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ABSTRACT: In this paper we propose a parallel implementation for the flood propagation method 

Flo2DH. The model is built on a finite element spatial approximation combined with a Newton 

algorithm that uses a direct LU linear solver. The parallel implementation has been developed by 

using the standard MPI protocol and has been tested on a set of real world problems. 
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 حل مشكلة انتشار الفيضانات باستخدام خوارزمية نيوتن على أجهزة الحواسيب المتوازية 

 شافي التريكي

على أجهزة الحواسيب  Flo2DH نامجرباستخدام بقترح هذه الورقة طريقة لحل مشكلة انتشار الفيضانات ت خص:مل
 LUتحليل اللى تقريب العناصر المحدودة مع خوارزمية نيوتن التي تستخدم إالمتوازية. وقد تم بناء نموذج الحل بالاستناد 

وجرى اختباره على مجموعة من  MPI المباشر. كما تم وضع الحل على أجهزة الحواسيب المتوازية باستخدام بروتوكول
 المسائل التطبيقية. 

 

1. Introduction 

he solution of most of the mathematical models arising in several contexts of hydraulics and hydrology still 

remains a big challenge. The choice of the most appropriate method for the solution of the problem under 

examination is often subject to a trade-off between numerical stability and computational complexity. Moreover, 

the time execution is often too long to be acceptable for the requirements of the decision makers. This paper has 

the intention of contributing in this direction for a particular problem: the flood propagation modeling. The aim 

is to provide a parallel implementation of the well known software Flo2DH, a code built on a finite element 

spatial approximation combined with a Newton algorithm to solve the linear systems. More specifically, we 

focus our attention on the solution of the linear system arising in every iteration of the Newton method. We 

discuss the advantages of direct methods (vs. iterative methods) and we propose a parallel implementation based 

on an LU decomposition approach. 

T 



CHEFI TRIKI  

148 

The parallel solution of direct methods has been the subject of intensive research activity to solve many 

problems arising in a wide range of contexts (Scott, 2001; Scott, 2002; Amestroy et al., 1998; Mallya et al., 

1997). Moreover, several existing approaches have been proposed for the parallel LU decomposition and for the 

parallelization of Flood modeling systems (Hluchy et al., 2002, 2006). However, to the best of our knowledge, 

this paper represents a first contribution for the parallel solution of the LU decomposition within the Flo2DH 

code to solve the flood propagation problem. The only work dealing with this problem which we are aware of, 

has implemented an iterative method (a stabilized version of the conjugate gradient algorithm) that allows only 

an approximate solution to be obtained and not the exact one (Abdeouahed et al., 2000). Our parallel direct 

approach is, thus, useful, not only when a high numerical precision is required but also when it can serve as a 

benchmarker for the development of iterative methods within a flood propagation solver. 

The paper is organized as follows: in Section 2 we define the application context of our contribution. In 

Section 3 we present our parallel approach and discuss the different issues related to its implementation. In 

Section 4 we report our experimental results, and in Section 5 we give some concluding remarks. 

2. Computational fluid mechanics 

Computational fluid mechanics is a tool that helps to solve a wide range of problems in fluid mechanics 

and heat transfer. We usually categorize common fluids as either gas or liquid. A fluid is any material medium 

that can not support shearing or stresses and remain at rest, from the macroscopic standpoint. The most important 

properties of fluids are density, viscosity, surface tension, cavitation and boiling. 

Fluid flow plays an important role in practice. A detailed description of the flow is usually necessary for 

better understanding and ultimately solving a number of industrial and scientific problems. Each kind of flow has 

its proper mathematical description. By mixing together different kinds of flows, the mathematical description 

becomes more complex. This description uses sets of partial differential equations which in most of the cases 

have no analytical solution. For this reason numerical methods are used to solve this kind of problems. 

In computational fluid mechanics, the flow region or calculation domain is usually divided into a large 

number of finite volumes or cells. The governing partial differential equations are discretized by using a finite 

difference, a finite volume or a finite element technique. An example of a small 2-dimensional (2D) finite 

element (FE) mesh is depicted in Figure 1. Such a discretization generates a set of algebraic equations 

(corresponding to the respective partial differential equations) which are solved by numerical procedures. The 

resulting solution thus represents the values of the dependent variables at discrete locations, and the intermediate 

values are obtained by interpolation. 

It is worthwhile noting that most of the problems arising in computational fluid mechanics are 

characterized by a  large number of equations and, consequently, the solution process may take several hours. In 

order to decrease the execution time it is important to take advantage of parallel computing facilities to run, at 

least, the most time consuming parts of the simulation. 

In this paper we focus on the solution of the flood propagation problem by using the public domain 

Flo2DH simulator for which we propose a parallel implementation. 

3. Parallel implementation 

Before presenting our parallel implementation, we need to describe with some details the characteristics of 

the simulator Flo2DH. 

3.1  Flo2DH simulator 

Flo2DH is part of the United States Federal Highway Administration's Finite Element Surface-Water 

Modeling System (FESWMS). It is a computer program that simulates the movement of water and noncohesive 

sediment in rivers, estuaries, and coastal waters (Froehlich, 2002). 

The sequential version of the Flo2DH simulator uses the finite element method for the differential 
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equations computation (Froehlich, 2002; Dabaghi et al., 2004). The solution space (water surface) is divided into 

a number of elements depending on the expected precision (see Figure 1). More elements in the computational 

model means higher resolution and precision, but also more computational load. 

 

 
Figure 1. carre test problem - A small 2D FE mesh (partitioned into 3 sets). 

  

  

The Flo2DH simulator is written in Fortran 77 and Fortran 90 programming languages. The source code, 

around 2000 pages long, contains a lot of physical and mathematical computations that are not only very 

complex, but also characterized by a high degree of dependence. (Indeed, our tentative of assigning the task of 

automatic parallelization of the whole code to a parallel compiler has given very poor results). Therefore 

parallelizing the whole code seems to be laborious and not promising. For this reason we decided to focus our 

attention on the most time consuming parts of the code with the aim of decreasing the total execution time of the 

simulator. 

Even though intuition led us to think that the solution of the linear set of equations at each step of the 

Newton method is the most time consuming part of the code, we decided to carry out a time measurement 

experiment in order to confirm our intuition. The experiment also had the objective of discovering the percentage 

of  the total time which this consumes and the theoretical speedups that may be expected. 

On the basis of our experiment, carried out on a set of 5 test problems with different sizes and by using one 

processor of the SGI Origin 300 supercomputer, a subroutine called xFront turned out to be the most 

computationally extensive fraction of Flo2DH. The results reported in Table 1 show, indeed, that the code 

spends up to 80% of the total time in executing subroutine xFront, whereas no one of the other subroutines of 

Flo2DH takes a significant amount of time. 

  

Table 1. Execution times (seconds) and percentages 

   

Problem carre madora etape1 solstat etape2 

number of nodes 97 437 6413 4223 13876 

 xFront  
total time  

xFront/total time  

0.46 

0.58 

0.79 

1.55 

1.85 

0.84 

7.85 

15.8 

0.50 

34.86 

41.94 

0.83 

205.6 

255.9 

0.80 
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 By analyzing the source code we observe that: 

    • subroutine xFront is responsible of generating the system of linear equations for each element and then for 

calling subroutine xAssemble; 

    • xAssemble is responsible for forming the matrix A  from the values of each element and for solving the 

system of equations (Froehlich, 2002):  

 = ,Ax b  (1) 

where A  is a large sparse matrix, b  is a vector, and x  is the variables vector.  

Forming and solving the system of linear equations =Ax b is, thus, computationally the most intensive 

part of Flo2DH. Parallelizing the subroutine xFront represents an opportunity to solve the flood propagation 

problem faster. 

According to Amdahl's law and the time measurements reported in Table 1 it is possible to estimate the 

maximum theoretical speedup expected from running subroutine xFront on an 8-processor machine (the case of 

test problem madora that has a fraction of 16% of non parallelizable code):  

 
1

= 3.77 .
1 0.16

0.16
8

S




 (2) 

However, besides calling xAssemble, xFront calls also a set of subroutines which are responsible for 

hydrodynamics computations and that are not suitable to be parallelized because of the data dependence. This 

fact, together with the unavoidable communication overhead, should further worsen the above theoretical 

speedups of our parallel implementation. 

 

 
Figure 2. Sparse matrix in DBBD form with processes assignment. 

 

3.2  Parallel frontal solver 

In the sequential version of Flo2DH, the frontal method is used to solve the set of equations = .Ax b  This 

method makes an LU decomposition of the matrix A  followed by a forward and a backward substitution. An 

attractive feature of this method is that the workload could be separable into small tasks, and it is not necessary 

that each task has the whole matrix A  available in order to make the LU decomposition. Computations are just 

done over a small part of the whole matrix A. This part, called a front, is formed by the summation of the 

equations for each element. The variables which are fully summed are then decomposed and eliminated from the 

front (Froehlich, 2002). An efficient implementation should ensure that the size of the front matrix must be very 

small compared with matrix A  in order to save memory. 

The next step consists in choosing a parallelization approach for solving the =Ax b  system. There are two 

main approaches: direct and iterative algorithms. Even though direct methods need a considerable number of 

floating point operations (high load), they are characterized by a high stability of the solution. For this reason we 

decided to implement a direct method, giving, in this way, particular attention to the  solution’s precision at the 

cost of a possible slight loss in efficiency. 
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The parallel frontal method works in a similar way to the sequential frontal method. The whole load is 

divided into a number of tasks that are assigned to the parallel processes. Each process has its own front and 

performs its computation over a proper part of the matrix A. The algorithm can be particularly suitable for 

parallelization whenever: first, the matrix A  has the following doubly bordered block diagonal (DBBD) form: 

 =

 
 
 
 
 
 
 
 

1 1

2 2

n n

1 2 n

A C

A C

A

A C

C C C E

 (3) 

where submatrices iA  are i in n , iC  are in k  and Ci  are ik n , and second, ik n  (i.e. the black part 

of the matrix  in Figure 2 is as small as possible). 

In our case it is possible to decompose matrix A  into the above form by using the partitioning and 

resequencing algorithms that will be described in the sequel of this section. Thus, the partial frontal 

decomposition is performed on each of the submatrices:  

 =
 
 
 

i ii

i i

A C
A

C E
. (4) 

 

Parallel frontal algorithm:   
1.  Factorization   

    - perform a partial LU decomposition of each i
A  (in parallel)  

- form the interface problem by summing the Schur complement matrices remaining after performing all 

   the possible eliminations on the submatrices  

    - factorize the interface matrix  

2.  Forward elimination   

     - perform a forward elimination on each submatrix (in parallel)  

     - send data to the interface problem  

     - perform a forward elimination on the interface matrix  

3.  Back substitution   

     - perform a back substitution on the interface matrix  

     - send data to all the processors  

     - perform a back substitution on the submatrices (in parallel)  

 

 
Figure 3. A 4-element problem (left) and its graphical representation (right). 
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The master-slave paradigm has been chosen to implement the parallel frontal method and the library MPI 

has been used a message-passing protocol. Besides assigning the tasks to be performed by each process, the 

master manages also the communication (signals and data) with the slaves. No inter-slave communication 

happens in our implementation. This parallel frontal method is particularly suitable for a coarse-grained 

parallelism. As the number of processes increases the communication becomes very time consuming and the 

algorithm's performance decreases. Moreover, in any parallel implementation, it is necessary to take care of 

some important issues such as load balancing, resequencing, and code optimization. This will be the subject of 

the remaining part of this section. 

3.3  Load balancing 

In order to obtain an efficient load balance it is important, in our case, that matrix (3) has all the matrices 

, ,1 nA A of equal size and, furthermore, has ,ik n a characteristic that strongly depends on the mesh 

topology. 

The load balancing problem can be transformed into a graph partitioning problem that is defined as 

follows: each vertex represents the computation to be performed over a data unit and each edge indicates the 

dependence between data units. In the case of the frontal method a data unit corresponds to an element and the 

dependence (edge) between elements corresponds to the eventual sharing of at least one node. The weight of an 

edge is defined as the number of nodes that are shared by two elements, as shown in Figure 3, whereas all the 

vertices are assigned the weight 1. 

The graph partitioning problem consists in dividing the graph into disjunctive sets. Each vertex can belong 

to only one set and the following conditions have to be satisfied:   

    • the sums of vertex weights for all the sets are of (almost) equal value;  

    • the sum of edges between the sets has to be as small as possible.  

The graph partitioning problem is known to be NP-hard (Wikipedia). Thus, for its solution, it is necessary 

to use heuristic approaches since exact methods can not be satisfactory. In our implementation we have used the 

graph partitioning software Chaco (Hendrickson and Lelan, 1994). This software package provides several graph 

partitioning heuristics and has the advantage of being extremely configurable. On the basis of an empirical 

consideration we have chosen to implement, in our parallel code, the spectral partitioning method combined with 

the Kerningham-Lin refinement approach (Rotta, 2008). The solution quality of the graph partitioning heuristic 

can be seen, for example, in Figure 1 for problem carre and in Figure 4 for problem ourika (the colors refer to the 

elements to be assigned to the processes). 

3.4  Element resequencing 

In frontal methods the order in which the elements are processed is very important in order to keep the 

front as small as possible. As a result, once the graph partitioning has been done, it is necessary to resequence the 

elements to define the order in which the vertices should be processed. Since the graph resequencing problem is 

NP-hard (George and Liu, 1981) we have implemented two different heuristics for its solution, the first based on 

the Reverse Ordering Algorithm of Cuthill and McKee (George and Liu, 1981) and the second, a greedy 

approach. 

   

Reverse Cuthill-McKee ordering algorithm:  
The Cuthill-McKee ordering algorithm divides the nodes into level sets. A level structure rooted at a node r is 

defined as the partitioning of V into levels 1 2( ), ( ), , ( )hl r l r l r  such that   

    1.  1( ) = { }l r r  and  

    2. for >1, ( )ii l r  is the set of all nodes that are adjacent to nodes in 1( )il r  but are not in 

1 2 1( ), ( ), , ( ).il r l r l r   

The Cuthill-McKee algorithm orders, within each level set ( ),il r  the first nodes that are neighbours of the first 
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node in 1( ),il r  then those that are neighbours of the second node in 1( ),il r  and so on. The Reverse Cuthill-

McKee algorithm reverses the order found by Cuthill-McKee. 

 

 
Figure 4. ourika test problem partitioned into 7 sets. 

 

In this work we have also implemented a heuristic based on a greedy approach. In this method the ordering 

is constructed by taking into account the specific features of the problem under examination so as to minimize 

some objective quantity at each step of the iterative process. In terms of graph resequencing, the basic ordering 

process used by our greedy algorithm can be summarized as follows: 

  

Greedy ordering algorithm:   

1.  Initialization: Construct the undirected graph 
0G  corresponding to the mesh;  

2.  Generic iteration: For =1,2,k  until =kG  :   

         - Choose a vertex 
kv  from 

kG  with the minimal number of firstly occurred nodes. If there are several  

such vertices choose the one with the maximum number of lastly occurred nodes.  

         - Eliminate 
kv  from 

kG  to form 
1kG 

 . 

The resulting ordering is the sequence of vertices 1 2{ , , }.v v  

3.5  Performance optimization 

Once a functional parallel code has been developed it is necessary to optimize its performance. For this 

purpose we have used two different techniques:   

MPE Library: helps in finding the parts of the parallel program that are suitable for being optimized so 

that their execution time is reduced. The MPE software package performs this task by using a performance 

visualization approach.  

Complier switch: this task is both architecture and compiler dependent. 

3.6  Mesh visualization 

Our parallel code has been enriched by certain tools that help both the developer and the user in controlling 

the execution process and checking the solution quality. Among the tools that are particularly useful for the 

solution of large scale problems we mention the visualization program plplot library (Lebrun and Furnish, 1994), 

which has been used to depict the meshes of our test problems in this paper. 
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4. Numerical results 

The validation of our parallel code has been done by using a set of test problems that refer to real world 

applications. The data concern a set of rivers located in Morocco, Algeria, and Lebanon (Dabaghi et al., 2004). 

The architecture platform used is the SGI Origin 300 running the operating system IRIX 6.5 using the MIPSpro 

(Fortran and C) compilers. The CPU time has been measured on the master program by using the dtime function. 

Our experimental results have been collected in Table 2. We report, for each test problem, the 

computational time (T) of both subroutine xFront and the whole Flo2DH simulator when executed sequentially, 

on 4 processors (1 master and 3 slaves), and on 8 processors (1 master and 7 slaves). The corresponding 

speedups (S) are reported in Table 2 and also depicted (for the case of 8 processors) in Figure 5 (the test 

problems are identified by their number of nodes). The collected results show that (i) the best speedups are 

obtained for test problem etape2 which is characterized, according to Table 1, by a low fraction of code that is 

not parallelizable, (ii) the worst speedup is obtained for test problem etape1 which is characterized by a high 

fraction of code that is not parallelizable and finaly (iii) the speedup values increase as the number of processes 

increases for most of the test problems with the exception of carre and madora. This is due to the fact that these 

two problems are very small, so that the parallelized load is not able to compensate the communication overhead. 

  

Table 2. Execution times (seconds) and speedups 

    

  Problem &     sequential   4 processes   8 processes  

# of nodes     T   T   S   T   S  
 

 carre  
97  

 xFront  
 FES2DH  

 0.46  

 0.58  

 0.12  

 0.22  

 3.83  

 2.63  

 0.15  

 0.25  

 3.06  

 2.32  

 madora  
437  

 xFront  
 FES2DH  

 1.55  

 1.85  

 0.90  

 1.29  

 1.72  

 1.43  

 0.95  

 1.34  

 1.63  

 1.38  

 etape1  
6413  

 xFront  
 FES2DH  

 7.85  

 15.8  

 5.91  

 14.65  

 1.32  

 1.07  

 3.58  

 12.27  

 2.19  

 1.28  

 solstat  
4223  

 xFront  
 FES2DH  

 34.86  

 41.94  

 22.41  

 30.23  

 1.55  

 1.38  

 13.09  

 20.92  

 2.66  

 2.00 

 ourika  
22292  

 xFront  
 FES2DH  

 161.92  

 181.41  

 125.84  

 133.47  

 1.29  

 2.19  

 74.01  

 81.67  

 2.19  

 2.22  

 etape2  
13876  

 xFront  
 FES2DH  

 205.6  

 255.9  

 90.43  

 145.75  

 2.27  

 1.75  

 40.38  

 95.81  

 5.09  

 2.67  

 normal  
13896  

 xFront  
 FES2DH  

 190.16  

 276.86  

 91.4  

 146.8  

 2.08  

 1.89  

 39.7  

 95.2  

 4.79  

 2.91  

 moyen  
55179  

 xFront  
 FES2DH  

 1800  

 2930  

 886  

 1600  

 2.03  

 1.83  

 402  

 1113  

 4.48  

 2.63  

 
These results deserve some comments. First, we note that the collected speedups for Flo2DH are often 

within the theoretical bounds (expected speedups) calculated in Section 3.1.  As far as the parallelized subroutine 

xFront is concerned, the obtained speedups could be considered satisfactory especially for big problems, i.e. for a 

high number of nodes. The exception of test problem ourika is explained by the fact that the graph partitioning 

algorithm was not able, in this case, to ensure that ik n (see Section 3.3). 

In the second comment, we want to stress the fact that even though the parallel version of Flo2DH does not 

markedly improve the computational performance of the sequential version, it continues to have its practical and 

empirical importance. From the practical point of view, our implementation has permitted the direct method, and 
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also, but with a lesser order of importance, the simulator Flo2DH, to be run faster. Whenever additional fractions 

of the simulator are parallelized, Flo2DH could further benefit in terms of efficiency. From an empirical point of 

view, our code could become a benchmarker for evaluating the solution quality of other codes using iterative 

solvers. 

These advantages could even become more significant whenever the solution of large scale problems is 

faced. We expect, indeed, from our parallel code, to be able to solve large problems (with a huge number of 

elements) that are unsolvable on conventional computers because of lack of memory. High performance facilities 

will allow, in this case, not only a temporal advantage (speedup) but also a spatial advantage (memory) by 

exploiting the distributed resources that could not be available otherwise. 

 

 
Figure 5. Speedups on 8 processors. 

5. Conclusions 

In this paper we dealt with the flood propagation problem and we proposed a parallel implementation of 

the simulator Flo2DH for its solution. Our parallelization effort has focused on the solution of the linear system 

arising in the Newton method since it is the most time consuming part of the simulator. We proposed an 

appropriate matrix decomposition and we implemented graph-partitioning and element-resequencing strategies 

in order to balance the load among the processes. We tested the performance of the parallel code on a set of real-

life problems and we obtained satisfactory speedups, especially for non trivial problems. Our experimental 

experience has been restricted to the solution of a set of test problems that are characterized by a limited size. 

This was due to the difficulty of collecting the necessary data for real large-scale problems. We expect, however, 

from our parallel code, to be able to solve large scale problems that currently sequential computers, even though 

quite powerful, are not able to solve. 

Finally, we notice that our parallel implementation can be improved in various ways. One of these is to 

perform the graph partitioning not at each iteration of the Newton method, as in the current version, but only 

when necessary. In this case it is necessary to define a criterion that decides whether the current partitioning is 

still valid. This can be the subject of future research. 
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