
𝑖=24 = 1451 + 44 + 2928 = 𝟒𝟒𝟐𝟑.  

Thus, 𝑚𝑎𝑥{𝐶1(𝑗
∗
23
) + 𝑎𝑗∗82  + 𝑏𝑗∗82 + ∑ 𝑎𝑗∗𝑖

(81)

𝑖=24 , 𝐶𝑚𝑎𝑥(𝑗
∗
23
) + 𝑏𝑗∗82 + ∑ 𝑏𝑗∗𝑖

81
𝑖=24 } 

= 𝑚𝑎𝑥{4813, 4423} = 𝟒𝟖𝟏𝟑 = 𝐶𝑚𝑎𝑥(𝑗
∗
82
). Thus equation (71) is verified.  

The total elapsed time is 𝐶𝑚𝑎𝑥(𝑗
∗
100
) = 𝟓𝟖𝟓𝟐  

The total idle time for machine 𝐵 was I = 767 (see the value at the end of column 11 in Tables 1 and 2).  

It remains to verify Theorems 1 and 2. We show this by sorting the jobs in optimal Johnson's sequence in ascending 

order of the values assigned to the jobs in column 12, and compare the finishing times of jobs of the first kind as well as 

the maximal job. To do this, we copy all the values in the bold cells for Johnson's sequence (Table 1) and sort the jobs 

in ascending value in column 12. This gives a different sequence of jobs.  

 

Table 2.  Alternate optimal sequence for the generated problem in the illustration example. 

 

Joh 

seq 

Rand 

A 

Rand 

B 

A B J1/ 

J2 

In 

A 

Out  

A 

In 

B 

Out  

B 

Idle Relax Alt 

seq 

1 0.071 0.782 55 57 0 0 55 55 112 55 1.000 1 

2 0.060 0.837 55 59 0 55 110 112 171 0 2.000 2 

3 0.070 0.718 55 56 0 110 165 171 227 0 3.000 3 

4 0.163 0.786 56 57 0 165 221 227 284 0 4.000 4 

5 0.106 0.743 56 56 0 221 277 284 340 0 5.000 5 

6 0.157 0.951 56 64 0 277 333 340 404 0 6.000 6 

7 0.211 0.951 56 64 0 333 389 404 468 0 7.000 7 

8 0.327 0.954 57 65 0 389 446 468 533 0 8.000 8 

17 0.852 0.995 59 61 0 446 505 533 594 0 9.173 9 
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18 0.503 0.909 59 59 0 505 564 594 653 0 9.398 10 

19 0.718 0.897 59 59 0 564 623 653 712 0 9.931 11 

9 0.676 0.972 57 62 0 623 680 712 774 0 9.401 12 

14 0.805 0.870 59 60 0 680 739 774 834 0 9.480 13 

21 0.922 0.920 60 60 0 739 799 834 894 0 9.306 14 

10 0.694 0.852 57 60 0 799 856 894 954 0 9.505 15 

12 0.323 0.915 58 64 0 856 914 954 1018 0 9.995 16 

20 0.964 0.990 60 62 0 914 974 1018 1080 0 9.016 17 

13 0.693 0.864 58 62 0 974 1032 1080 1142 0 9.046 18 

15 0.379 0.862 59 61 0 1032 1091 1142 1203 0 9.108 19 

23 0.683 0.934 62 64 0 1091 1153 1203 1267 0 9.475 20 

22 0.543 0.833 61 62 0 1153 1214 1267 1329 0 9.322 21 

11 0.630 0.834 58 59 0 1214 1272 1329 1388 0 9.843 22 

16 0.572 0.947 59 63 0 1272 1331 1388 1451 0 9.626 23 

31 0.943 0.323 59 55 1 1331 1390 1451 1506 0 24.300 24 

26 0.376 0.415 60 56 1 1390 1450 1506 1562 0 24.570 25 

61 0.827 0.591 57 49 1 1450 1507 1562 1611 0 24.046 26 

43 0.461 0.768 54 52 1 1507 1561 1611 1663 0 24.870 27 

68 0.382 0.376 57 47 1 1561 1618 1663 1710 0 24.199 28 

49 0.235 0.217 58 51 1 1618 1676 1710 1761 0 24.434 29 

52 0.370 0.230 59 51 1 1676 1735 1761 1812 0 24.443 30 

69 0.484 0.250 61 47 1 1735 1796 1812 1859 0 24.013 31 

64 0.280 0.637 60 49 1 1796 1856 1859 1908 0 24.924 32 

55 0.463 0.591 62 50 1 1856 1918 1918 1968 10 24.987 33 

37 0.270 0.731 56 53 1 1918 1974 1974 2027 6 24.663 34 

76 0.549 0.446 57 46 1 1974 2031 2031 2077 4 24.654 35 

53 0.806 0.734 61 50 1 2031 2092 2092 2142 15 24.384 36 

28 0.274 0.310 57 56 1 2092 2149 2149 2205 7 24.185 37 

42 0.855 0.225 59 52 1 2149 2208 2208 2260 3 24.583 38 

44 0.785 0.254 58 52 1 2208 2266 2266 2318 6 24.357 39 

45 0.946 0.380 59 52 1 2266 2325 2325 2377 7 24.848 40 

73 0.023 0.265 57 46 1 2325 2382 2382 2428 5 24.489 41 

80 0.067 0.652 60 45 1 2382 2442 2442 2487 14 24.200 42 

24 0.770 0.675 58 57 1 2442 2500 2500 2557 13 24.050 43 

75 0.454 0.512 60 46 1 2500 2560 2560 2606 3 24.202 44 

59 0.464 0.279 61 49 1 2560 2621 2621 2670 15 24.240 45 

60 0.395 0.404 55 49 1 2621 2676 2676 2725 6 24.372 46 

39 0.456 0.534 56 53 1 2676 2732 2732 2785 7 24.616 47 

46 0.104 0.389 58 51 1 2732 2790 2790 2841 5 24.891 48 

77 0.164 0.711 57 45 1 2790 2847 2847 2892 6 24.084 49 

66 0.096 0.643 59 48 1 2847 2906 2906 2954 14 24.535 50 

36 0.909 0.432 61 54 1 2906 2967 2967 3021 13 24.907 51 

79 0.951 0.460 57 45 1 2967 3024 3024 3069 3 24.087 52 

29 0.578 0.497 60 56 1 3024 3084 3084 3140 15 24.196 53 

30 0.755 0.500 57 55 1 3084 3141 3141 3196 1 24.935 54 

41 0.316 0.277 58 53 1 3141 3199 3199 3252 3 24.158 55 

62 0.806 0.499 59 49 1 3199 3258 3258 3307 6 24.919 56 

50 0.617 0.354 60 51 1 3258 3318 3318 3369 11 24.742 57 

25 0.785 0.715 61 57 1 3318 3379 3379 3436 10 24.837 58 

72 0.305 0.735 58 46 1 3379 3437 3437 3483 1 24.316 59 

63 0.394 0.359 57 49 1 3437 3494 3494 3543 11 24.347 60 

38 0.727 0.561 60 53 1 3494 3554 3554 3607 11 24.047 61 

47 0.178 0.608 60 51 1 3554 3614 3614 3665 7 24.526 62 

67 0.268 0.459 57 48 1 3614 3671 3671 3719 6 24.581 63 

35 0.320 0.269 57 54 1 3671 3728 3728 3782 9 24.137 64 

81 0.235 0.226 58 44 1 3728 3786 3786 3830 4 24.781 65 
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34 0.143 0.582 55 54 1 3786 3841 3841 3895 11 24.383 66 

57 0.839 0.498 57 50 1 3841 3898 3898 3948 3 24.647 67 

65 0.436 0.178 57 48 1 3898 3955 3955 4003 7 24.056 68 

71 0.599 0.595 58 46 1 3955 4013 4013 4059 10 24.122 69 

58 0.938 0.768 58 50 1 4013 4071 4071 4121 12 24.926 70 

40 0.766 0.567 59 53 1 4071 4130 4130 4183 9 24.798 71 

27 0.029 0.555 57 56 1 4130 4187 4187 4243 4 24.572 72 

74 0.377 0.505 54 46 1 4187 4241 4243 4289 0 24.267 73 

48 0.493 0.477 57 51 1 4241 4298 4298 4349 9 24.881 74 

51 0.951 0.645 58 51 1 4298 4356 4356 4407 7 24.306 75 

56 0.663 0.397 58 50 1 4356 4414 4414 4464 7 24.188 76 

32 0.855 0.396 56 55 1 4414 4470 4470 4525 6 24.376 77 

70 0.423 0.437 63 47 1 4470 4533 4533 4580 8 24.999 78 

54 0.229 0.705 61 50 1 4533 4594 4594 4644 14 24.397 79 

33 0.970 0.458 55 54 1 4594 4649 4649 4703 5 24.284 80 

78 0.996 0.297 57 45 1 4649 4706 4706 4751 3 24.662 81 

82 0.990 0.189 63 44 1 4706 4769 4769 4813 18 82.000 82 

83 0.220 0.172 56 43 1 4769 4825 4825 4868 12 83.000 83 

84 0.475 0.147 58 43 1 4825 4883 4883 4926 15 84.000 84 

85 0.465 0.154 58 43 1 4883 4941 4941 4984 15 85.000 85 

86 0.757 0.152 59 43 1 4941 5000 5000 5043 16 86.000 86 

87 0.855 0.157 60 43 1 5000 5060 5060 5103 17 87.000 87 

88 0.411 0.126 58 42 1 5060 5118 5118 5160 15 88.000 88 

89 0.482 0.108 58 41 1 5118 5176 5176 5217 16 89.000 89 

90 0.548 0.101 58 41 1 5176 5234 5234 5275 17 90.000 90 

91 0.623 0.086 59 40 1 5234 5293 5293 5333 18 91.000 91 

92 0.626 0.083 59 40 1 5293 5352 5352 5392 19 92.000 92 

93 0.758 0.070 59 39 1 5352 5411 5411 5450 19 93.000 93 

94 0.812 0.074 60 39 1 5411 5471 5471 5510 21 94.000 94 

95 0.575 0.059 58 38 1 5471 5529 5529 5567 19 95.000 95 

96 0.279 0.051 57 38 1 5529 5586 5586 5624 19 96.000 96 

97 0.159 0.040 56 37 1 5586 5642 5642 5679 18 97.000 97 

98 0.266 0.038 57 37 1 5642 5699 5699 5736 20 98.000 98 

99 0.853 0.030 60 36 1 5699 5759 5759 5795 23 99.000 99 

100 0.744 0.017 59 34 1 5759 5818 5818 5852 23 100.00 100 

                   767     

 

Table 2 was obtained from Table 1 by sorting in ascending values on column 12. 

 

To check that it is also the optimal sequence, we checked the values in the bold cells with those recorded for 

Johnson's sequence (Table 1); in particular we checked the total elapsed time 𝐶𝑚𝑎𝑥(𝑗
∗
100
) = 𝟓𝟖𝟓𝟐 for each "sort 

ascending values on column 12" instruction. It can easily be verified that Table 2 also gives an optimal sequence 

irrespective of the order of free jobs of the first kind and free jobs of the second kind if they are scheduled together. 

Thus, the results of the two theorems were verified with this example.   

Our final conclusion about dimension reduction was made in reference to the above example. At termination of 

Johnson's algorithm, the problem size was reduced to those jobs that hold fixed position in all the alternate optimal 

sequences.  In the above example, the problem size was reduced from  100 to only  29 jobs (8 jobs at the beginning, 19 

jobs at the end and a representative job each for free jobs of the two kinds. This is a significant dimension reduction at 

very low cost of computation. This may be expressed as a 71% decrease in problem size. There are at least 15! ∗ 57! 
alternate optimal sequences for the illustrative example above obtained by this procedure only. 

6. Summary, Conclusion and Recommendation 

The purpose of this study was to apply dimension reduction methods for Flow Shop Scheduling Problems to 

decrease problem size. The development of solution methods for the ‘n -Jobs m –Machines’ Flow Shop Scheduling 

Problems was limited by the number of jobs n and number of machines m. Due to these difficulties solutions have been 

developed either for a small number of jobs or a small number of machines. To enable solution methods to be applicable 

for a large number of jobs, it was important to cluster jobs into principal components by defining a projective mapping. 
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This removes the redundant information in the original problem. Then solution methods are needed for only targeted 

jobs and once the sequence positions of the targeted jobs in the optimal sequence are identified, a number of alternate 

optimal solutions could be obtained by simple enumeration techniques. Alternate solutions give sequencing freedom for 

job operators to decide on the relative priority of different jobs. In the optimal sequence it is not necessary to list all the 

jobs in an order, but rather a few targeted jobs at the beginnings and ends of the sequences completely determine the 

completion time. More specifically, the first occurrences of the two jobs at the beginnings and ends of the optimal 

sequence for which the processing time on one machine attains its highest processing time on the other machine are very 

important because they completely determine the extent to which further computation of jobs to be assigned in the 

remaining sequence positions is no longer important as far as makespan is concerned. Therefore, Johnson's method was 

relaxed by terminating listing jobs at the first available positions when the job selected with the minimum processing 

time criteria on the first machine attains the highest processing time on the second machine for the first time and also by 

terminating listing jobs at the last available positions when the job with the minimum processing time criteria on the 

second machine attains the highest processing time on the first machine for the first time. The remaining jobs could be 

arranged in any convenient way in the remaining gaps without affecting minimum completion time.   
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