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         الخطیة تصمیم التجارب للمسائل غیر

   عبدالباسطمحمد خضر

إعتمدت  تصمیمات التجارب للمسائل غیر الخطیة إلى حد كبیر على معاییر المثالیة المستخدمھ للنماذج الخطیة.  :خلاصة
ع غیر المعروفة. علیھ لا یمكن التجمالتصمیمات الناتجة من إستخدام ھذه المعاییر للمسائل غیر الخطیة تعتمد على معالم 

عمال ھذه التصمیمات مباشرة لأن تحدیدھا یتطلب معرفة المعالم التى ستجرى التجربة لتقدیرھا.  یمكن التغلب على ھذه إست
  العقبة بإستخدام عدة تجارب متتا بعة أو إستخدام اسلوب بییز أو إستخدام التقدیرات المتوفرة لھذه المعالم  أو تخمین قیمھا. 

ثم نستعرض معاییر المثالیة المستخدمة عادة التصمیمات الإحصائیة للتجارب  یة موجزه عننبدأ فى ھذه الورقة بنبذه تاریخ
للمسائل غیر الخطیة و نناقش عوائق إستخدامھا و وسائل التغلب على ھذه العوائق. بعدھا ننتقل لمناقشة موضوع حساسیة 

ً نبذه موجزه عن التصمیمات المتتا بعة و تصمیمات بییز و نضع بین یدى القارئ التصمیمات محلیة المثالیة. نعرض أیضا
  بعض المسائل العالقة للبحوث المستقبلیة. 

 
ABSTRACT: Experimental designs for nonlinear problems have to a large extent relied on 
optimality criteria originally proposed for linear models. Optimal designs obtained for 
nonlinear models are functions of the unknown model parameters. They cannot, therefore, be 
directly implemented without some knowledge of the very parameters whose estimation is 
sought. The natural way is to adopt a sequential or Bayesian approach. Another is to utilize 
available estimates or guesses. In this article we provide a brief historical account of the 
subject, discuss optimality criteria commonly used for nonlinear models, the associated 
problems and ways of overcoming them. We also discuss issues of robustness of locally 
optimal designs. 
     A brief review of sequential and Bayesian procedures is given. Finally we discuss alternative 
design criteria of constant information and minimum bias and pose some problems for future 
work. 
 
KEYWORDS: Optimal designs, sequential designs, Bayesian designs, constant information, 
minimum bias.   
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1.   Introduction 

Experiments are investigations where the investigator has some control over the system under study.  Such 
investigations are very common in many fields, where the effect of some factors on a specified response variable 
is to be investigated.  Design objectives include: 

1. Reduction of systematic errors, due to controllable factors that are of no interest to the experimenter, 
but may influence the response.  Such factors are commonly known as nuisance factors. 

2. Minimization of experimental error, due to random variability and/or uncontrollable and unknown 
factors that may influence response. 

3. The appropriate number of experimental units to be used.  It is generally desirable to have an 
experiment large enough for effects of practical significance to be detected, but not too large to waste 
experimental material detecting small effects of no practical significance. 

Most of the early developments of the subject were closely associated with agricultural field experiments, and 
with the names of Fisher (1935) and Yates (1935, 1936, 1937). This remains an active research area today. Most 
of the designs developed then were informal emphasizing the key concepts of blocking and randomization to 
meet the first two of the objectives stated above.  The models used are linear with a continuous response variable 
and categorical explanatory variables.  These models can generally be written as: 
  

    E(Y) = θ TX                    (1) 
 
Where Y is the observed response, θ  is a p×1 vector of unknown parameters and X is a p×1 indicator vector 
whose elements are zeros and ones. The variance of Y is assumed constant and denoted by σ2.  When N 
observations are made, the observation Y is an N×1 vector whose ith

 element is Yi, where E (Yi) = θ TXi . 
Equations (1) can now be written as: 
  

    E(Y) = Xθ T                (2) 
 
Where X is an N×p matrix whose ith

  row is XiT .The matrix X is called the design matrix. The normal equations 
for estimating θ  are given by: 
 

    XTXθ̂  = XTY                (3) 
 
The matrix XTX is usually singular and some conditions-known as estimability conditions-  are imposed to make 
it nonsingular. The estimator θ̂  of θ  is then  

(XTX)-1 XTY with COV (θ̂ ) = σ2 (XTX)-1. 
  
The experimental design model in (1) is a special case of the polynomial regression model, usually written in the 
form: 
 

    E(Y/X) = θ T f(X)                     (4) 
 
where f(X) is a function of X only. All the equations above apply with X replaced by f(X). The polynomial 
regression models do not usually suffer from the non-singularity problem of the experimental design model and 
no estimability conditions are needed. 

Models are said to be non-linear if they are not linear in the parameters and, therefore, can not be written in 
the form of equation (4). Such models are written as: 
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    E(Y/X) = f(X,θ )                               (5) 
Where f(X,θ ) is nonlinear in θ .  
  
Consideration of design issues for polynomial regression models, lead to the development of the notion of 
optimality activated by Elfving (1952, 1959) and Kiefer (1959). For models of the form (5) the Fisher 
information matrix is  

I (θ ) = f(X,θ ) [f(X,θ )]T               (6) 
 
For linear models as in equations (2) and (4), I (θ ) is independent of Ө and the variance of the maximum 

likelihood estimator θ̂  is σ2 I-1(θ ). Optimality criteria call for the maximization of some real valued function of 
Fisher's information matrix. 

This is equivalent to the minimization of a function of I⁻¹(θ ) which is proportional to the asymptotic 
covariance matrix of the maximum likelihood estimator. Thus optimality criteria are variance based. 

When the model is nonlinear, I (θ ) is a function of the unknown parameters θ  and, so are the optimal 
designs.  An account of the history of the development of experimental designs can be found in Atkinson and 
Bailey (2001) for instance. We introduce below commonly used optimality criteria. 

2. Optimality criteria 

The optimality criterion adopted for a given problem naturally depends on the main objective of the 
experiment.  That leads to several optimality criteria being proposed and studied, such as 
 

i. D-optimality:  This is by far the most commonly adopted optimality criterion.  A design is called D-
optimum if it minimizes det I⁻¹(θ ).  The criterion treats all the p parameters as of equal interest, which 
makes it the most appealing when estimation of the parameter is the main objective.  It guarantees 
confidence ellipses of the smallest volume.  When interest is in a subset of the parameters or some 
specific linear combination ATθ  of the parameters, modifications known as Ds- and DA- optimality 
are used (see Atkinson and Donev; 1992, chapters 10 and 11). 

ii. G-optimality:  A design is called G-optimum if it minimizes the maximum standardized variances of 
predicted response.  An equivalence theorem (Kiefer and Wolfowitz, 1960) proves the asymptotic 
equivalence of D- and G- optimality. 

iii. A-optimality:  A design is called A-optimum if it minimizes the average variance of the maximum 
likelihood estimators of the parameters. This is equivalent to the minimization of the trace of I⁻¹(θ ). 

iv. E-optimality:  A design is called E-optimum if it minimizes the variance of the least well estimated 
contrast aTθ  (aTa=1). This is equivalent to the minimization of the largest eigen value of I⁻¹(θ ). 

 
This means that D-, A- and E-optimality can be defined in terms of the eigenvalues pλλλ ,,, 21 K

 of the 

information matrix I (θ ).  They correspond to the minimization of 
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appealing property of D- and G- optimality that is not shared by A- and E-optimality is the invariance of optimal 
designs under reparametrization.  In addition to the above most commonly used criteria,   there are several others 
(see Atkinson and Donev, 1992). These include: 
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v. c-optimality:  Minimize the variance of the estimate of cTθ , where cTθ  is the linear combination of 
parameters of main interest. 

vi. Q-optimality:  Minimize average prediction variance over a specified design region (see Myers et al, 
1994). 

vii. F-optimality:  Minimize the width of Fieller's fiducial interval (Finney, 1971). 
 
    owing to the use of the alphabet in the naming of these criteria, we now see reference to alphabetic optimal 
designs (e.g. Myers et al, 1994). 
    The theory of optimal designs and methods of construction of optimal designs are the subjects of several 
books including Silvey (1980), Atkinson and Donev (1992), Pukelsheim (1993) and Cox and Reid (2000).  For 
reviews and sample applications of optimal designs to applied problems in education, business, marketing, 
epidemiology, microbiology, environmental science, pharmaceutical and medical research and manufacturing 
industry, see Berger and Wong (editors, 2005). 

3. Non-linear models 

When optimality criteria are used for linear models the optimal designs have attractive properties and can 
be constructed and used (see Silvey, 1980).  Most of the literature on nonlinear problems, adopted the same 
criteria.  Since the information matrix depends on the unknown model parameters for nonlinear models, so do 
the resulting optimal designs.  This presents a serious hurdle to the implementation of these designs in practice. 
    The first non-linear design problem was the dilution series introduced by Fisher (1922) well before his later 
foundation work on linear problems  The problem he considered then involved a single parameter exponential 
model.  Fisher argued that the magnitude of the variance relative to the parameter should be minimized rather 
than the variance in isolation. He thus considered minimizing the coefficient of variation I⁻¹(logθ ).  He noticed 
that I (logθ ) is almost independent of θ and utilized this property to construct a design that provides a specified 
proportion of the total information.  This strategy was generalized by Abdelbasit and Plackett (1981, 1983) and 
studied in greater details by Abdelbasit (1998).  Stallard and Gravenor (2006) discuss further design issues on 
the dilution series. 

Later work on designs for non-linear problems did not, however, follow Fisher's approach.  Instead it 
focused on optimality criteria originally proposed for linear models, resulting in parameter dependent optimal 
designs.  Despite their litle practical value, these designs provided useful reference points for designs that can be 
implemented (Ford..et al, 1992).  This probably is the main justification for the extensive literature on such 
designs. Dette et al (2004) investigate E- and c-optimal designs for a broad class of non-linear regression 
models.  Dette and Sahm (1998) consider maximum variance optimality criterion of Elfving (1959) in the 
context of non-linear response models and constructed mini-max optimal designs.  Dette and Haines (1994) 
develop a procedure for constructing E-optimal designs for a broad class of two parameter models.  Examples 
illustrate the main features of the procedure.  Hedayat et al (2004) identify classes of 2-parameter non-linear 
models, for which D-optimal designs are precisely supported on two points.  They also obtain some efficient 
designs that allow for model checking. 

Dependence of optimal designs on unknown parameters is the major problem limiting implementation.  A 
number of methods are used in the literature to overcome this problem.  Among these are : 

a. proceeding sequentially 
b. adopting a Bayesian approach 
c. using the best available estimates or guesses, leading to what are called locally optimal designs. 

 
In all the three approaches either preliminary estimates for the parameters or prior distributions have to be used.  
An immediate question is how robust (or sensitive) the resulting designs are to poor initial estimates and priors ? 
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4.  Sequential designs 

This is the natural approach when optimal designs depend on the unknown model parameters.  The 
experimenter runs the first experiment using the best available estimate or guess and similarly use estimates 
obtained from an experiment to run the next. Abdelbasit and Plackett (1983) obtained sequential designs for one 
parameter exponential and two parameter logistic models.  They concluded that: 

 
a. The better the initial estimate, the more experimental subjects should be used in the first stage. 
b. With good initial estimates and relatively small number of subjects, it may not be worthwhile to go 

beyond one experiment. 
c. Underestimating the variance is more serious than overestimating it. 
d. The smaller the variance, the more sensitive the design becomes to poor initial estimates. 

 
One of the earliest problems considered in this area are the dose-response problems, where interest lies in the 
estimation of the parameters of the response curve or its percentiles.  Most of the interest was initially in the 
Median of the response curve, commonly known as the median effective dose ED50.  Later extreme percentiles 
ED100p where p is close to 1 or 0 were considered.  Dixon and Mood (1948) proposed the up and down method 
for estimating the ED50. Subjects are tested one at a time at equally spaced doses and the experimenter performs 
the experiment at the next higher dose in case of no response and the next lower dose in case of a response.  
Bortot and Giovagnoli (2005) proposed a second order up and down method, where the next step is based on the 
outcome of the last two.  Robbins and Monro (1951) extended the up and down method to a variable step size, 
where the doses get closer to each other as they approach the ED50.  A discussion of these methods is given in 
Wetherill and Glazebrook (1986).  A modification to improve the performance of the Robbins-Monro procedure 
at extreme percentiles is given by Joseph (2004).  A summary of developments in sequential designs for 
estimating ED50 is given by Wu (1985) where he proposes new designs and compare - via simulation - small 
sample size performances. 

More generally Sitter and Forbes (1997) consider a class of symmetric binary response models and showed 
that for many of the optimality criteria (e.g. A-, D-, E-, F- and G- optimality); the optimal second stage design 
consists of two points symmetrically placed about the ED50, with possibly different weights at each point.  Sinha 
and Wiens (2002) investigate sequential design methodologies when the fitted model is possibly of an incorrect 
parametric form.  Their small sample simulation results indicate that their designs reduce mean squared error due 
to model misspecification and heteroscedastic variation.  Hu (1998) studied the consistency of parameter 
estimators in sequential non-linear cases and established consistency of Baye's estimators in stochastic 
regression models. 

Sequential procedures are not practical except in situations where possible response is immediate, and their 
properties are hard to explore analytically.  Hence their use in practice remained limited. 

5.  Bayesian designs 

Since optimum designs for nonlinear models depend on the values of the unknown parameters θ , a 
Bayesian approach to the design seems natural. Assuming an initial estimate or guess is effectively an 
assumption of prior knowledge about θ .  

If such knowledge can be expressed in the form of a prior probability distribution, the posterior expected 
information can be obtained. The optimality criteria above can then be applied to the posterior expected 
information.  Chaloner and Lantz (1989) derived general Bayesian theory for non-linear models, applied it to the 
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logistic regression and numerically obtained optimal designs for one and two parameter cases. Chaloner (1993) 
also considered Bayesian designs for one parameter, single explanatory variable models. Consistency issues are 
addressed by Hu (1998).  Dette and Neugebauer (1997) obtained Bayesian D-optimal designs for exponential 
growth models with up to three explanatory variables. 

6. Locally optimal designs 

These are probably the most commonly used and most extensively studied in the literature.  Issues 
associated with such designs are robustness to poor initial estimates and efficiency relative to an optimal or 
another design. In the context of dose-response problems, and when interest is in a single parameter, typically 
the ED50, Finney (1971) obtained symmetrical two and three points F-optimal designs. Abdelbasit and Plackett 
(1983) used simulation to compare the use of fiducial intervals and asymptotic intervals. They concluded that 
asymptotic intervals are not inferior to fiducial intervals. Their results were re-examined by Sitter and Wu 
(1993a) who supported Finney's proposal and concluded that Abdelbasit and Placket's conclusion resulted from 
their large sample size.  Sitter and Wu (1993b) also considered F-optimality together with other alphabetic ones.  
For further comparisons of the fiducial and asymptotic methods see Faraggi et al (2003) and Yangxin (2005).  

For the standard two parameter logistic model, Abdelbasit and Plackett (1983) derived D-optimal designs.  
Their work was generalized by Minkin (1987) and Khan and Yazidi (1988). Myers et al (1994) developed 
optimal designs for the logistic model using several alphabetic criteria.  Sitter and Fainaru (1997) obtained 
alphabetic optimal designs for a class of symmetric models that include the probit and logistic models. Dette and 
Sahm (1997) obtained standardized A- and E- optimal designs for the probit and logit models.  The reason for 
standardization of the information matrix is the scale dependency of the A- and E- optimality criteria.  Ford et al 
(1992) used canonical forms in the construction of locally D- and c-optimal designs for various non-linear 
problems.  Dette and Sahm (1998) considered minimax designs and Fandom and Seidel (2000) gave a minimax 
algorithm that works efficiently for constructing optimal symmetric balanced designs. 

The question of robustness remains a key question for all locally optimal designs.  Sitter (1992) used 
minimax procedures to obtain designs that are robust to poor initial estimates.  The procedure yield designs with 
more design points and larger spread.  The more the uncertainty about the parameter, the more spread out is the 
design and supported on more points.  The issue of robustness is also addressed by many authors including 
Abdelbasit and Plackett (1983), Myers et al (1994), Kalish (1990), Hedayat et al (1997), Moerbeek (2005) and 
Melas (2005).  Cox (1998) suggests that problems caused by non-linearity of the model may not be that serious.  
He considered the case of estimating small treatment differences, and showed that the problem caused by non-
linearity of exponential family distributions is not severe, and the usual normal theory applies well if the data are 
not very heterogeneous.  

Situations with more than one explanatory variable are studied by Abdelbasit and Plackett (1982) in 
relation to joint action of stimuli (see also Antonello and Raghavaroo, 2000).  Atkinson et al (1995) introduced 
gender as a second explanatory variable and Sitter and Torsney (1995) extend D- and c- optimal designs for 
binary response data to the case of two design variables.  

Design problems for bivariate response cases are investigated by Heisi and Myers (1996) who consider the 
bivariate response (efficacy, toxicity) modeled by a bivariate logistic and developed D- and Q-optimal designs.  
They also discuss robustness of the designs obtained.  Dragalin and Fedorov (2005) developed an adaptive 
design for efficacy-toxicity response with bivariate correlated binary response.The main problems of all optimal 
designs are that they : 

a. heavily depend on the precise specification of the model. 
b. usually offer no possibility of checking the assumed model, since they invariably have as many points 

as the number of parameters to be estimated 
c. can not be implemented, when the model is non-linear, because they are functions of the unknown 

model parameters. 
    In the remainder of this article we introduce alternative design strategies that try to avoid the above problems. 
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7.  Fisher's constant information 

Somehow, the first design criterion proposed for non-linear models (Fisher; 1922) was hardly pursued 
further in the literature. Abdelbasit and Plackett (1981, 983) showed that Fisher's results for a single scale 
parameter hold for any model and not just the exponential. They also showed that uniform designs are constant 
information designs for a single location parameter. They used the word reliable to describe designs that make 
the information function independent of the parameter. They also showed that uniform designs are D-reliable for 
two parameter models when the probability of response at dose x can be written as: 
 

p(x) = F{β(x – μ)}                 (7) 
 

for any specified distribution function F (.). A design is called D-reliable if it makes the determinant of the 
information matrix independent of the parameters. A numerical investigation by Abdelbasit (1998) examined the 
use of the criterion for one and two parameter logistic models.  His results indicate that the resulting designs 
have far more points than the number of parameters. 

8.  Bias-based designs 

Minimum bias (all bias) criterion was introduced by Box and Draper (1959) to rival design criteria based 
solely on variance.  They noted that unless the variance contribution to the mean squared error is many times 
greater than bias contribution, the designs that minimize mean squared error are very similar to minimum bias 
designs. Abdelbasit and Butler (2006) extended Box and Draper criteria to generalized linear models of the form 
 

fy(y, θ ,φ) = exp{(yθ -b(θ ))/a(φ) + c(y,φ)}                               (8) 
 

This family includes most of the standard probability distributions. The parameter θ  is called the canonical 
parameter. Abdelbasit and Butler (2006) derived minimum bias designs for the canonical and non-canonical 
cases, and presented as examples; the binary, the Poisson and exponential cases. Their results suggest that 
equally spaced designs minimize the bias-standard error ratio and the mean square error-variance ratio. 

9.  Concluding remarks 

The main hurdle of dependence of designs on unknown model parameters is yet to be resolved.  Variance-
based optimal design criteria seem to have matured, but offer no practical solution.  Alternative design criteria 
other than optimality need to be sought.  The abovementioned constant information and minimum bias are 
examples of such alternatives.  At present the scarce results available indicate that these criteria yield designs 
with too many design points as opposed to the too few of optimal designs.  A search for a compromise that 
combines the merits of the various approaches is worth perusing. 

Very little is known, however, about the statistical properties of the designs based on either of the two 
alternatives suggested above.  Further work in this area is needed, and the efficiency of these designs relative to 
optimal or other designs needs to be investigated.  A comparative analysis of alternative approaches (variance 
based, bias based and constant information) is also needed for providing useful guidance to the practitioner. 
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