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         دراسة حصریة لبعض الخوارزمیات التطبیقیة المشابھة لطریقة نیوتن للحلول المثلى غیر المقیدة

   محي الدین البعلي وحمید خلفان 

تعتبر الخوارزمیات المشابھة لطریقة نیوتن من الطرق التطبیقیة الأكثر كفاءة لمسائل الحلول المثلى غیر المقیدة.  :خلاصة
دراسة شاملة لبعض الخوارزمیات الحدیثة من ھذا النوع مع التركیز على الطرق المستخدمة في تقریب تتضمن ھذه المقالة 

  مصفوفة المشتقة الثانیة ووسائل تطویرھا. 
  

ABSTRACT: Quasi-Newton methods are among the most practical and efficient iterative 
methods for solving unconstrained minimization problems. In this paper we give an overview 
of some of these methods with focus primarily on the Hessian approximation updates and 
modifications aimed at improving their performance.  
 
KEYWORDS: Unconstrained optimization, line search technique, quasi-newton methods.  

1.   Introduction 

In this paper we give an overview of some line search quasi-Newton methods for solving the unconstrained 
minimization problem  ( )min

nx R
f x

∈
,

           (1) 

where f   is a twice continuously differentiable function. Emphasis will be on the Hessian approximation 
formulas used in these methods, and techniques developed to improve their performance.  
 The basic iteration of a quasi-Newton method consists of the following. Starting with an initial 
approximation 1x  to a solution x∗

 of (1), and an initial positive definite Hessian approximation 1B ,  calculate a 

new approximation at iteration k  by  



M. AL-BAALI and H. KHALFAN 

  200

1k k k kx x dα+ = + ,                (2) 

where kα  is a steplength and kd  is a search direction obtained by  
( )1

k k kd B f x−= − ∇ ,
                (3) 

where kB  is a positive definite n n×  Hessian approximation matrix chosen from the general Broyden class of 
updates discussed in the next section.  
 The steplength kα

is calculated such that the Wolfe conditions  

                                ( ) ( ) ( )1 1 (0 1 2)T
k k k k k kkf x d f x f dxα ρ α ρ+ − ≤ ∇ , ∈ , /

 (4) 
and  

( ) ( ) ( )2 2 1 1T T
k kk k k kf d f dx d xρ ρ ρα∇ ≥ ∇ , ∈ ,+

                                     (5) 

are satisfied. The first condition ensures sufficient reduction in f ,  and the second one guarantees that the 
steplegnth is not too small relative to the initial rate of decrease in f . In practice, the strong Wolfe conditions 
(4) and  

 ( ) ( )2
T T

k kk k k kf d f dx d xρα| ∇ |≤ − ∇+
 

are usually used.  
 If beside the standard assumptions on f ,  f∇  is Lipschitz continuous, the steplength kα  satisfies the 

Wolfe conditions, and the matrices kB  are positive definite and have a bounded condition number, then iteration 
(2) is globally convergent. (see e.g. Fletcher, 1987, Dennis and Schnabel, 1996, and Nocedal and Wright, 1999).  
 In the next section we discuss some well-known members of the Broyden class of Hessian 
approximation updates. In Section 3 we outline some approaches for improving the performance of some 
standard updates by modifications of the gradient difference ( ) ( )1k kf x f x+∇ − ∇ .

 In Section 4 we discuss self-
scaling quasi-Newton methods aimed at handling ill-conditioned problems. Some quasi-Newton methods for 
large scale optimization are discussed in Section 5.  

2.  Quasi-newton updates 

Setting 1kα =  and 
2 ( )k kB f x= ∇  in (2) and (3), respectively, we obtain the well-known Newton 

method which converges quadratically to a solution x∗,  if 1x  is sufficiently close to x∗.  For many practical 
problems, however, analytic second derivatives are unavailable, and the cost of approximating them by finite 
differences requires either an additional n  gradient evaluations or 

2( )O n  function evaluations per iteration. 

Quasi-Newton updates for Hessian approximation avoid these disadvantages by approximating 
2

1( )kf x +∇  by a 
symmetric matrix  
 1k k kB B E+ = + ,

 

where kE  is an n n×  matrix, such that the secant equation  
1k k kB s y+ = ,

           (6) 

is satisfied, where 1k k ks x x+= −  and ( ) ( )1k k ky f x f x+= ∇ − ∇
.  
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The solution to equation (6), however, is not unique, and there is a variety of updating formulas obtained 
by imposing more conditions on 1kB + . If kE

is assumed to be a symmetric rank-one matrix for instance, then 
(6) yields the unique Symmetric Rank-One update (SR1)  ( ) ( )

1

T
k k k k k k

k k T T
k k k k k

y B s y B s
B B

s y s B s+

− −
= + .

−                                                          (7) 

Requiring kE  to be a symmetric rank-two matrix, equation (6) yields a variety of possible updates such as the 
well-known (broyden fletcher goldfarb shanno) and (davidon fletcher powell) formulas. A more general formula 
satisfying the secant equation with kE  symmetric and of rank two at most, known as the Broyden class, is given 
by  

 
1( )

T T
Tk k k k k k

k k k kT T
k k k k k

B s s B y yB B w w
s B s y s

θ θ+ = − + + ,
 

where  

 

1 2( )T k k k
k k k k T T

k k k k k

y B sw s B s
y s s B s

/  
= − 

   

and θ  is a parameter. This class includes as special case the BFGS update, when 0θ = ; the DFP update, when 
1θ = ; and the SR1 update, when ( )T T T

k k k k k k ks y s y s B sθ = / − . (Another family of updates was proposed by 
Huang (1970), but is not discussed here since it was shown to be equivalent to the self-scaling Broyden family 
discussed in Section 5.)  

If kB  is positive definite, and the curvature condition 0T
k ks y >  holds (which is guaranteed by the second 

Wolfe condition (5)), then 1kB +  is positive definite for any kθ θ> ,  where  

 

1 ,   
1

T T
k k k k k k

k k kT T
k k k k k k

s B s y H yb h
b h s y s yθ = = , =

− ,  

and 
1

k kH B−= .  Since 0kθ <  (by Cauchy’s inequality), it clearly follows that any update with 0θ ≥  (such as 
the BFGS and DFP updates) preserves positive definiteness if the curvature condition holds. The SR1 update 
preserves positive definiteness only if either 1kb <  or 1kh < , which may not hold even for quadratic functions. 
(See e.g. Fletcher, 1987).  

Powell (1976) showed that if f  is a convex function and the Wolfe conditions hold, then for any starting 

point 1x  and any positive definite initial matrix 1B , the BFGS method converges globally; and if furthermore 

the true Hessian 
2 f x∗ 

 
 

∇
 is positive definite, then the rate of convergence is q -superlinear. This result was 

extended by Byrd, Nocedal and Yuan (1987) to the interval 0 1θ≤ < ,  (updates belonging to [ ]0 1,
 are known 

as the convex class).  
Although Dixon (1972) showed that for a general nonlinear function f , all well-defined members of the 

Broyden family with kθ θ≠  generate the same sequence of iterates when used with exact line searches, 
numerical experience showed that only some updates, which we discuss next, worked well in practice when 
inexact line searches are used; and that the performance deteriorates as θ  increases above 0  (see e.g. Byrd, Liu 
and Nocedal, 1992).  
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The SR1 method enjoys some desirable features which are not shared by other standard updates. Fiaco and 
McCormick (1968) showed that for a positive definite quadratic function, if the SR1 update is used with linearly 
independent steps, and all the updates are well-defined, then the solution is reached in at most 1n +  iterations. 
Furthermore, if 1n +  iterations are required, then the final Hessian approximation 1nB +  is the actual Hessian. 
This quadratic termination property is not generally true for other members of the Broyden family, unless exact 
line searches are used.  

For general functions, Conn, Gould and Toint (1991) proved that the sequence of SR1 Hessian 
approximations converges to the true Hessian at the solution provided that the steps are uniformly linearly 
independent; that the SR1 update denominator is always sufficiently different from zero, and that the iterates 
converge to a finite limit. Hence under these conditions the rate of convergence is q -superlinear. If the 
assumption of uniform linear independence is dropped, then as shown in Khalfan, Byrd and Schnabel (1993) the 
SR1 method converges ( 1)n + - q -superlinearly provided that for all k,  kB  is positive definite and bounded. 
On the other hand, Ge and Powell (1983) showed that the sequence of matrices generated by the BFGS method 
converges to a matrix not necessarily equal to the true Hessian.  

In order to obtain a well-conditioned update, Davidon (1975) proposed the update  

1 , 2
1

1 , .
1

k
k k k k

k k

k

h b h b h
b h

otherwise
b

θ

− + ≤ −= 

 −                                                   (8) 

The first update in this formula is obtained by minimizing over θ  the condition number 1( ( ) )k kB Hκ θ+ , and 
the second one is the SR1 formula. Practical experience, however, showed no significant improvement using this 
update (see e.g. Al-Baali, 1993 and Lukšan and Spedicato, 2000).  

Since updates from the preconvex class work well in practice (see e.g. Zhang and Tewarson 1988 and 
Byrd, Liu and Nocedal, 1992), Al-Baali (1993) reported improved numerical performance using the switching 
BFGS/SR1 update 

0 1
1 otherwise

1

k

k

h

b
θ

, ≥
=  , , −  

which preserves positive definiteness. Lukšan and Spedicato (2000) also reported competitive performance using 
this update. Other updates of the switching type are given in Al-Baali, Fuduli and Musmanno (2004).  
 An interval of globally convergent updates was tested by Al-Baali and Khalfan (2005), defined by  
 k kθ θ θ− +≤ ≤ ,  
where  1 2

1 11  1k k
k k kb h

θ ν
ν

/

±  
= ± , = − . 

                                                          (9) 

Their numerical experience indicated that several updates from this interval worked well in practice, especially 
the modified SR1 update  
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1

1max 1
1

1min 1
1

k k

k k
k

k k
k

b

b
b

b
b

θ

θ θ

θ

−

 
 −
 
  
 

 
 +
 
  
 




, =
= , , > −

 , , <
 −  

and the update defined by  
 max( 1 )k kbθ θ −= , −  
which does not include the SR1 formula. The fast rate of convergence observed in the numerical experience with 
these updates suggests further study of their convergence properties.  

3.  Modifying gradient-difference vector 

Many approaches have been proposed to improve the quasi-Newton Hessian approximation updates. In this 
section we outline some recent suggested updates obtained by modifying the vector ky .  

 Zhang, Deng, and Chen (1999) suggested replacing ky  in the BFGS formula by the vector  
1 1

2
6( ) 3( )T

k k k k k
k k k

k

f f g g sy y s
s

∗ + +− + +
= +

|| ||                                               (10) 

which has the property that  

 
( )2 3

1

T
k

k k k k
k

s f x s y O s
s

∗   
  +   

∇ − = || ||
|| ||  

and reduces to ky  if f   is quadratic. The resulting modified BFGS method retains global and q -superlinear 
convergence for convex functions, and performs slightly better than the standard BFGS method on some test 
problems.  
 Li and Fukushima (2001) proposed using  

 
2max 0

T
k k

k k k k
k

y sy y g s
s

∗   −
= + || || + ,  || ||    

instead of ky  in the BFGS update for ensuring that 0T
k ky s∗ > . They showed that for a general function, the 

resulting BFGS method with backtracking line search converges globally and superlinearly, under standard 
assumptions on the objective function. Their numerical experience also indicated some improvement in 
performance. For other modifications of this type (Yuan, 1991, Xu and Zhang, 2001, Wei et al., 2004, and 
Zhang, 2005).  
Modifying ky  was originally suggested by Powell (1978) who proposed a BFGS method for constrained 
optimization with  

     ( )( )1 ,k k k k ky y B s yϕ∗ = + − −
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where 0 1ϕ< ≤  . Al-Baali (2003b) used this modification for unconstrained problems and reported improved 
performance for the BFGS and many other methods.  

Other approaches for improving Hessian approximation involved employing multiple quasi-Newton 
updates at each iteration, using information at the current and previous steps. Some improvement was observed 
for certain type of test problems (Khalfan, 1989, Ford and Tharmlikit, 2003, and Al-Baali, et al., 2004).  

4.  Self-scaling quasi-newton methods 

The standard quasi-Newton methods that we considered so far may have difficulties in solving some ill-
conditioned problems. Powell (1986) showed that, the BFGS and DFP methods behaved badly (the latter far 
worse) when applied to a simple ill-conditioned quadratic function. Moreover, Dai (2002) and Mascarenhas 
(2004) gave examples of nonconvex functions, for which the BFGS method failed to converge to the solution of 
the problem. In this section we consider self-scaling Hessian approximation updates for handling ill-conditioned 
problems.  

Oren and Luenberger (1974) proposed the two parameters class of self-scaling Hessian approximation 
updates, 

                                 
( )1 , ,

T T
Tk k k k k k

k k kT T
k k k k k

B s s B y yB w w
s B s y s

θ θ+ κ

 
τ = τ Β − + + τ 

   (11) 

where θ  and τ  are chosen such that the new update is optimally conditioned in some sense. For the parameters 
θ  and τ  the authors suggested the intervals    11,  k

k

h
b

θ ≤ ≤ τ ≤
                           (12) 

  
to ensure that 

( )( ) ( )1 1
1 ,k kB G B Gκ θ τ κ− −

+ ≤
 when f  is a quadratic function with a positive definite 

Hessian G.  
Using intervals (12), Oren and Spedicato (1976) proposed the class  

                                                              ( )1
k

k k

h
b h

τ
θ

τ
−

=
−

                                                                         (13) 

 
which can be obtained by minimizing the condition number 

( )( )1 , /k kB Hκ θ τ τ+  over θ  (see Spedicato 

(1978)). Notice that substituting  1τ =  in class (13) gives the Davidon optimally conditioned update, given in 
the first case of (8). Moreover, as shown in Al-Baali (1995), class (13) can be also obtained by minimizing the 
same condition number over τ . 

 In order to include members from the nonconvex class such as the SR1 update, and maintain positive 
definiteness, Al-Baali (1995) and Hu and Storey (1994) proposed the intervals  

                                                    ,  ,k k k kθ θ θ τ τ τ− + − +≤ ≤ ≤ ≤   (14) 

where ( )1 ,k k kh vτ ± = ±
 and where kθ ±

 and kv  are defined by (9). The end points of intervals (14) define two 
self-scaling SR1 updates which are the same updates obtained by Osborne and Sun (1988) and Wolkowicz 
(1996). The choice ( )1/ 1 0k kbθ τ += − ≤

 with kτ τ +=  is preferable since methods from the preconvex class 

work well in practice.  
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Most of these self-scaling updates, however, do not generally improve the performance of the unscaled 
methods as reported by several authors. In fact, Shanno and Phua (1978) showed that the BFGS method worked 
better when scaling is used only for the initial Hessian approximation 1B . Moreover, Nocedal and Yuan (1993) 
showed that, compared with the (unscaled) BFGS method, the best self-scaling BFGS algorithm of Oren and 
Luenberger (1974), 0θ =  and 1/ kbτ = , performs badly, when used for solving a simple quadratic problem of 
two variables. They also showed that for the same problem, superliner convergence is not obtained unless certain 
steplegnth values are used which cannot be guaranteed in practice.  
Al-Baali (1998) however, extended the global and superliner convergence theory of Byrd, Liu and Nocedal 
(1992) for convex functions to the self-scaling class, (11), on the intervals 

                                                       1 2 31,  ,kc c cτ θ τθ≤ < ≤ ≤    (15) 

where  ( )1 2 3, , 0,1 ,c c c ∈
 and reported that self-scaling methods from these intervals, outperformed 

corresponding unscaled methods. Further numerical testing reported by Al-Baali and Khalfan (2005) showed 
that these methods succeeded in solving more problems than the unscaled methods, especially when 1.θ ≥   

Using scaling only when 1,τ <  also improves the performance of other self-scaling methods discussed 
above. For example, replacing the best self-scaling BFGS method of Oren and Luenberger (1974) mentioned 
above with  1min ,1 ,

kb
τ

 
=  

   

the resulting method outperformed even the standard BFGS method. Performance improvement was also 
reported, especially for the DFP method, by Contreras and Tapia (1993), and Yabe, Martines, and Tapia (2004), 
when a similar self-scaling approach was used for a certain type of problems.  

5.  Large-scale quasi-newton methods 

The storage and computational requirement of the methods we considered so far is ( )2nΟ
 for a problem 

of n variables. Several modifications of quasi-Newton updates have been proposed to improve their efficiency 
when this cost is excessive. In this section we consider two approaches that are used widely in practice: the 
limited-memory method which is suitable for problems in which the true Hessian is not sparse, and the 
partitioned method which is the method of choice for problems with partially separable Hessians.  

5.1  Limited-memory methods   

In these methods only a few vectors of length n are used for approximating the inverse of the Hessian implicitly 
instead of storing a full n×n matrix. For example, if we write the BFGS update in the form 
  

1 k,  V , 1/ ,T T T
k k k k k k k k k k kH V H V I I y s s yρ ρ ρ+ = + = − =  

 
then using the m vector pairs { } 1, , , 1,..., 1,i i ks y i k k k m H += − − +

 can be expressed as  
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( ) ( )

( ) ( )

( ) ( )

1 1 1 1

1 2 1 1 2

2 2 1 1 2

           

           

           
           .          

T T
k k k m k m k m k

T T T
k m k k m k m k m k m k

T T T
k m k k m k m k m k m k

T
k k k

H V V H V V

V V s s V V

V V s s V V

s s

ρ

ρ

ρ

+ − + − + − +

− + − + − + − + − +

− + − + − + − + − +

=

+

+

+

+

L L

L L

L L

L

 

 
In the limited-memory method of Nocedal (1980), the matrix 1k mH − +  is replaced at each iteration by a positive 

definite diagonal matrix ,kD  and the search direction ( )1 1 1k k kd H f x+ + += − ∇
 is obtained by 4mn  

multiplications involving the m pairs { },i is y
 and ( )1kf x +∇

 as shown for example in Nocedal and Wright 
(1999). This method is referred to as the L-BFGS method and it converges only globally for convex functions as 
shown in Liu and Nocedal (1989). A compact representation of limited-memory methods for general quasi-
Newton updates is given by Byrd, Nocedal and Schnabel (1994).  

Computational experience with ( )1/ ,k kD h I=
 a multiple of the identity matrix, indicates that for large 

scale problems in which ( )2
1kf x +∇

 is not sparse, the L-BFGS method outperforms other methods such as the 
nonlinear conjugate gradient method; and that its performance improves substantially, in term of computing 
time, as n gets large. The method however may suffer from slow convergence, which costs more function 
evaluations, especially on very ill-conditioned problems (Nocedal and Wright, 1999). For large-scale least-
square problems, Al-Baali (2003a) considered a modified L-BFGS method using a vector ky∗

, similar to the one 

discussed in section 3, instead of ky  and reported substantial improvement in numerical performance.  
Another limited-memory approach, is based on the fact that the standard BFGS method accumulates 

approximate curvature in a sequence of expanding subspaces, which allows using a smaller reduced matrix to 
approximate the Hessian, that increases in dimension at each iteration. This feature is used to define limited-
memory reduced-Hessian methods that require half the storage of conventional limited-memory methods. For 
more on these methods see Gill, and Leonard (2003 ) and Lukšan and Vlček (2006).  

5.2  Partitioned methods  
Every function f with a sparse Hessian can be written in the form  

1 2( ) ( ) ( ) ( ),mf x f x f x f x= + + +L  

where each function if  depends only on a few variables in , and 1 2 mn n n n= + +L  (see Griewank and Toint 

(1982)). In a partitioned method the Heassian of each element function if  is approximated using a quasi-

Newton Hessian approximation, 
i
kB . These matrices are then assembled to define a sparse Hessian 

approximation kB  to ( )2
kf x∇

 for finding the search direction by solving  

                                                           ( ).k k kB d f x= −∇
  (16) 

If all the element functions ( )if x  are convex, then the BFGS method converges globally, even if the 
system (16 ) is solved inexactly as shown in Griewank (1991). The partitioned BFGS method performs well in 
practice provided that partial separability is fully exploited. Practical implementation however, mostly use the 
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SR1 method, since some element functions may have indefinite Hessians (see Griewank and Toint (1984), Conn, 
Gould and Toint (1992, 1996).  

Finally we mention that there are many other modifications of quasi-Newton methods that we did not cover 
in this paper. For other reviews of quasi-Newton methods see for instance Nocedal (1992) and Lukšan and 
Spedicato (2000).  
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