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ABSTRACT: The multilinear least-squares (MLLS) problem is an extension of the linear least-

squares problem. The difference is that a multilinear operator is used in place of a matrix-vector 

product. The MLLS is typically a large-scale problem characterized by a large number of local 

minimizers. It originates, for instance, from the design of filter networks. We present a global search 

strategy that allows for moving from one local minimizer to a better one. The efficiency of this 

strategy is illustrated by the results of numerical experiments performed for some problems related to 

the design of filter networks.  
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 ائل المربعاث الصغرى الخطيت المتعذدةسلحل م شاملاستراتيجياث البحث ال

 ماتس أندرسون و أولج بورداكوف و هانس ناتسون و سبارتك زكرين

بينهما في استعمال الفرق ويكمن . امتداد لمسألة المربعات الصغرى الخطية هي مسألة المربعات الصغرى المتعددة :خصمل

تتميز و ،حجمكبيرة ال مسألة المربعات الصغرى المتعددة تكون عادة بدلاً من ضرب مصفوفة بشعاع.متعدد الخطية  معامل
استراتيجية بحث  هذه الدراسة قدمتبعدد كبير من النهايات الدنيا الموضعية. إنها تنتج، مثلآ، من تصميم شبكات الترشيح. 

بنتائج فعالية هذه الاستراتيجية  وسيتم توضيحأخرى أفضل منها. إلى ن نهاية دنيا موضعية شامل تسمح بالتحرك م
  بعض المسائل التي لها علاقة بتصميم شبكات الترشيح.عددية مطبقة على  اترباتاخ

 

1. Introduction 

onsider the following multilinear least-squares (MLLS) problem in which u v  denotes the component-

wise product of vectors u and v. Given a vector mb R  and matrices ,
m ni

iA R


  =1, 2, , ,i L  find 

* Nx R  that solves the problem  

 2
1 1 2 2( ) ( ) ( ) ,min L L

Nx R

b A x A x A x



  (1) 

C 
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where ,
ni

ix R  =1, 2, , ,i L  1 2= LN n n n    and 1 2= ( , , , ) .T T T T
Lx x x x  For the sake of simplicity, 

we consider here the standard Euclidean norm, although the subsequent reasoning holds also for the weighted 

Euclidean norm. Note that if =1,L  then (1) is a linear least-squares problem. 

The MLLS problem occurs, for instance, in factor analysis, chemometrics, psychometrics (Leardi et al., 

2000; Leurgans and Ross, 1992; Lopes and Menezes, 2003; Paatero, 1997; Wang et al., 2003). We will study 

this problem in relation to the design of filter networks (Andersson et al., 1999; Norell et al., 2011; Svensson et 

al., 2005), specifically the sequential connection of sparse sub-filters presented by Figure 1. In this case, ix  

stands for individual characteristics (design parameters) of sub-filter i, whose frequency response is .i iA x  The 

ideal (desired) frequency response of the sub-filter sequence and the actual one are represented in (1) by b and 

1 1 2 2( ) ( ) ( ),L LA x A x A x  respectively. It is common for the design of filter networks that << .N m  

MLLS is a non-convex, typically large-scale, optimization problem with a very large number of local 

minimizers. Each of the local minimizers is singular and non-isolated. 

The most typical approach to solving the MLLS problem consists in generating randomly a number of 

starting points for their further refinement with the use of local optimization methods. One major shortcoming of 

this approach is that a very large number of starting points is required to be generated in order to find a 

reasonably good fit in problem (1). Another major shortcoming is that the convergence of local methods is too 

slow in this problem. 

 

 
Figure 1. Sequential connection of L  sub-filters 

 

The most popular of the local algorithms used for solving the MLLS problem is called ‘alternating least 

squares’ (ALS). It exploits the feature of problem (1) that, if to fix all the vectors 1 , ,T T
Lx x  but one, say ,ix  

then the resulting sub-problem of minimizing over ix  is a linear least-squares problem. In the ALS algorithm, 

the linear least-squares sub-problems are solved for the alternating index i. This algorithm is also known as 

‘block-coordinate relaxation’ or ‘nonlinear Gauss-Seidel algorithm’ (Ortega and Rheinboldt, 2000). The 

mentioned major shortcomings of the local search algorithms are inherent in ALS. 

The main aim of our work here is to develop an effective global optimization approach to solving the 

MLLS problem and justify it theoretically. 

Our work is organized as follows. In Section 2, we consider a new constrained optimization problem 

introduced in Norell et al. (2011). It is similar, in some sense, to the MLLS problem, and its solution gives a 

good starting point for running the local search in the MLLS problem. Global optimality conditions for the new 

problem are derived in Section 3. These conditions are then used in Section 4 for constructing a global search 

algorithm. In Section 5, we report and discuss results of applying our global search algorithm to solving MLLS 

problems related to the design of filter networks. In Section 6, we draw conclusions and discuss future work. 

2. Problem reformulation 

Problem (1) can be written in the equivalent form  

 

2
1

,

min

s.t. = , = 1, , ,

L
N mLx R y R

i i i

b y y

A x y i L

 


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where ,m
iy R  =1, , ,i L  1 2= ( , , , )T T T T

Ly y y y  and 's.t.' stands for 'subject to'. This problem is 

characterized by the relations  

 1 , and = , =1, , .L i i ib y y A x y i L  

Following Norell et al. (2011), we consider a similar, conceptually close, problem in which  

 1= , and , =1, , .L i i ib y y A x y i L  

We formulate it as:  

 

2

=1
,

1

min

s.t. = .

L

i i i
N mL ix R y R

L

y A x

y y b

 


 

After solving this problem in x, we obtain  

 =1

1

min

s.t. = ,

L
T
i i i

mL iy R

L

y P y

y y b




 (2) 

where iP  is the matrix of orthogonal projection defined by .iA  In the numerical implementation, it may not be 

reasonable to compute iP  explicitly, but instead, it can be treated as a linear operator defined by iA  in one of 

the standard ways (Björk, 1996). Moreover, since this problem may admit trivial asymptotic solutions, it must be 

regularized. This can be done by adding 
2

iy  with a small   to each term in the objective function. We 

assume further that all matrices iP  have been slightly perturbed in this way, and hence they are positively 

definite. 

Observe that the regularized objective function in (2) is strictly convex with a unique minimizer in the 

origin. Unlike (1), this problem does not suffer from the bad property of having non-isolated minimizers. 

However, it inherits the multi-extremal nature of problem (1). 

Without loss of generality, we can assume that 0b   in (1) and (2). Indeed, if any component of b is 

negative, the change of its sign to positive can be compensated by the change of sign in the corresponding row 

of, for instance, 1.A  In (Norell et al., 2011), it is discussed how to treat the case of zero components. From now 

on, we assume that > 0.b  

Note that the feasible set in problem (2) consists of disjoint subsets. Each of these subsets is connected. It is 

characterized by a certain feasible combination of signs of 1, , .Ly y  The total number of the subsets is 

determined by the number of the feasible combinations of signs which is equal to ( 1)2 .m L  

Consider how to solve problem (2) on a given isolated subset of the feasible set, for instance, the subset 

associated with the positive orthant ={ : > 0}.mL mLR y R y   The problem in this case takes the form  

 >0, , >0 =11

1

min

s.t. = .

L
T
i i i

y y iL

L

y P y

y y b


 (3) 

The substitution = exp( )i iy w  reduces this problem to:  

 , , =11

1

exp( ) exp( )min

s.t. = ln ,

L
T

i i i
w w iL

L

w P w

w w b



 

 (4) 

where exp( )  and ln( )  are component-wise operations. This linear equality constrained problem can be 
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efficiently solved by the conventional methods (Nocedal and Wright, 2006) that are able to take advantage of 

using the easily available derivatives of the objective function and the simple structure of the linear constraints in 

(4). In (Norell et al., 2011), the computational time for solving this problem was approximately half the time for 

one run of the ALS algorithm on problem (1). 

To study the general case of sign combinations, we divide problem (2) into an outer binary problem to deal 

with the signs of y and an inner subproblem, similar to (4), in which the minimization is performed on the 

corresponding subset of the feasible set. Notice that the feasible vectors 1, , Ly y  in (2) have no zero 

components, because > 0.b  Following Norell et al. (2011), we present problem (2) as a specially enumerated 

set of subproblems of the form (3). We will use the following notations:  

 = sign( ), = , = diag( ) diag( ) .i i i i i i i i is y y s y P s P s  (5) 

 Let mS  be the set of all vectors in 
mR  whose elements equal 1  or 1.  If iy  is feasible, then 

m
is S  and 

> 0.iy  Furthermore, for all feasible vectors 1, , Ly y  in (2) we have 1 = ,Ls s e  where 

= (1, ,1) .T me R  It is easy to verify that problem (2) is equivalent to  

 
1

, ,1

1

( , , )min

s.t. = ,

L
m ms S s SL

L

s s

s s e


   (6) 

with the objective function  

 
1

>0, , >0 =11

1

( , , ) = min

s.t. = .

L
T

L i i i
y y iL

L

s s y P y

y y b

 
 (7) 

Here, the dependence of iP  on is  is given by (5). Note that the substitution 1 1=L Ls s s   is able to 

eliminate the equality constraint in outer problem (6), which is a binary problem with 
( 1)2m L

 feasible points. 

This number of feasible points defines the number of all inner problems (7). 

The important feature of problem (6) is that it performs a partitioning of the feasible set in (2) and reduces 

this problem to a finite number of easy-to-solve inner problems (7) of the same form as (3). This allows us to 

capture the nature of the local minimizers of problem (2) and to enumerate them efficiently by combining the 

signs. 

Any optimal or close to optimal solution y to problem (6), or equivalently, to  problem (2), can be used as 

an initial point in problem (1), to be further refined by local search algorithms like ALS. Given y, the initial point 

x is computed by the formula  

 †
= , =1, , ,i iix A y i L  

where †
i

A  is the pseudo-inverse of iA  (Björk, 1996). 

In our numerical experiments in (Norell et al., 2011), we compared the performance of the ALS for the 

initial point generated by our approach and for randomly generated points. It was required to run the ALS from 

at least 500 random points in order to get a local minimizer in (1) with the approximation error comparable with 

only one run of the ALS from the point generated by solving problem (6). Thus, the approach introduced in 

(Norell et al., 2011) achieved the overall network design speedup factor of several hundreds. Moreover, the 

randomly generated initial points did not guarantee any success. This speaks for the robustness of the approach. 

It should be emphasized that binary problems are, in general, difficult to solve, but fortunately, the nature 

of signs in the sub-filter outputs are often well understood. Prior knowledge of the filter’s characteristics and its 

structure helps to facilitate substantially the solution process of the outer problem by focusing on a relatively 

small number of sign combinations (see (Norell et al., 2011) for details). 
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3. Theoretical background for global search 

Given an approximate solution to problem (2), our global search is aimed at finding a new combination of 

signs in (6) with a better value of the objective function defined by (7). It is based on solving problem (2) under 

the assumption that all components of given feasible vectors 1, , Ly y  are fixed, except for their kth 

components denoted here by 1, , ,Lu u  respectively. The value of k changes in the process of global 

minimization. 

To justify our approach, we will consider problem (2) rewritten in terms of these components. Let ˆiy  

coincide with iy  in all the components, but the kth one which equals zero in ˆ .iy  Let ( )i kP  and ( )i kkP  stand 

for the kth column and diagonal element of the matrix ,iP  respectively. It can be easily verified, for =1, , ,i L  

that  

 
2= ( ( ) ) ,T

i i i i i k i iy P y y     

where  

 2ˆ ˆ ˆ= ( ) , = ( ) / , = .T T
i i kk i i i k i i i i i iP y P y P y       (8) 

Thus, the minimization over 1= ( , , )TLu u u  in (2) results in the problem:  

 

2

=1

1

( )min

s.t. = ,

L

i i i
L iu R

L

u

u u c

 




 

 (9) 

where c denotes the kth component of b. It is worth noting that this problem has at least one global minimizer, 

because the level sets of the objective function are compact and the function defining the constraint is smooth. 

Let *U  stand for the set of all global minimizers in problem (9). For this problem, the following notations 

will be used:  

 
* * * *={ : = sign( ), }, ={ : sign( ) = },L L L

sS s S s u u U R u R u s    

 1 , 1= ( , , ) = ( , , ) .T T
L L       

Let the multivariate function ( )   be defined as the product of the signs of all the variables, for instance,  

 1( ) = sign( ) sign( ) .Lu u u    

Note that the feasible set in problem (9) consists of disjoint subsets. Each of these connected subsets 

belongs to the corresponding orthant 
L
sR  determined by sign( ).u  Since such subsets are characterized by 

( ) =1,u  their total number is 12 .L  It grows exponentially with L. This is indicative of a highly multi-extremal 

nature of problem (9). The result presented in Theorem 1 allows one to effectively locate the optimal 

combination of signs *S  or, equivalently, to find the orthants that contain the connected subsets of the feasible 

set on which the global optimum of problem (9) is attained.  

  

Theorem 1  Let the coefficients c and   in problem (9) be positive. Then, * *s S  if and only if 
*( ) = 1s  and 

one of the following conditions holds:   

    (i)  ( ) 0    and 
* = sign( ),i is   for all i such that 0;i   

    (ii) ( ) = 1    and there exists *i I  such that  

  

 
** *

sign( ), if = ,
= = 1, , ,

sign( ),   otherwise,

i
i

i

i i
s i L








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with the set  

 
1

= | | .min i
i L

I Arg 
 

 

Proof. We start by proving the "if'' part. Suppose that * *.s S  Let * *u U  be such that 
* *sign( ) = .u s  The 

feasibility of *u  implies that 
*( ) =1.s  

Consider the linear space transformation given by the formula  

 
*= .v s u  

This nonsingular transformation is aimed at easing our analysis because, in the new space, the objective function 

takes the form of a squared Euclidean distance between the two points 1= ( , , )TLv v v  and 

*
1= ( , , ) = .T

La a a s   Note that  

 
1

| |= .min i
i L

Arg a I
 

 

Another important feature of the transformation is that it does not change the multiplicative type of the 

constraint. The problem in the new space takes the form:  

 

2

1

min

s.t. = ,

Lv R

L

v a

v v c





 

 (10) 

where 1= .Lc c      Thus, the reformulated problem (10) is to find the shortest distance from a to the 

feasible set. Let 
* * *

1= ( , , )TLv v v  be the image of *u  in the new space, i.e., * * *= .v s u  Clearly, *v  is a 

global minimizer for problem (10). Then, in the view of the fact that 
* > 0,v  conditions (i) and (ii) can be 

reformulated in the new space as follows:   

    (i')  if ( ) 0,a   then 0;a    

    (ii') if ( ) < 0,a  then there exists *i I  such that > 0,ia  for all *,i i  and 
*

< 0.ia   

We first show that there is no more than one negative component of a. Suppose, to the contrary, that at 

least two components of a are negative, say, ia  and .ja  It can be verified easily that the open linear segment 

*( , )v a  intersects the hyperplane  

 ={ : = 0}L
i jv R v v    

at the point  

 
*= (1 ) ,v a v     (11) 

where (0,1)  is given by the formula  

 

* *

* *
= .

( ) ( )

i j

i j i j

v v

v v a a




  
 (12) 

Consider the point 1= ( , , )TLv v v    defined as follows:  

  (13) 

 

 

 

 

This point is obviously feasible. The triangle inequality gives 

*

*

*

, if = ,

= , if = , = 1, , .

, otherwise,

j

l i

l

v l i

v v l j l L

v





 



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< ,v a v v v a        where 
*= ,v v v v     because ,v   

*( ) / 2v v    and 

*( ) .v v    Then, we obtain  

 
* *< = ,v a v v v a v a            (14) 

 since 
*( , ).v v a  Hence, the feasible point v   gives a better objective function value in (10) than *.v  This 

contradicts the assumption that *v  is a global minimizer for problem (10) and proves that a  can have at most 

one negative component. 

This result immediately proves (i') for ( ) =1.a  For ( ) = 0,a  suppose, contrary to (i'), that there exists 

< 0.ia  Such a component must be unique. There must exist index j such that = 0.ja  For these indices i and j, 

consider the points v   and v   defined by formulas (11), (12) and (13). One can show, as above, that (14) holds 

for the two points. This contradicts the assumption that *v  is a global minimizer. Thus, statement (i'), and 

consequently part (i) of the theorem, hold. 

Consider now the case ( ) < 0.a  As shown above, exactly one component of a must be negative, say, 

< 0.ia  Suppose, contrary to (ii'), that .i I  For this i and any ,j I  consider the point v   defined by (13). 

For the point v   defined by (11) and (12), the condition (0,1)  is satisfied, because < 0.i ja a  For v   and 

v   one can show, as above, that (14) holds, which contradicts that *v  is a global minimizer. This proves (ii') 

and accomplishes the proof of the "if'' part of the theorem. 

For the "only if'' part, let *s  satisfy the sufficient conditions. We choose any *u U  and construct a point 

* * *
1= ( , , )TLu u u  individually for each of the cases (i) and (ii). 

Suppose that (i) holds. Consider *u  defined as follows:  

 
* *= | |, =1, , .i i iu s u i L  

Obviously, 
* *sign( ) =u s  and *u  is a feasible point. As proved in the "if'' part, sign( )u  must satisfy (i). Thus, 

* =sign( ),i is u  for all i such that 0.i   Therefore, *u  has the same objective function value in (9) as u. 

Suppose now that (ii) holds. Let 
*i I  be such that 

*
* *= sign( ).

i i
s   It must satisfy (ii). Suppose j I  

is the index for which sign ( ) = sign( ).j ju   This means that *| |=| | .ji
   If 

* = ,i j  then we define * = .u u  

Otherwise, we define *u  as follows:  

 

* *
* *

* *
*

| | / , if = ,

= | | / , if = , = 1, , .

, otherwise,

j ji i

l j i ji

l

s u l i

u s u l j l L

u

 

 







 

It can be easily seen that sign
* *( ) =u s  and also that *u  is feasible and has the same objective function value in 

(9) as u. 

In each of the two cases, 
* *,u U  and consequently * *.s S  This completes the proof of the theorem.    □ 

 

This result suggests ways in which the sign combinations intrinsic in the global minimizers of problem (9) 

can be effectively constructed for any given .  Our algorithm presented in the next section is based on this 

result. 
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4. Global search algorithm 

Theorem 1 implies that *s  is not unique when either of the following two cases occurs:   

    •   has more than one zero component.  

    • ( ) = 1    and the set I consists of more than one element.  

Given  , the set *S  can be constructed based on the optimality conditions as follows.   

    • If ( ) =1,   then the set 
* = {sign( )}S   is a singleton.  

    • If ( ) = 0,   then *S  is composed of all vectors * Ls S  whose components 
* = sign( ),i is   for all i such 

that 0,i   and the rest of the components ensure 
*( ) =1.s   

    • If ( ) = 1,    then *S  is composed of the same number of elements as I. Each 
*i I  determines * *s S  

in such a way that 
*
* *= sign( ),

i i
s   and the remaining components of *s  are the same as in sign( ).   

Note that it is not necessary to construct the whole set *S  when it is required to find only one * *.s S  The 

same principles as above can be employed in this case. 

We propose below a global search algorithm. It uses procedures OPTSIGN, LOCAL and ALS. Procedure 

OPTSIGN( , )y k  computes   by formula (8), and then it returns an *s  arbitrarily chosen from the set *.S  

Another task of this procedure is to verify if a given Ls S  is optimal for problem (9). The optimality 

conditions given by Theorem 1 can be used for checking if OPTSIGN( , )s y k  holds. Procedure 

1LOCAL( , , )Ls s  returns y that solves problem (7) for a given sign combination 1, , .Ls s  Procedure 

0ALS( )x  returns the result of running the ALS algorithm from a given starting point 0.x  

The derived optimality conditions open the way to a successive improvement of the sign combination in 

outer problem (6). The resulting global search strategies admit various implementations. 

The one that we present below is based on a sequential checking of the components in 1, , Ls s  for a 

possible improvement. It starts from a given sign combination 1, , Ls s , and it returns an approximate solution 

for problem (1). Our global search proceeds as follows: 

 
In Algorithm 1, an initial sign combination 1, , Ls s  is required to be given. For this purpose, the choice 

of signs proposed in Norell et al. (2011) can be used. An alternative is to choose as the initial sign combination 

the best one produced by ALS, starting from a number of randomly generated points. 
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5. Numerical experiments 

For generating MLLS test problems of the form (1), we considered two-dimensional filters of the 

monomial class (Knutsson et al., 2011) with the lognormal (Granlund and Knutsson, 1995; Knutsson, 1982) and 

logerf (Knutsson and Andersson, 2005; Norell et al., 2011) radial parts. We shall use the abbreviations LP, BP 

and HP standing for the Low-Pass, first-order Band-Pass and first-order High-Pass filters, respectively. They 

were approximated by a sequence of = 5L  sub-filters. The total number of coefficients N of the sub-filters and 

the number of components m of the discretized ideal frequency responses b are specified in Table 1 for each 

filter. 

Our numerical experiments were performed on a PC with a 2.27GHz Intel Xeon E5520 processor and 32-

bit Windows XP operating system. The results are shown in Table 1. The Matlab routine FMINCON was used to 

solve problem (4) which is a reformulation of (7). As mentioned earlier, the objective function in (2) is required 

to be regularized. For the regularization parameter value, we used = 0.5.  We shall use the term  approximation 

error to refer to the objective function value in (1) and denote it by .  In Table 1, min( )j  stands for the best 

approximation error obtained by running ALS from 500 randomly generated starting points. The CPU time (in 

seconds) spent on performing these 500 runs is denoted by .alst  We shall use the term  local search to refer to 

solving problem (7) only once for the sign combination chosen as proposed in (Norell et al., 2011). The 

approximation error loc  is the result of one run of ALS from the starting point produced by the local search. 

Our global search strategy is aimed at improving the local search results. To initialize it, we used the same sign 

combination as in the local search. The global search, as proposed in Algorithm 1, took globt  seconds of CPU 

time and yielded a relative improvement, calculated by the formula  

 = 100% ,
loc glob

loc

 





   

where loc  and glob  are the values of the regularized objective function in (2) produced by the local and global 

search, respectively. ALS started from the point generated by our global search resulted in the error .glob  

The set of filters used in our experiments included also zero- and second-order band-pass and high-pass 

filters. For these filters, the initial sign combination proposed in (Norell et al., 2011) was nearly optimal in the 

sense that there was practically no difference between the approximation errors loc  and min( ).j  For this 

reason, our global search strategy was unable to improve the initial sign combination. 

 

Table 1. Performance of the ALS, local and global search strategies 

    

Filter N  m  min( )j  loc  glob    alst  globt  

LP, lognorm 15 361 1.94e-4 3.44e-4 3.31e-4 0.01 1262.4 73.0 

BP, lognorm 13 360 1.66e-3 3.16e-3 1.66e-3 0.19 1226.3 21.9 

BP, logerf 13 360 1.23e-4 5.63e-4 1.23e-4 0.19 1251.5 21.1 

HP, logerf 13 360 1.05e-3 3.19e-3 1.05e-3 0.10 1246.2 23.4 

  

The results presented in Table 1 refer to the filters for which the global search strategy was able to improve 

local search solutions in terms of objective function values in problems (7) and (1). In the case of high-pass and 

band-pass filters, the solution produced for problem (1) was as good as the best of those produced by 500 runs of 

ALS, but for achieving this, the global search required a CPU time that was over 50 times shorter. These results 

demonstrate the efficiency of our global search strategy and its capability for substantially speeding up the filter 

design process. 
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6. Conclusions 
 

The derived optimality conditions open up possibilities to perform a global search for a better sign 

combination. The implemented global search strategy is not a very computationally demanding procedure. Its 

efficiency was demonstrated by the results of numerical experiments. For some filters, our global search ensured 

a faster process of optimizing sub-filter parameters with an overall speedup factor of over fifty. We plan to 

extend our approach to solving optimal filter design problems having more general sub-filter network structures. 
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